Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27357
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚婉玉
dc.contributor.authorJung-Chun Linen
dc.contributor.author林榮俊zh_TW
dc.date.accessioned2021-06-12T18:02:19Z-
dc.date.available2010-02-19
dc.date.copyright2008-02-19
dc.date.issued2008
dc.date.submitted2008-01-24
dc.identifier.citation1. Black, D.L. 2003. Mechanisms of alternative pre-mRNA splicing. Annu. Rev. Biochem. 72:291–336.
2. Caceres, J. F., and Kornblihtt, A.R. 2002. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18: 186–193.
3. Black, D.L. 2000. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103:367–370.
4. Grabowski, P. J., and Black, D.L. 2001. Alternative RNA splicing in the nervous system. Prog. Neurobiol. 65:289–308.
5. Matlin, A. J., Clark, F. and Smith, C.W.J. 2005. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6:386–398.
6. Ladd, A. N. and Cooper, T.A. 23 October 2002, posting date. Finding signals that regulate alternative splicing in the post-genomic era. Genome Biol. 3: reviews0008.1- reviews0008.16. [Online.] http://genomebiology.com/2002/3/11 /reviews/0008.
7. Wagner, E. J., and Garcia-Blanco, M.A. 2001. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell. Biol. 21:3281–3288.
8. Charlet-B., Logan, N.P., Singh, G. and Cooper, T.A. 2002. Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol. Cell 9:649–658.
9. Ladd, A. N., N. Charlet, N. and Cooper, T.A. 2001. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21:1285–1296.
10. Ladd, A. N., Nguyen, N.H., Malhotra, K. and Cooper, T.A. 2004. CELF6, a member of the CELF family of RNA-binding proteins, regulates musclespecific splicing enhancer-dependent alternative splicing. J. Biol. Chem. 279: 17756–17764.
11. Musunuru, K. 2003. Cell-specific RNA binding proteins in human disease. Trends Cardiovasc. Med. 13:188–195.
12. Grabowski, P. J., and Black, D.L. 2001. Alternative RNA splicing in the nervous system. Prog. Neurobiol. 65:289–308.
13. Jin, Y., Suzuki, H., Maegawa, S., Endo, H., Sugano, S., Hashimoto, K., Yasuda, K. and Inoue, K. 2003. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22:905–912.
14. Dredge, B. K., Stefani, G., Engelhard, C.C. and Darnell, R.B. 2005. Nova autoregulation reveals dual functions in neuronal splicing. EMBO J. 24: 1608–1620.
15. Gromak, N., Matlin, A.J., Cooper, T.A.and Smith, C.W.J. 2003. Antagonistic regulation of α-actinin alternative splicing by CELF proteins and polypyrimidine tract binding protein. RNA 9:443–456.
16. Moore, M.J. 2005. From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518.
17. Singh, R. and Valca´rcel J. 2005. Building specificity with nonspecific RNA-binding proteins. Nat. Struct. Mol. Biol. 12:645–653.
18. Zhang, Z. and Krainer, A.R. 2004. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16:597–607.
19. Huang, Y. and Steitz, J.A. 2005. SR prises along a messenger's journey. Mol. Cell 17:613–615.
20. Sanford, J.R., Gray, N.K., Beckmann, K. and Caceres, J.F. 2004. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 18:755–768.
21. van der Houven van Oordt, W., Diaz-Meco, M.T., Lozano, J., Krainer, A.R., Moscat, J. and Ca´ceres, J.F. 2000. The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J. Cell Biol. 149:307–316.
22. Allemand, E., Guil, S., Myers, M., Moscat, J., Ca´ceres, J.F. and Krainer, A.R. 2005. Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proc. Natl. Acad. Sci. U.S.A. 102:3605–3610.
23. Habelhah, H., Shah, K., Huang, L., Ostareck-Lederer, A., Burlingame, A.L., Shokat, K.M., Hentze, M.W. and Ronai, Z. 2001. ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat. Cell Biol. 3:325–330.
24. Gebauer, F. and Hentze, M.W. 2004. Molecular mechanisms of translational control. Nat .Rev. Mol. Cell Biol. 5:827–835.
25. Kedersha, N.L. and Anderson, P. 2002. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30(Pt 6):963–969.
26. Hellen, C.U. and Sarnow, P. 2001. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15:1593–1612.
27. Holcik, M. and Sonenberg, N. 2005. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6:318–327.
28. Holcik, M., Sonenberg, N. and Korneluk, R.G. 2000. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16:469–473.
29. Stoneley, M. and Willis, A.E. 2004. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23:3200–3207.
30. Komar, A.A. and Hatzoglou, M. 2005. Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J. Biol. Chem. 280:23425–23428.
31. Spriggs, K.A., Bushell, M., Mitchell, S.A. and Willis, A.E. 2005. Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ. 12:585–591.
32. Biressi, S., Molinaro, M. and Cossu, G. 2007. Cellular heterogeneity during vertebrate skeletal muscle development. Dev. Biol. 308 :281-293.
33. Menasché, P. 2007. Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis. 50:7-17.
34. Walsh, K. 1997. Coordinate regulation of cell cycle and apoptosis during myogenesis.
Prog. Cell Cycle Res. 3:53-8
35. Shen, X., Collier, J.M., Hlaing, M., Zhang, L., Delshad, E.H., Bristow, J., and Bernstein, H.S. 2003. Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev. Dyn. 226:128-138.
36. Donoghue, P., Doran, P., Wynne, K., Pedersen, K., Dunn, M.J. and Ohlendieck, K. 2007. Proteomic profiling of chronic low-frequency stimulated fast muscle. Proteomics. 7:3417-3430.
37. Tapscott, S.J. 2005. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685-2695.
38. Polesskaya, A. and Rudnicki, M.A. 2002. A MyoD-dependent differentiation checkpoint: ensuring genome integrity. Dev Cell. 3:757-758
39. Naya, F.J. and Olson, E. 1999. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. Cell Biol. 11:683-688.
40. Buckingham, M. 2001. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11:440-448.
41. Carleton, M., Cleary, M.A. and Linsley, P.S. 2007. MicroRNAs and cell cycle regulation. Cell Cycle 6:2127-2132.
42. He, L., He, X., Lowe, S.W. and Hannon, G.J. 2007. MicroRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat. Rev. Cancer 7:819-822.
43. Callis, T.E., Chen, J.F. and Wang, D.Z. 2007. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 26:219-225.
44. Gregory, R.I., Chendrimada, T.P. and Shiekhattar, R. 2006. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342:33-47.
45. Murchison, E.P. and Hannon, G.J. 2004. MiRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol.16:223-229.
46. Sontheimer, E.J. 2005. Assembly and function of RNA silencing complexes. Nat. Rev. Mol. Cell Biol.6:127-138.
47. Tang, G.. 2005.siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 30:106-114.
48. Parker, R. and Sheth, U. 2007. P bodies and the control of mRNA translation and degradation. Mol. Cell 2007.25:635-646.
49. Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L. and Wang, D.Z. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet.38:228-233.
50. Kim, H.K., Lee, Y.S., Sivaprasad, U., Malhotra, A. and Dutta, A. 2006. Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 2006 174:677-687.
51. Boutz, P.L., Chawla, G., Stoilov, P. and Black, D.L. 2007. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev.21:71-84.
52. O'Rourke, J.R., Georges, S.A., Seay, H.R., Tapscott, S.J., McManus, M.T., Goldhamer, D.J., Swanson, M.S. and Harfe, B.D. 2007. Essential role for Dicer during skeletal muscle development. Dev. Biol. 311:359-368.
53. Zhao, Y., Samal, E. and Srivastava, D. 2005. Serum response factor regulates a muscle -specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214-220.
54. Rao, P.K., Kumar, R.M., Farkhondeh, M., Baskerville, S. and Lodish, H.F. 2006. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. U S A.103:8721-8726.
55. Parker, J.S. and Barford, D. 2006. Argonaute: A scaffold for the function of short regulatory RNAs. Trends Biochem. Sci. 31:622-630.
56. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G. and Tuschl, T. 2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 15:185-197.
57. Lytle JR, Yario TA, Steitz JA. 2007. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc. Natl. Acad.Sci. U S A.104:9667-9672.
58. Eulalio, A., Behm-Ansmant, I. and Izaurralde, E. 2007. P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 8:9-22.
59. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. and Parker, R. 2005. MicroRNA -dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7:719-723.
60. Leung, A.K., Calabrese, J.M. and Sharp, P.A. 2006. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. U S A. 103:18125-18130.
61. Höck, J., Weinmann, L., Ender, C., Rüdel, S., Kremmer, E., Raabe, M., Urlaub, H. and Meister, G.. 2007. Proteomic and functional analysis of Argonaute-containing mRNA -protein complexes in human cells. EMBO Rep. 8:1052-1060.
62. Lai, M. C., Kuo, H.W., Chang, W.C. and Tarn, W.Y. 2003. A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J. 22:1359–1369.
63. Perry. S. V. 2001. Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res. Cell Motil. 22:5–49.
64. Neugebauer, K. M. 2002. On the importance of being co-transcriptional. J. Cell Sci. 115:3865–3871.
65. Caceres, J.F., Stamm, S., Helfman, D.M. and Krainer, A.R. 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709.
66. Gooding, C., Roberts, G.C., Moreau, G., Nadal-Ginard, B. and Smith, C.W.J. 1994. Smooth muscle-specific switching of α-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J. 13:3861–3872.
67. Sakashita, E., Tatsumi, S., Werner, D., Endo, H. and Mayeda, A. 2004. Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo. Mol. Cell. Biol. 24:1174–1187.
68. Nolen, B., Yun, C.Y., Wong, C.F., McCammon, J.A., Fu, X.D. and Ghosh, G. 2001. The structure of Sky1p reveals a novel mechanism for constitutive activity. Nat. Struct. Biol. 8:176–183.
69. Lin, J.C. and Tarn, W.Y. 2005 Exon selection in alpha-tropomyosin mRNA is regulated by the antagonistic action of RBM4 and PTB. Mol. Cell Biol. 25:10111–10121.
70. Kolupaeva, V.G., Lomakin, I.B., Pestova, T.V. and Hellen, C.U. 2003. Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol. Cell Biol. 23:687–698.
71. Sherrill, K.W., Byrd, M.P., Van Eden, M.E. and Lloyd, R.E. 2004. BCL-2 translation is mediated via internal ribosome entry during cell stress. J. Biol. Chem. 279:29066–29074.
72. Li, Y., Jiang, B., Ensign, W.Y., Vogt, P.K. and Han, J. 2000 Myogenic differentiation requires signalling through both phosphatidylinositol 3-kinase and p38 MAP kinase. Cell Signal. 12:751-757.
73. Cabane, C., Coldefy, A.S., Yeow, K. and Dérijard, B. 2004. The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell Signal. 16:1405-1415.
74. Perdiguero, E., Ruiz-Bonilla, V., Gresh, L., Hui, L., Ballestar, E., Sousa-Victor, P., Baeza-Raja, B., Jardí, M., Bosch-Comas, A., Esteller, M., Caelles, C., Serrano, A.L., Wagner, E.F. and Muñoz-Cánoves, P. 2007. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation.
EMBO J. 26:1245-1256.
75. Tang, H., Macpherson, P., Argetsinger, L.S., Cieslak, D., Suhr, S.T., Carter-Su, C. and Goldman, D. 2004. CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes. Cell Signal. 16:551-563.
76. Eulalio, A., Behm-Ansmant, I. and Izaurralde, E. 2007. P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 8:9-22.
77. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. and Parker, R. 2005. MicroRNA -dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7:719-723.
78. Bugnard, E., Zaal, K.J. and Ralston, E. 2005. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskeleton 60:1-13.
79. Ou, Y. and Rattner, J.B. 2004. The centrosome in higher organisms: structure, composition, and duplication. Int. Rev. Cytol. 238:119-182.
80. Musa, H., Orton, C., Morrison, E.E. and Peckham, M. 2003. Microtubule assembly in cultured myoblasts and myotubes following nocodazole induced microtubule depolymerisation. J. Muscle Res. Cell Motil. 24:301-308.
81. Gabetta, V., Trzyna, W., Phiel, C. and McHugh, K.M. 2003. Vesicle-associated protein A is differentially expressed during intestinal smooth muscle cell differentiation. Dev. Dyn. 228:11-20.
82. Standart, N. and Jackson, R.J. 2007. MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev. 21:1975-1982.
83. O'Carroll, D., Mecklenbrauker, I., Das, P.P., Santana, A., Koenig, U., Enright, A.J., Miska, E.A. and Tarakhovsky, A. 2007. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21:1999-2004.
84. Kiriakidou, M., Tan, G.S., Lamprinaki, S., De Planell-Saquer, M., Nelson, P.T. and Mourelatos,Z. 2007. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141-1151.
85. Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L. and Wang, D.Z. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet.38:228-233.
86. Keene, J. D., and Tenenbaum, S.A. 2002. Eukaryotic mRNPs may represent post transcriptional operons. Mol. Cell 9:1161–1171.
87. Hardy, S., Hamon, S., Cooper, B., Mohun, T. and Thie´baud, P. 1999. Two skeletal α-tropomyosin transcripts with distinct 3’UTR have different temporal and spatial patterns of expression in the striated muscle lineages of Xenopus laevis. Mech. Dev. 87:199–202.
88. Boutz, P.L., Chawla, G., Stoilov, P. and Black, D.L. 2007. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev.21:71-84.
89. Wollerton, M. C., Gooding, C., Robinson, F., Brown, E.C., Jackson, R.J.and Smith, C.W. 2001. Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA 7:819–832.
90. Gromak, N., and Smith, C.W.J. 2002. A splicing silencer that regulates smooth muscle specific alternative splicing is active in multiple cell types. Nucleic Acids Res. 30:3548–3557.
91. Hamon, S., Le Sommer, C., Mereau, A., Allo, M.R. and Hardy, S.2004. Polypyrimidine tract-binding protein is involved in vivo in repression of a composite internal/3’-terminal exon of the Xenopus α-tropomyosin premRNA. J. Biol. Chem. 279:22166–22175.
92. Polydorides, A. D., Okano, H.J., Yang, Y.Y.L., Stefani, G. and Darnell, R.B. 2000. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc. Natl. Acad. Sci. USA 97:6350–6355.
93. Markovtsov, V., Nikolic, J.M., Goldman, J.A., Turck, C.W., Chou, M.Y. and Black, D.L. 2000. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell. Biol. 20:7463–7479.
94. Sayed, M., Kim, S.O., Salh, B.S., Olaf-Georg, I. and Pelech, S.L. 2000. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J. Biol. Chem. 275:16569–16573.
95. Kamachi, M., Le, T.M., Kim, S.J., Geiger, M.E., Anderson, P. and Utz, P.J. 2002. Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway. J. Exp. Med. 196:1213–1225.
96. Mylonis, I. and Giannakouros, T. 2003. Protein kinase CK2 phosphorylates and activates the SR protein-specific kinase 1. Biochem. Biophys. Res. Commun. 301:650–656.
97. Liu, X., Mayeda, A., Tao, M. and Zheng, Z.M. 2003. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway. J. Virol. 77:2105–2115.
98. Blaustein, M., Pelisch, F., Tanos, T., Mun˜oz, M.J., Wengier, D., Quadrana, L., Sanford, J.R., Muschietti, J.P., Kornblihtt, A.R. and Srebrow, A. 2005. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat. Struct. Mol. Biol. 12:1037–1044.
99. Kiriakidou, M., Tan, G.S., Lamprinaki, S., De Planell-Saquer, M., Nelson, P.T. and Mourelatos,Z. 2007. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141-1151.
100. Svitkin, Y.V., Herdy, B., Costa-Mattioli, M., Gingras, A.C., Raught, B. and Sonenberg, N. 2005. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol. Cell Biol. 25:10556–10565.
101. Belsham, G.J. and Jackson, R.J. (2000) in Translation Control of Gene Expression, eds Sonenberg, N., Hershey, J.W.B. and Mathews, M. (Cold Spring Harbor Lab Press, Woodbury, NY), pp 869–900.
102. Otto, G.A. and Puglisi, J.D. 2004. The pathway of HCV IRES-mediated translation initiation. Cell 119:369–380.
103. Bert, A.G., Grepin, R., Vadas, M.A. and Goodall, G.J. 2006. Assessing IRES activity in the HIF-1alpha and other cellular 5' UTRs. RNA 12:1074–1083.
104. Van der Velden, A.W. and Thomas, A.A. 1999. The role of the 5' untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell Biol. 31:87–106.
105. Pilipenko, E.V., Pestova, T.V., Kolupaeva, V.G., Khitrina, E.V., Poperechnaya, A.N., Agol, V.I. and Hellen, C.U. 2000. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 14:2028–2045.
106. Kimball, S.R., Horetsky, R.L., Ron, D., Jefferson, L.S. and Harding, H.P. 2003. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 284:273–284.
107. Lin, J.C., Hsu, M. and Tarn, W.Y. 2007. Cell stress modulates the function of splicing regulatory protein RBM4 in translation control. Proc. Natl. Acad. Sci. U S A. 104:2235-2240.
108. Bugnard, E., Zaal, K.J. and Ralston, E. 2005. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskeleton 60:1-13.
109. Musa, H., Orton, C., Morrison, E.E. and Peckham, M. 2003. Microtubule assembly in cultured myoblasts and myotubes following nocodazole induced microtubule depolymerisation. J. Muscle Res. Cell Motil. 24:301-308.
110. Ou, Y. and Rattner, J.B. 2004. The centrosome in higher organisms: structure, composition, and duplication. Int. Rev. Cytol. 238:119-182.
111. Figueroa, A., Cuadrado, A., Fan, J., Atasoy, U., Muscat, G.E., Muñoz-Canoves, P., Gorospe, M. and Muñoz, A. 2003. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol. Cell Biol. 23:4991-5004.
112. van der Giessen, K. and Gallouzi, I.E. 2007. Involvement of transportin 2-mediated HuR import in muscle cell differentiation. Mol. Biol Cell. 18:2619-2629.
113. Callis, T.E., Chen, J.F. and Wang, D.Z. 2007. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 26:219-225.
114. Rao, P.K., Kumar, R.M., Farkhondeh, M., Baskerville, S. and Lodish, H.F. 2006. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. U S A.103:8721-8726.
115. Gregory, R.I., Chendrimada, T.P. and Shiekhattar, R. 2006. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342:33-47.
116. Lytle JR, Yario TA, Steitz JA. 2007. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc. Natl. Acad.Sci. U S A.104:9667-9672.
117. Guil, S. and Cáceres J,F. 2007. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14:591-596.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27357-
dc.description.abstract訊息RNA (mRNA)藉由替代性剪接造成蛋白質表現的多樣性,此現象在不同組織或發育時期受到嚴密 的調控以符合其生理功能, 多種RNA結合蛋白均具有調控此替代性剪接之功能,RNA binding motif protein 4 (RBM4) 便具有剪接因子之特性。利用免疫沈澱及分示法(Differential display)的方法發現數種可與RBM4形成複合物之mRNA,包括α-tropomyosin (α-TM)。RBM4會促進橫紋肌細胞特有的α-TM表現,此現象與RBM4在橫紋肌細胞有較高的表現量具有其一致性。因此在橫紋肌細胞中表現量較高的RBM4,具有拮抗另一普遍存在於各種細胞中的剪接調控因子polypyrimidine-tract binding protein (PTB)對於橫紋肌細胞特有α-TM表現的抑制作用。此結果證明RBM4在不同細胞的細胞核中具有調控替代性剪接的重要特性。
當細胞處於由砷化物所造成的高氧化狀態下時,原本多位於細胞核之RBM4,會因被大量的磷酸化而累積在細胞質中的顆粒狀複合物中。此磷酸化主要是經由p38MAPK驅動之細胞訊息所調控。實驗結果顯示,RBM4會藉由辨認以及結合在核酸序列中多嘧啶的區域,進而抑制其蛋白質轉譯的活性。另外,RBM4會促進RNA解螺旋酶eIF4A與具有IRES之mRNA結合,促進其蛋白質產生的活性。此種含有IRES之mRNA多在細胞位於壓力環境下時表現以維持正常之細胞功能或驅使細胞死亡。經由此實驗結果發現RBM4在細胞質中具有調控某些mRNA產生蛋白質之活性。
RBM4除了在砷化物刺激下,同時在進行的肌肉母細胞中也會經由磷酸化而累積在細胞質中。RBM4不只負責調控α-TM在肌肉分化時進行替代性剪接以產生骨骼肌特有之形式,同時會與在肌肉分化時期表現之微小RNA(microRNA),以及內水解酶Ago2共同參與蛋白質轉譯之抑制,藉此進一步促進肌肉母細胞之分化。綜合以上之實驗結果可知,RBM4在不同細胞及不同分化時期時,具有多種截然不同之生物活性。
zh_TW
dc.description.abstractRNA-binding motif protein 4 (RBM4) is a nucleocytoplasmic shuttling protein and acts as a precursor mRNA splicing regulator. We identified several mRNA targets of RBM4 through immunoprecipitation of RBM4-containing mRNPs followed by the differential display analysis. Among these candidates, α-tropomyosin (α-TM) is known to exhibit skeletal and smooth cell type-specific splicing patterns. We found that the expression level of the skeletal muscle-specific isoform correlated with that of RBM4 in human tissues and also can be modulated by ectopic expression or suppression of RBM4. By using minigene, we demonstrated that RBM4 can activate the selection of skeletal muscle-specific exons via binding to intronic pyrimidine-rich element. Moreover, we found that RBM4 antagonized the effect of another splicing regulator, PTB, in alternative splicing of α-TM. These results demonstrated that RBM4 plays an important role in cell-type specific expression of α-TM.
We next provided evidence showing that RBM4 was a phosphoprotein and the phosphorylation level can be enhanced by cell stress, such as arsenite-exposure. By arsenite treatment, RBM4 was phosphorylated at Ser309 and translocated from the nucleus to the cytoplasm and stress granules as well via the MKK3/6-p38 MAPK signaling pathway. We found that RBM4 suppressed the cap-dependent translation in a cis-element-dependent manner. On the other hand, RBM4 could activate internal ribosome entry site (IRES)-mediated translation likely by enhancing the association of translation initiation factor 4A (eIF4A) with IRES-containing mRNAs. Whereas arsenite treatment promoted loading of RBM4 onto IRES -containing genes and enhanced RBM4-eIF4A interaction. Overexpression of RBM4 could mimic the cell stress effect on activation of IRES-mediated translation. Our results proposed a new paradigm for an RNA-binding protein that could act as a suppressor of cap-dependent translation but as an enhancer of IRES-mediated translation in response to cellular stress.
We finally demonstrated that RBM4 participated in the microRNA-mediated translational regulation in differentiated myoblast C2C12 cells. At the onset of myogenesis, RBM4 translocated to the cytoplasm and forms certain cytoplasmic foci. Interestingly, several components of miRNP including Ago2 protein and some muscle cell-specific microRNAs, such as miR-1,133 and 206 associated with RBM4. We further observed that RBM4 could coordinately repress the expression of the reporters containing the miR-1-targeting elements. The presence of RBM4 promoted the loading of Ago2 protein onto these reporter mRNAs. Therefore, our results may uncover multiple roles that RBM4 played in different events of RNA metabolism.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:02:19Z (GMT). No. of bitstreams: 1
ntu-97-D93448006-1.pdf: 4167826 bytes, checksum: 296e20a6af8553a0c3510941274470d6 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsList i
Abstract 001
中文摘要 003
Introduction 004
Result
A. The exon selection in α-tropomyosin mRNA is regulated by RBM4
1. Identification of mRNA targets associated with RBM4 010
2. Expression of RBM4 correlates with the level of skeletal muscle isoform of α-TM7 011
3. RBM4 promotes the inclusion of sk form-specific exons in α-TM minigenes8 012
4. RBM4 and PTB both regulate the exon selection via intronic CU-rich element 014
5. RBM4 antagonized the effect of PTB in the selection of alternative-spliced exons 015
B. RBM4 acts as a regulatory factor in translation control under cell stress
1. Cell stress induces phosphorylation and cytoplasmic accumulation of RBM4 018
2. Cell stress targets RBM4 to cytoplasm via the MKK3/6-p38 signaling pathway 020
3. RBM4 acts as a suppressor in cap-dependent translation 021
4. RBM4 also acts as a modulator in IRES-mediated translation 022
5. Arsenite-driven signaling pathway modulate the function of RBM4 in IRES-mediated translation 025
C. RBM4 involves in miRNA-mediated translation repression during myogenesis
1. RBM4 is phosphorylated and accumulated in cytoplasm of differentiating myoblasts 027
2. RBM4 reclocalized to cytoplasmic granucles in differentiated myoblasts 028
3. RBM4 interacted with the miRNP complexes 029
4. RBM4 might potentiate in the miRNA-mediated repression of translation 030
5. RBM4 promotes the interaction of miRNA-1 RNP with the target mRNAs 032
6. RBM4 coordinates with Ago2 in translational suppression without miR-1 033
7. The ectopically expressed RBM4 activates the utilization of α-TM skeletal-specific exon 9a in myoblast cells 034
8. The proliferation rate was decelerated in the ectopically expressed RBM4 cells 035
9. The early and late markers of differentiation expressed in RBM4 stable clones 036
Conclusion 037
Discussion 039
Materials and Methods 053
Figure 063
Reference 108
dc.language.isoen
dc.title探討mRNA結合蛋白RBM4於選擇性剪接及轉譯調控之功能zh_TW
dc.titleThe roles of RBM4 in alternative splicing and translational regulationen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee李芳仁,呂勝春,施修明,阮麗蓉,黃怡萱
dc.subject.keyword選擇性剪接,轉譯調控,zh_TW
dc.subject.keywordRBM4,alternative splicing,translation,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2008-01-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved