Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2736
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴進貴(Jinn-Guey Lay)
dc.contributor.authorChun-Min Chouen
dc.contributor.author周峻民zh_TW
dc.date.accessioned2021-05-13T06:49:00Z-
dc.date.available2019-01-01
dc.date.available2021-05-13T06:49:00Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citationAmerican Psychological Association, W. D. C. (1999). Standards for Educational and Psychological Testing.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human Memory: A Proposed System and its Control In K. W. Spence & J. T. Spence (Eds.), Psychology of Learning and Motivation (Vol. 2, pp. 89-195). New York: Academic Press.
Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York: Academic Press.
Baldwin, C. L., & Reagan, I. (2009). Individual differences in route-learning strategy and associated working memory resources. Hum Factors, 51(3), 368-377. doi:10.1177/0018720809338187
Baltaretu, A., Krahmer, E., & Maes, A. (2015). Improving Route Directions: The Role of Intersection Type and Visual Clutter for Spatial Reference. Applied Cognitive Psychology, 29(5), 647-660. doi:10.1002/acp.3145
Baskaya, A., Wilson, C., & Ozcan, Y. Z. (2004). Wayfinding in an Unfamiliar Environment: Different Spatial Settings of Two Polyclinics. Environment and Behavior, 36(6), 839-867.
Basset-Salom, L., & Guardiola-Víllora, A. (2014). Seismic performance of masonry residential buildings in Lorca's city centre, after the 11th May 2011 earthquake. Bulletin of Earthquake Engineering, 12(5), 2027-2048. doi:10.1007/s10518-013-9559-8
Ben-Joseph, E., Lee, J. S., Cromley, E. K., Laden, F., & Troped, P. J. (2013). Virtual and actual: Relative accuracy of on-site and web-based instruments in auditing the environment for physical activity. Health & Place, 19, 138-150. doi:10.1016/j.healthplace.2012.11.001
Bentley, G. C., McCutcheon, P., Cromley, R. G., & Hanink, D. M. (2016). Fitzgerald: A Return to the Neighborhood and Its Contemporary Structural and Geographical Contexts. Professional Geographer, 68(3), 414-426. doi:10.1080/00330124.2015.1102027
Borrelli, L., Antronico, L., Gullà, G., & Sorriso-Valvo, G. M. (2014). Geology, geomorphology and dynamics of the 15 February 2010 Maierato landslide (Calabria, Italy). Geomorphology, 208, 50-73. doi:10.1016/j.geomorph.2013.11.015
Bosco, A., Longoni, A. M., & Vecchi, T. (2004). Gender effects in spatial orientation: Cognitive profiles and mental strategies. Applied Cognitive Psychology, 18(5), 519-532. doi:10.1002/acp.1000
Boumenir, Y., George, F., Rebillard, G. U. Y., Valentin, J., & Dresp-Langley, B. (2010). Wayfinding through an unfamiliar environment. Perceptual & Motor Skills, 111(3), 829-847. doi:10.2466/04.22.23.27.PMS.111.6.829-847
Brunyé, T. T., Mahoney, C. R., Gardony, A. L., & Taylor, H. A. (2010). North is up(hill): Route planning heuristics in real-world environments. Mem Cognit, 38(6), 700-712. doi:10.3758/MC.38.6.700
Chudyk, A. M., Winters, M., Gorman, E., McKay, H. A., & Ashe, M. C. (2014). Agreement between virtual and in-the-field environmental audits of assisted living sites. Journal Of Aging And Physical Activity, 22(3), 414-420. doi:10.1123/japa.2013-0047
Clarke, P., Ailshire, J., Melendez, R., Bader, M., & Morenoff, J. (2010). Using Google Earth to conduct a neighborhood audit: Reliability of a virtual audit instrument. Health & Place, 16(6), 1224-1229. doi:10.1016/j.healthplace.2010.08.007
Clews, C., Brajkovich-Payne, R., Dwight, E., Ahmad Fauzul, A., Burton, M., Carleton, O., . . . Thomson, G. (2016). Alcohol in urban streetscapes: a comparison of the use of Google Street View and on-street observation. BMC Public Health, 16, 442-442. doi:10.1186/s12889-016-3115-9
Conlon, M., & Anderson, G. C. (1990). Three methods of random assignment: comparison of balance achieved on potentially confounding variables. Nursing research, 39(6), 376-379.
Curtis, J. W., Curtis, A., Mapes, J., Szell, A. B., & Cinderich, A. (2013). Using google street view for systematic observation of the built environment: analysis of spatio-temporal instability of imagery dates. International Journal of Health Geographics, 12(1), 1-18. doi:10.1186/1476-072X-12-53
Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive, 16(4), 409-458.
Deus, E., Silva, J. S., Catry, F. X., Rocha, M., & Moreira, F. (2015). Google Street View as an alternative method to car surveys in large-scale vegetation assessments. Environmental Monitoring And Assessment, 188(10), 560-560. doi:10.1007/s10661-016-5555-1
Downs, R. M., & DeSouza, A. (2006). Learning to think spatially: GIS as a support system in the K-12 curriculum.
Downs, R. M., & Stea, D. (1973). Cognitive representations. In R. M. Downs & D. Stea (Eds.), Image and Environment: Cognitive Mapping and Spatial Behavior (pp. 79-86). Chicago: Aldine.
Egenhofer, M. J., & Mark, D. M. (1995). Naive geography: Springer.
Fazekas, Z., Gáspár, P., Biró, Z., & Kovács, R. (2014). Driver behaviour, truck motion and dangerous road locations – Unfolding from emergency braking data. Transportation Research: Part E, 65, 3-15. doi:10.1016/j.tre.2013.12.009
Federico, T., & Franklin, N. (1997). Long-term spatial representations from pictorial and textual input. In S. Hirtle & A. Frank (Eds.), Spatial Information Theory A Theoretical Basis for GIS (Vol. 1329, pp. 261-278): Springer Berlin Heidelberg.
Fenner, J., Heathcote, D., & Jerrams-Smith, J. (2000). The development of wayfinding competency: Asymmetrical effects of visuo-spatial and verbal ability. Journal of Environmental Psychology, 20(2), 165-175. doi:http://dx.doi.org/10.1006/jevp.1999.0162
Feuillet, T., Charreire, H., Roda, C., Ben Rebah, M., Mackenbach, J. D., Compernolle, S., . . . Oppert, J. M. (2016). Neighbourhood typology based on virtual audit of environmental obesogenic characteristics. Obesity Reviews, 17, 19-30. doi:10.1111/obr.12378
Fewings, R. (2001). Wayfinding and Airport Terminal Design. The Journal of Navigation, 54(02), 177-184. doi:doi:10.1017/S0373463301001369
Fisher, R. A. (1937). The design of experiments. Edinburgh: Oliver And Boyd.
Freksa, C., Habel, C., & Wender, K. F. (1998). Spatial cognition: An interdisciplinary approach to representing and processing spatial knowledge (Vol. 1404): Springer Verlag.
Garden, S., Cornoldi, C., & Logie, R. H. (2002). Visuo-spatial working memory in navigation. Applied Cognitive Psychology, 16(1), 35-50. doi:10.1002/acp.746
Golledge, R. G. (1999a). Human wayfinding and cognitive maps. In R. G. Golledge (Ed.), Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes (pp. 5-45). Baltimore: Johns Hopkins University Press.
Golledge, R. G. (1999b). Wayfinding behavior: Cognitive mapping and other spatial processes. Psycoloquy, 10.
Griew, P., Hillsdon, M., Foster, C., Coombes, E., Jones, A., & Wilkinson, P. (2013). Developing and testing a street audit tool using Google Street View to measure environmental supportiveness for physical activity. International Journal of Behavioral Nutrition & Physical Activity, 10, 103-109. doi:10.1186/1479-5868-10-103
Gullón, P., Badland, H., Alfayate, S., Bilal, U., Escobar, F., Cebrecos, A., . . . Badland, H. M. (2015). Assessing Walking and Cycling Environments in the Streets of Madrid: Comparing On-Field and Virtual Audits. Journal of Urban Health, 92(5), 923-939. doi:10.1007/s11524-015-9982-z
Hanson, C. S., Noland, R. B., & Brown, C. (2013). The severity of pedestrian crashes: an analysis using Google Street View imagery. Journal of Transport Geography, 33, 42-53. doi:10.1016/j.jtrangeo.2013.09.002
Harre Jr, F. E., Lee, K. L., & Pollock, B. G. (1988). Regression Models in Clinical Studies: Determining Relationships Between Predictors and Response 2. JNCI: Journal of the National Cancer Institute, 80(15), 1198-1202.
Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. doi:10.1016/S0160-2896(02)00116-2
Heth, C. D., Cornell, E. H., & Flood, T. L. (2002). Self-ratings of sense of direction and route reversal performance. Applied Cognitive Psychology, 16(3), 309-324. doi:10.1002/acp.795
Hirtle, S. C. (2011). Geographical Design: Spatial Cognition and Geographical Information Science: Morgan & Claypool.
Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Mem Cognit, 13(3), 208-217.
Hirtle, S. C., Richter, K.-F., Srinivas, S., & Firth, R. (2010). This is the tricky part: When directions become difficult. Journal of Spatial Information Science, 1(1), 53-73.
Hund, A. M., & Gill, D. M. (2014). What constitutes effective wayfinding directions: The interactive role of descriptive cues and memory demands. Journal of Environmental Psychology, 38, 217-224. doi:10.1016/j.jenvp.2014.02.006
Inoue, S., & Matsuzawa, T. (2007). Working memory of numerals in chimpanzees. Current Biology, 17(23), R1004-R1005. doi:10.1016/j.cub.2007.10.027
Kelly, C., Wilson, J., Baker, E., Miller, D., & Schootman, M. (2013). Using Google Street View to Audit the Built Environment: Inter-rater Reliability Results. Annals of Behavioral Medicine, 45, 108-112. doi:10.1007/s12160-012-9419-9
Kepper, M. M., Sothern, M. S., Theall, K. P., Griffiths, L. A., Scribner, R. A., Tseng, T.-S., . . . Broyles, S. T. (2017). A Reliable, Feasible Method to Observe Neighborhoods at High Spatial Resolution. American Journal Of Preventive Medicine, 52(1S1), S20-S30. doi:10.1016/j.amepre.2016.06.010
Lawton, C. A., & Kallai, J. (2002). Gender Differences in Wayfinding Strategies and Anxiety About Wayfinding: A Cross-Cultural Comparison. Sex Roles, 47(9/10), 389-401.
Liben, L. S., Myers, L. J., Christensen, A. E., & Bower, C. A. (2013). Environmental-scale map use in middle childhood: links to spatial skills, strategies, and gender. Child Dev, 84(6), 2047-2063. doi:10.1111/cdev.12090
Lynch, K. (1960). The image of the city (Vol. 11): the MIT Press.
Maldonado, G., & Greenland, S. (1993). Simulation study of confounder-selection strategies. American journal of epidemiology, 138(11), 923-936.
Malinowski, J. C., & Gillespie, W. T. (2001). Individual differences in performance on a large-scale, real-world wayfinding task. Journal of Environmental Psychology, 21(1), 73-82. doi:http://dx.doi.org/10.1006/jevp.2000.0183
Mark, D. M., Freksa, C., Hirtle, S. C., Lloyd, R., & Tversky, B. (1999). Cognitive models of geographical space. International Journal of Geographical Information Science, 13(8), 747-774. doi:10.1080/136588199241003
McLeod, S. A. (2007). Multi Store Model of Memory - Atkinson and Shiffrin, 1968. Retrieved from www.simplypsychology.org/multi-store.html
Meilinger, T., & Knauff, M. (2008). Ask for directions or use a map: A field experiment on spatial orientation and wayfinding in an urban environment. Journal of Spatial Science, 53(2), 13-23.
Meilinger, T., Knauff, M., & Bulthoff, H. H. (2008). Working memory in wayfinding-a dual task experiment in a virtual city. Cogn Sci, 32(4), 755-770. doi:10.1080/03640210802067004
Mertens, L., Compernolle, S., Deforche, B., Mackenbach, J. D., Lakerveld, J., Brug, J., . . . Van Dyck, D. (2017). Built environmental correlates of cycling for transport across Europe. Health & Place, 44, 35-42. doi:10.1016/j.healthplace.2017.01.007
Montello, D. R. (1997). The perception and cognition of environmental distance: Direct sources of information. In S. Hirtle & A. Frank (Eds.), Spatial Information Theory A Theoretical Basis for GIS (Vol. 1329, pp. 297-311): Springer Berlin Heidelberg.
Montello, D. R., & Freundschuh, S. (2005). Cognition of geographic information. In R. B. McMaster & E. L. Usery (Eds.), A research agenda for geographic information science (pp. 61-91). Boca Raton, FL: CRC Press.
Mooney, S. J., DiMaggio, C. J., Lovasi, G. S., Neckerman, K. M., Bader, M. D. M., Teitler, J. O., . . . Rundle, A. G. (2016). Use of Google Street View to Assess Environmental Contributions to Pedestrian Injury. American Journal of Public Health, 106(3), 462-469. doi:10.2105/AJPH.2015.302978
Murias, K., Kwok, K., Castillejo, A. G., Liu, I., & Iaria, G. (2016). The effects of video game use on performance in a virtual navigation task. Computers in Human Behavior, 58, 398-406. doi:10.1016/j.chb.2016.01.020
Nori, R., Grandicelli, S., & Giusberti, F. (2009). Individual Differences in Visuo-Spatial Working Memory and Real-World Wayfinding. Swiss Journal of Psychology, 68(1), 7-16. doi:10.1024/1421-0185.68.1.7
Odgers, C. L., Caspi, A., Bates, C. J., Sampson, R. J., & Moffitt, T. E. (2012). Systematic social observation of children's neighborhoods using Google Street View: a reliable and cost-effective method. Journal of Child Psychology & Psychiatry, 53(10), 1009-1017. doi:10.1111/j.1469-7610.2012.02565.x
Richards, D. R., & Edwards, P. J. (2017). Quantifying street tree regulating ecosystem services using Google Street View. Ecological Indicators, 77, 31-40. doi:10.1016/j.ecolind.2017.01.028
Rundle, A. G., Bader, M. D. M., Richards, C. A., Neckerman, K. M., & Teitler, J. O. (2011). Using Google Street View to Audit Neighborhood Environments. American Journal Of Preventive Medicine, 40(1), 94-100. doi:10.1016/j.amepre.2010.09.034
Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: Further studies on the hunter-gatherer theory of spatial sex differences. Evolution and Human Behavior, 21(3), 201-213.
Sorrows, M. E., & Hirtle, S. C. (1999). The nature of landmarks for real and electronic spaces Spatial information theory. Cognitive and computational foundations of geographic information science (pp. 37-50): Springer.
Taylor, H. A., & Tversky, B. (1992). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31(2), 261-292. doi:10.1016/0749-596X(92)90014-O
Tenbrink, T., & Winter, S. (2009). Variable granularity in route directions. Spatial Cognition and Computation, 9(1), 64-93. doi:10.1080/13875860902718172
Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models Spatial Information Theory A Theoretical Basis for GIS (pp. 14-24): Springer.
Vanclooster, A., Ooms, K., Viaene, P., Fack, V., Van de Weghe, N., & De Maeyer, P. (2014). Evaluating suitability of the least risk path algorithm to support cognitive wayfinding in indoor spaces: An empirical study. Applied Geography, 53, 128-140. doi:10.1016/j.apgeog.2014.06.009
Vanwolleghem, G., Van Dyck, D., Ducheyne, F., De Bourdeaudhuij, I., & Cardon, G. (2014). Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google Street View-based audit. International Journal of Health Geographics, 13(1), 1-17. doi:10.1186/1476-072X-13-19
Vincent, L. (2007). Taking Online Maps Down to Street Level. Computer (00189162), 40(12), 118-120.
Walkowiak, S., Foulsham, T., & Eardley, A. F. (2015). Individual differences and personality correlates of navigational performance in the virtual route learning task. Computers in Human Behavior, 45, 402-410. doi:10.1016/j.chb.2014.12.041
Weiss, T. R. (2014). Taking a Google Street View Time Warp Trip Through the Past. eWeek, 5-5.
Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition and Computation, 9(2), 152-165. doi:10.1080/13875860902906496
Winter, S., & Raubal, M. (2004). Selection of Salient Features for Route Directions. Spatial Cognition & Computation, 4(2), 113-136.
Wu, Y.-T., Nash, P., Barnes, L. E., Minett, T., Matthews, F. E., Jones, A., & Brayne, C. (2014). Assessing environmental features related to mental health: a reliability study of visual streetscape images. BMC Public Health, 14, 1094-1094. doi:10.1186/1471-2458-14-1094
Yin, L., Cheng, Q., Wang, Z., & Shao, Z. (2015). ‘Big data’ for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Applied Geography, 63, 337-345. doi:10.1016/j.apgeog.2015.07.010
Yin, L., & Wang, Z. (2016). Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Applied Geography, 76, 147-153. doi:10.1016/j.apgeog.2016.09.024
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2736-
dc.description.abstract空間認知對人類是重要的素養之一。空間認知使我們可以辨認路標、找出空間樣態,以及進行空間的決策。在過去研究中,覓路被廣為使用來評估空間認知能力。在覓路過程中,人類必須記住目的地、必須掌握路徑位置,並且確認周圍環境來決定正確方向,然後不斷朝向目的地前進。因此,心理地理空間能力以及環境知識在覓路過程中扮演重要的角色。此外,一種新的覓路測驗介面,虛擬環境,因為其花費成本比起真實環境找路測驗來的低,而被許多研究所採用。然而,目前沒有研究測試兩種介面上的覓路行為是否一致。
利用Google地圖API,我們創造了一種新的虛擬環境介面:Google街景。在本研究中,將同時測試真實環境與街景介面下的覓路行為。除此以外,研究者也操弄不同的環境知識描述(覓路線索),以測試環境知識對覓路行為的影響。覓路線索有三類:方向描述、地圖描述,以及伴走描述。在伴走線索描述中,實驗者陪伴受試者走過一次覓路路徑,稍後受試者自己反向走過一次路徑。利用便利取樣,三種覓路線索組別各有15位受試者。受試者根據所屬組別給予覓路線索,並完成真實環境以及街景環境的覓路。接著完成一系列的線上測驗組合,包括覓路策略、心理旋轉、工作記憶、方向感,以及地理空間思考能力的量表。
結果顯示,真實環境以及街景環境中的覓路行為是一致的,表示街景上找路也可以達到足夠的生態效度。不同的覓路線索對覓路表現也有不同的影響。伴走線索組的受試者,比起地圖線索或方向線索的受試者,花更少的時間。這個發現與認知拼貼(Tversky, 1993)的假設一致。在認知拼貼中,空間知識並非像是地圖一樣,而比較像是零碎的空間資訊的集合,這些資訊可以有空間、文字、或聲音等不同形式。在伴走線索組中,伴走過程中的不同形式的資訊,有助於更快速並更正確找到目的地。此外,覓路線索與心理地理空間能也有交互作用。地圖線索組的受試者,其覓路表現會與地理空間思考能力、心理旋轉以及視覺空間工作記憶有相關。伴走線索組的受試者,覓路表現則與心理旋轉及方向感有相關。顯示人們會因為對應不同的覓路環境知識,而使用不同的心理地理空間能力。當給予地圖線索,讀圖能力、旋轉能力及空間記憶能力是重要的。相對的,若給予伴走線索,則方向感的好壞會決定覓路表現。
zh_TW
dc.description.abstractSpatial cognition is an essential literacy for human beings. It enables people to recognize landmarks, identify spatial patterns, and make spatial decisions. To evaluate spatial cognitive abilities, wayfinding has been widely adopted in previous studies. In the process of wayfinding, one has to keep destination in memory, to keep track of path, to decide whether or not make turns by monitoring surrounding environments, and to head to the destination. Therefore, psychological geospatial abilities and knowledge about the environment are of concern in wayfinding process. Moreover, a new wayfinding testing environment, i.e. virtual environment, gains popularity because of it saves time and money than real-world environment does when collecting data. However, no studies have tested whether the wayfinding behaviors in the virtual environments are parallel to those in real-world settings.
Taking advantage of the Google Maps API, a new virtual environment interface, the Google Street View, was adopted in this study. Wayfinding behaviors in both real-world and google street view settings were compared simultaneously in our study. Three different types of knowledge of environment, i.e. wayfinding cues, were manipulated. Direction cue, map cue and walk cue (participants were accompanied walking through the wayfinding route) were varied across different groups of participants to test the cue effect. A total of 45 participants were recruited through convenient sampling and were randomly assigned to either of the 3 groups. Participants were given different types of wayfinding cue according to their group and they completed wayfinding test in the sequence of real-world setting and then street view setting. Finally, an online test battery which consisted of wayfinding strategies, mental rotation, working memory, sense of direction, and geospatial thinking abilities scales was given.
The results showed that behavioral patterns were similar between real-world and street view settings, suggesting that street view interface had ecological validity as real-world environment did. Types of wayfinding cues had differential effect on wayfinding performance. Participants in the walk cue group spend less time than those in map cue group or direction cue group did. These findings are consistent with the cognitive collage hypothesis (Tversky, 1993), in which spatial knowledge are represented as a fragmented collection of bits in spatial, textual, or acoustic forms rather than a detailed map. In the walk cue group, different formats of information during accompanied walking through the wayfinding route are beneficial to find the correct destination.
Interaction between wayfinding route cue types and psychological geospatial abilities was observed in this study. Wayfinding performance in map cue group was correlated with geospatial thinking abilities, mental rotation ability, and the capacity of visuospatial working memory. On the other hand, wayfinding performance in walk cue group was correlated with mental rotation ability and sense of direction. The results indicated that participants exercised different psychological geospatial abilities according to their knowledge about the wayfinding environments. When map cue is given, map reading skills (geospatial thinking abilities and mental rotation) and capacity of visuospatial information are required. When walk cue is given, sense of direction is related to wayfinding performance.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:49:00Z (GMT). No. of bitstreams: 1
ntu-106-R02228022-1.pdf: 5059130 bytes, checksum: 6046ba82dcda49bc54d2e4acc6810189 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
摘要 iii
Abstract v
LIST OF FIGURES xi
LIST OF TABLES xiii
Chapter 1. Introduction 1
1.1 Background and Motivation 1
1.2 Objectives and Research Questions 3
Chapter 2. Literature review 6
2.1 Spatial cognition 6
2.1.1 The development of spatial cognition 6
2.1.2 The acquisition of spatial knowledge 7
2.2 Visual-spatial Working memory 9
2.3 Wayfinding 13
2.3.1 Definitions of Wayfinding 13
2.3.2 Spatial Knowledge in Wayfinding 15
2.3.2.1 Landmark, route and survey knowledge and map reading 15
2.3.3 Wayfinding testing environment 16
2.3.3.1 Real-world Outdoor environment 16
2.3.3.2 Virtual environment: Google Street View 21
Chapter 3. Research Method 26
3.1 Research design 26
3.2 Participants 28
3.3 Design and materials 30
3.3.1 First phase: Wayfinding testing in real-world environment 33
3.3.2 Second phase: Wayfinding testing in Google Street View 37
3.3.3 Third phase: online test battery 41
3.4 Procedure 48
Chapter 4. Results and Discussion 54
4.1 Summary of variables in this study 54
4.2 Descriptive statistics 56
4.2.1 Demographic variables 56
4.2.2 Wayfinding performance variables 56
4.2.3 Psychological geospatial related variables 57
4.3 Performance comparison between real-world and Google Street View wayfinding testing environments 58
4.4 Cue type effect on wayfinding performance 60
4.5 Variables of interest in online survey 62
4.6 Interactions between knowledge of the route and psychosocial geospatial abilities 66
Chapter 5. Discussion 67
5.1 General discussion 67
5.2 Limitations and future work 69
References 71
Appendix A. Wayfinding strategy questionnaire 79
Appendix B. Santa Barbara Sense of Direction Scale (SBSOD) 80
Appendix C. Geo-spatial thinking ability test, GSTAT 81
Appendix D. Instructions of the map-cue condition 96
Appendix E. Instructions of the direction-cue condition 98
Appendix F. Instructions of the walk-cue condition 100
dc.language.isoen
dc.title如何找路?覓路測試環境、路線知識、心理地理空間能力與覓路表現的關係zh_TW
dc.titleHow to find your way?
Relationship between wayfinding testing environments, route knowledge, psychological geospatial abilities and wayfinding performance
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林楨家(jen-jia lin),郭柏呈(bo-cheng kuo)
dc.subject.keyword空間認知,覓路,Google街景,心理地理空間能力,視覺空間工作記憶,方向感,zh_TW
dc.subject.keywordspatial cognition,wayfinding,google street view,psychological geospatial abilities,visuo-spatial working memory,sense of direction,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201704041
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf4.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved