Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27362
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明
dc.contributor.authorTsung-Yeh Tsaien
dc.contributor.author蔡宗曄zh_TW
dc.date.accessioned2021-06-12T18:02:28Z-
dc.date.available2013-01-30
dc.date.copyright2008-01-30
dc.date.issued2008
dc.date.submitted2008-01-24
dc.identifier.citationBalasubramaniyan, R., E. Hullermeier, et al. (2005). 'Clustering of gene expression data using a local shape-based similarity measure.' Bioinformatics 21(7): 1069-77.
Beal, M. J., F. Falciani, et al. (2005). 'A Bayesian approach to reconstructing genetic regulatory networks with hidden factors.' Bioinformatics 21(3): 349-356.
Benjamini, Y. and Y. Hochberg (1995). 'Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.' Journal of the Royal Statistical Society. Series B (Methodological) 57(1): 289-300.
Buck, M. J. and J. D. Lieb (2004). 'ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments.' Genomics 83(3): 349-360.
Chen, K. C., T. Y. Wang, et al. (2005). 'A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae.' Bioinformatics 21(12): 2883-90.
Chuang, C. L., C. H. Jen, et al. (2007). 'A Pattern Recognition Approach to Infer time-lagged Genetic Interactions.' Bioinformatics(submitted).
DeRisi, J. L., V. R. Iyer, et al. (1997). 'Exploring the metabolic and genetic control of gene expression on a genomic scale.' Science 278(5338): 680-6.
Drulhe, S., G. Ferrari-Trecate, et al. (2006). 'Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks.' Proc. Hybrid Systems: Computation and Control (HSCC 2006) 3927: 184–199.
Efron, B. and R. Tibshirani (1993). An Introduction to the Bootstrap, Chapman & Hall/CRC.
Fields, S. (2001). 'Proteomics. Proteomics in genomeland.' Science 291(5507): 1221-4.
G.S. Shieh, C. M. C., C.Y. Yu, J. Hwang and Weio-Fuh Wang (2005). A stepwise Structure Equation Modeling Algorithm to Reconstruct Gene Networks.
Galbraith, S. J., L. M. Tran, et al. (2006). 'Transcriptome network component analysis with limited microarray data.' Bioinformatics 22(15): 1886-94.
Gao, F., B. C. Foat, et al. (2004). 'Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.' BMC Bioinformatics 5: 31.
Gasch, A. P., P. T. Spellman, et al. (2000). 'Genomic expression programs in the response of yeast cells to environmental changes.' Mol Biol Cell 11(12): 4241-57.
Geard, N. and J. Wiles (2005). 'A gene network model for developing cell lineages.' Artif Life 11(3): 249-67.
Harbison, C. T., D. B. Gordon, et al. (2004). 'Transcriptional regulatory code of a eukaryotic genome.' Nature 431(7004): 99-104.
Hart, C. E., E. Mjolsness, et al. (2006). 'Connectivity in the yeast cell cycle transcription network: inferences from neural networks.' PLoS Comput Biol 2(12): e169.
Horak, C. E. and M. Snyder (2002). 'ChIP-chip: a genomic approach for identifying transcription factor binding sites.' Methods Enzymol 350: 469-83.
Ihmels, J., G. Friedlander, et al. (2002). 'Revealing modular organization in the yeast transcriptional network.' Nat Genet 31(4): 370-7.
Kao, K. C., Y. L. Yang, et al. (2004). 'Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis.' Proc Natl Acad Sci U S A 101(2): 641-6.
Kauffman, S. A. (1993). The Origins of Order: Self-organization and Selection in Evolution (1993), New York: Oxford University Press.
Khanin, R., V. Vinciotti, et al. (2007). 'Statistical reconstruction of transcription factor activity using Michaelis-Menten kinetics.' Biometrics 63(3): 816-23.
Knabe, J. F., C. L. Nehaniv, et al. 'Evolving biological clocks using genetic regulatory networks.' Proceedings of the Artificial Life 10 Conference (Alife X).
Kosin Chamnongthai, M., Wudthipong Pichitwong, Piyasawat Navaratana Na Ayudhya, Non-members (2005). 'Final consonant segmentation for thai syllable by using vowel characteristics and wavelet packet transform.' ECTI TRANSACTIONS ON COMPUTER AND INFORMATION THEORY 1(1): 50-62.
Lee, T. I., N. J. Rinaldi, et al. (2002). 'Transcriptional Regulatory Networks in Saccharomyces cerevisiae.' Science 298(5594): 799-804.
Lemmens, K., T. Dhollander, et al. (2006). 'Inferring transcriptional modules from ChIP-chip, motif and microarray data.' Genome Biol 7(5): R37.
Lewin, B. (2004). Genes VIII, Pearson Prentice Hall Upper Saddle River, NJ.
Li, H., Y. Sun, et al. (2007). 'The discovery of transcriptional modules by a two-stage matrix decomposition approach.' Bioinformatics 23(4): 473-9.
Li, Z., S. M. Shaw, et al. (2006). 'Using a state-space model with hidden variables to infer transcription factor activities.' Bioinformatics 22(6): 747-54.
Liao, J. C., R. Boscolo, et al. (2003). 'Network component analysis: reconstruction of regulatory signals in biological systems.' Proc Natl Acad Sci U S A 100(26): 15522-7.
Mewes, H. W., K. Heumann, et al. (1999). 'MIPS: a database for genomes and protein sequences.' Nucleic Acids Res 27(1): 44-8.
Misiti, M. and I. MathWorks (2000). Wavelet Toolbox: For Use with MATLABR: User's Guide, MathWorks, Inc.
Mislevy, R. J. (1986). 'Recent Developments in the Factor Analysis of Categorical Variables.' Journal of Educational Statistics 11(1): 3-31.
Muthen, B. (1978). 'Contributions to factor analysis of dichotomous variables.' Psychometrika 43(4): 551-560.
Muthen, L. K. and B. O. Muthen (2005). Mplus: Statistical Analysis with Latent Variables: User's Guide, Muthen & Muthen.
Nachman, I., A. Regev, et al. (2004). 'Inferring quantitative models of regulatory networks from expression data.' Bioinformatics 20 Suppl 1: i248-56.
Pilpel, Y., P. Sudarsanam, et al. (2001). 'Identifying regulatory networks by combinatorial analysis of promoter elements.' Nat Genet 29(2): 153-9.
Pournara, I. and L. Wernisch (2007). 'Factor analysis for gene regulatory networks and transcription factor activity profiles.' BMC Bioinformatics 8: 61.
Pritsker, M., Y. C. Liu, et al. (2004). 'Whole-genome discovery of transcription factor binding sites by network-level conservation.' Genome Res 14(1): 99-108.
Qian, J., M. Dolled-Filhart, et al. (2001). 'Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.' J Mol Biol 314(5): 1053-66.
Ren, B., F. Robert, et al. (2000). 'Genome-Wide Location and Function of DNA Binding Proteins.' Science's STKE 290(5500): 2306.
Rogers, S., R. Khanin, et al. (2007). 'Bayesian model-based inference of transcription factor activity.' BMC Bioinformatics 8 Suppl 2: S2.
Ropers, D., H. de Jong, et al. (2006). 'Qualitative simulation of the carbon starvation response in Escherichia coli.' Biosystems 84(2): 124-52.
Rosner, B. A. (2006). Fundamentals of Biostatistics, Thomson Brooks/Cole.
Rung, J., T. Schlitt, et al. (2002). 'Building and analysing genome-wide gene disruption networks.' Bioinformatics 18 Suppl 2: S202-10.
Sanguinetti, G., M. Rattray, et al. (2006). 'A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription.' Bioinformatics 22(14): 1753-9.
Schafer, J. and K. Strimmer (2005). 'An empirical Bayes approach to inferring large-scale gene association networks.' Bioinformatics 21(6): 754-64.
Schmitt, W. A., Jr., R. M. Raab, et al. (2004). 'Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data.' Genome Res 14(8): 1654-63.
Segal, E., M. Shapira, et al. (2003). 'Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data.' Nat Genet 34(2): 166-76.
Shi, Y., T. Mitchell, et al. (2007). 'Inferring pairwise regulatory relationships from multiple time series datasets.' Bioinformatics 23(6): 755-63.
Shmulevich, I., E. R. Dougherty, et al. (2002). 'Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks.' Bioinformatics 18(2): 261-74.
Siggia, E. D. (2005). 'Computational methods for transcriptional regulation.' Curr Opin Genet Dev 15(2): 214-21.
Silver, P. A., A. P. Gasch, et al. (2000). 'Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes.' Molecular Biology of the Cell 11(12): 4241-4257.
Spellman, P. T., G. Sherlock, et al. (1998). 'Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization.' Molecular Biology of the Cell 9(12): 3273.
Sudarsanam, P., V. R. Iyer, et al. (2000). 'Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae.' Proc Natl Acad Sci U S A 97(7): 3364-9.
Teixeira, M. C., P. Monteiro, et al. (2006). 'The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae.' Nucleic Acids Res 34(Database issue): D446-51.
Thomson, R., T. C. Hodgman, et al. (2003). 'Characterizing proteolytic cleavage site activity using bio-basis function neural networks.' Bioinformatics 19(14): 1741-7.
Tran, L. M., M. P. Brynildsen, et al. (2005). 'gNCA: a framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation.' Metab Eng 7(2): 128-41.
Tsai, H. K., H. H. Lu, et al. (2005). 'Statistical methods for identifying yeast cell cycle transcription factors.' Proc Natl Acad Sci U S A 102(38): 13532-7.
Tsai, H. K., C. P. C. Su, et al. (2007). 'Co-expression of adjacent genes in yeast cannot be simply attributed to shared regulatory system.' BMC Genomics 8: 352.
Tsai, K. N., T. Y. Tsai, et al. (2006). Deciphering gene regulatory pathways in the host response to enterovirus 71 infection. ISOBME. National Taiwan University, Taipei, Taiwan ROC.
Tsai, K. N., T. Y. Tsai, et al. (2006). 'A new approach to deciphering pathways of enterovirus 71-infected cells: An integration of microarray data, gene ontology, and pathway database.' Yixue gongcheng. Applications, basis, communications 18(6): 337-342.
Tsai, K. N., T. Y. Tsai, et al. (2006). The integrated pathway and microarray resources for deciphering the biological hotspots. RECOMB Satellite Conferences on Systems Biology and Computational Proteomics. University of California, San Diego, USA.
Vohradsky, J. (2001). 'Neural model of the genetic network.' J Biol Chem 276(39): 36168-73.
Vohradsky, J. (2001). 'Neural network model of gene expression.' FASEB J 15(3): 846-54.
Vu, T. T. and J. Vohradsky (2007). 'Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae.' Nucleic Acids Res 35(1): 279-87.
Wingender, E., X. Chen, et al. (2000). 'TRANSFAC: an integrated system for gene expression regulation.' Nucleic Acids Res 28(1): 316-9.
Wu, W. S., W. H. Li, et al. (2007). 'Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data.' BMC Bioinformatics 8: 188.
Yang, Y. L., J. Suen, et al. (2005). 'Inferring yeast cell cycle regulators and interactions using transcription factor activities.' BMC Genomics 6(1): 90.
Yeo, Z. X., S. T. Wong, et al. (2007). 'Sequential logic model deciphers dynamic transcriptional control of gene expressions.' PLoS ONE 2(1): e776.
Yu, T. and K. C. Li (2005). 'Inference of transcriptional regulatory network by two-stage constrained space factor analysis.' Bioinformatics 21(21): 4033-8.
Yuh, C. H., H. Bolouri, et al. (2001). 'Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control.' Development 128(5): 617-29.
Zhu, G., P. T. Spellman, et al. (2000). 'Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth.' Nature 406(6791): 90-4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27362-
dc.description.abstract基因與生命現象間的關係在高通量分生技術高度發展的今日,得以有系統且全面性地進行探討與研究。對於鉅量而高雜訊的高通量訊息,生物資訊研究提供有效率的分析方法,促使分子生醫研究在後基因體時代之蓬勃發展。本研究以生物資訊之角度出發,針對基因體學中轉錄調控關係探討之議題,整合高通量訊息與生醫文獻,提出嶄新之模擬概念與關係預測演算法。
生命體以基因表現產物為各種行為與反應之作用者,而基因轉錄表現量的變化主要受到轉錄因子促進與抑制作用之調控,因此轉錄調控關係資訊可視為轉錄因子與生命現象之連結,能協助生醫研究在生化途徑、基因醫療等方面之發展。
染色體免疫沉澱晶片是目前少數能提供全面性轉錄調控關係訊息的方法,但其有高雜訊與顯著程度定義之問題,因此許多整合染色體免疫沉澱晶片與其他多元資料的關係預測生物資訊演算法被提出。然而其中多數研究對轉錄因子與受控基因兩者表現量間的關係,皆有悖於生物真實現象之假設,本研究即針對此問題,提出符合真實調控現象之關係預測演算法。
本研究先以小波除噪與二元化方法取得基因表現量顯著變化之時間序列,再提出轉錄因子活性機率樣式的概念,根據染色體免疫沉澱晶片資料篩選學習資料,推估轉錄因子在各時間點具調控活性之機率,並根據兩時間序列之相關性,以統計檢定方式判斷其調控型態與顯著性。
將之應用於酵母菌細胞週期資料,轉錄因子活性機率樣式符合已知作用階段訊息,且以十折交叉驗證顯示具有高度強健性;關係預測演算法則在十折交叉驗證和四筆高可信度驗證資料測試下,證明具有良好的預測能力,而對非細胞週期作用轉錄因子亦能維持其預測能力。最後並應用於酵母菌熱休克實驗資料,同樣具有強健性與高準確率,顯示本方法應用之廣度。
zh_TW
dc.description.abstractTo depict real phenomenon of transcriptional regulation and improve the accuracy of identifying regulatory relation, a new serial pattern, called Transcription Factor Activity Probability Pattern (TFAPP) and prediction method are developed in this study. Transcriptional regulation is the keystone of biological systems; therefore, the regulatory relationship information is helpful to researches on biological pathway and genetic therapy.
We present TFAPP, the occurrence probability of regulation based on the co-expression phenomenon of targeted genes regulated by one TF, and identify regulatory relationship according to the correlation between TFAPP and binary gene expression pattern. Learning data of TFAPP are collected from ChIP-chip and microarray, and pre-processed by wavelet de-noise. TFAPP is estimated by binary factor analysis and random sampling process.
In this research, the TFAPP has been proved meaningful for 37 yeast TFs in cell cycle condition, according to most well-known information, and its robustness has also been confirmed by 10-fold cross validation. High accuracy of prediction method based on TFAPP is validated by four high-confident targeted genes lists. In summary, the successful validation and application results of TFAPP with multiple conditions data reveal the extensity and potentiality of this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:02:28Z (GMT). No. of bitstreams: 1
ntu-97-R94548061-1.pdf: 1967422 bytes, checksum: 171be3d16a8bbe2d4170f4255c0fc405 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 I
謝 誌 II
摘 要 III
Abstract IV
目 錄 V
圖目錄 VIII
表目錄 X
第一章 序論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 3
1.4 論文架構 4
第二章 文獻探討 5
2.1 引言 5
2.2 基因表現調控機制 6
2.3 基因調控網路之模擬 8
2.3.1 常微分方程模型 8
2.3.2 布林網路 9
2.3.3 連續型網路 10
2.4 轉錄因子活性之模擬 12
2.4.1 模擬轉錄因子活性之目的 12
2.4.2 因素分析形式TFA演算法 15
2.4.3 酵素動力方程式形式TFA演算法 16
2.5 目標基因預測之文獻探討 17
第三章 研究材料與方法 19
3.1 研究流程 19
3.2 研究材料 20
3.2.1 染色體免疫沉澱晶片資訊 20
3.2.2 基因表現量資料 22
3.3 資料前處理 23
3.3.1 基因表現量二元化 23
3.3.2 小波除噪與平滑化 24
3.4 TFAPP演算法 27
3.4.1 TFAPP定義 27
3.4.2 學習資料 28
3.4.3 二元資料因素分析 29
3.4.4 演算流程 30
3.5 調控關係之判斷 33
3.5.1 Spearman 等級相關檢定 33
3.5.2 錯誤發現率控制 34
3.5.3 演算流程 35
第四章 研究結果與討論 37
4.1 TFAPP推估結果討論 37
4.1.1 細胞週期作用階段驗證 38
4.1.2 TFAPP強健性測試 40
4.2 預測能力驗證 43
4.2.1 十折交叉驗證 45
4.2.2 序列高可信度資料測試 47
4.2.3 生物實驗資料測試 50
4.2.4 TRANSFAC資料測試 51
4.2.5 生醫文獻資料測試 53
4.3 熱休克資料測試 55
4.3.1 背景與材料 55
4.3.2 十折交叉驗證 56
4.3.3 序列高可信度資料測試 59
4.3.4 TRANSFAC資料測試 60
4.4 結果比較 61
4.4.1 TRIA演算法 61
4.4.2 真陽率比較結果 62
4.4.3 ROC曲線比較結果 66
第五章 結論與展望 68
5.1 結論 68
5.2 未來研究方向 70
5.2.1 研究成果之應用 70
5.2.2 研究發展與改進方向 71
參考文獻 72
附錄A 細胞週期已知轉錄因子十折交叉驗證TFAPP推估結果 80
附錄B 生物實驗資料測試詳細結果 84
附錄C 生醫文獻測試資料參考文獻 86
附錄D 熱休克資料十折交叉驗證TFAPP推估結果 88
附錄E TRIA實作再現結果 96
附錄F TRIA驗證結果 97
作者履歷 100
dc.language.isozh-TW
dc.subject因素分析zh_TW
dc.subject小波去噪zh_TW
dc.subject轉錄因子zh_TW
dc.subject轉錄因子活性機率樣式zh_TW
dc.subject調控關係zh_TW
dc.subjectTranscriptional regulationen
dc.subjectWavelet de-noiseen
dc.subjectFactor analysisen
dc.subjectTranscription Factor Activity Probability Patternen
dc.subjectTranscription factoren
dc.title利用轉錄因子活性機率樣式預測轉錄調控關係zh_TW
dc.titleA New Approach to Identifying Transcriptional Regulatory Relationship Based on Transcription Factor Activity Probability Patternen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡懷寬,陳倩瑜,黃乾綱
dc.subject.keyword轉錄因子,調控關係,轉錄因子活性機率樣式,因素分析,小波去噪,zh_TW
dc.subject.keywordTranscription factor,Transcriptional regulation,Transcription Factor Activity Probability Pattern,Factor analysis,Wavelet de-noise,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2008-01-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved