請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27348完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | |
| dc.contributor.author | Ching-Hong Hsieh | en |
| dc.contributor.author | 謝慶弘 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:02:02Z | - |
| dc.date.available | 2008-01-30 | |
| dc.date.copyright | 2008-01-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-24 | |
| dc.identifier.citation | Abu Samra A.A., Morris J.S. and Koirtyohann S.R. (1975), “Wet ashing of some
biological samples in a microwave oven”, Anal. Chem., 47(8), 1475-1477. Aminabhavi T.M. and Munnolli R.S. (1993), “Sorption and diffusion of aldehydes and ketones into elastomers”, Polym. Int. 32 61-70. Anderson P. R. and Benjamin M. M. (1990a), “Surface and Bulk characteristics of Binary Oxide Suspension”, Environ. Sci. Technol., 24, 692-698. Anderson P. R. and Benjamin, M. M, (1990b), “Modeling Adsorption in Aluminum-Iron Binary Oxide suspension”, Environ. Sci. Technol., 24, 1586-1592. Aualitia T.V. and Pickering W.F. (1987), “The specific sorption of trace amounts of Cu, Pb and Cd by inorganic particulates”, Wat. Air Soil Pollut. 35, 171-185. Bettinelli M. and Beone G. M., Spezia S. and Baffi C. (2000), “Determine of heavy metal in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometer analysis”, Analytica Chemica Acta, 424, 289-296. Bohlmann, J. T., Lorth, C. M., Drews, A. and Buchholz, R. (1999) “Microwave High Pressure Thermo-chemical Conversion of Sewage Sludge as An Alternative to Incineration”, Chem. Eng. Technol., 22, 404-409. 133 Bolt, P. H., Habraken F. H. P. M. and Geus J. W. (1998) “Formation of Nickel, Cobalt, Copper, and Iron Aluminates from α- and γ-Alumina-Supported Oxides: A Comparative Study”, J. Solid State Chem., 135, 59-69. Buettner H. M. and Daily W. D. (1995), “Cleaning Contaminated Soil Using Electrical Heating and air stripping”, J. Environ. Eng., 121 (8), 580-589. Charerntanyarak L. (1999) “Heavy Metals Removal by Chemical Coagulation and Precipitation”, Wat. Sci. Tech., 39, 135-138. Chen H. T., Tasi M. S., Chang J. U., Lin T. F., Hsiao T. C., Wu C. C., Wu C. Y. and Chen Y. S. (2003), “Integration of Fenton Process and Ferrite Process in BTA / Zn Wastewater Treatment”, Proceeding of 7th International Symposium on East Asian Resources Recycling Technology. Chen, C. L., Lo, S. L., Kuan, W. H. and Hsieh, C. H. (2005) “Stabilization of Cu in acid-extracted industrial sludge using a microwave process” J. Hazard. Mater., 123, 256-261. Chen, C. L., Lo, S. L., Chiueh, P. T., Kuan, W. H., Hsieh C. H. (2007), The assistance of microwave process in sludge stabilization with sodium sulfide and sodium phosphate, J. Hazard. Mater. 147, 930-937. Dom´ınguez A., Menendez J. A., Inguanzo M. and Pis J. J. (2006), “Production of bio-fuels by high temperature pyrolysis of sewage sludge using 134 conventional and microwave heating” Bioresour. Technol., 97, 1185-1193. Dom´ınguez A., Menendez J. A., Inguanzo M. and Pis J. J., , Nabais J.M.V., Carrot P.J.M.t, Carrott M.M.L.R. (2007), “Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas”, J. Anal. Appl. Pyrolysis, 79, 128–135 Dzombak D. A. and Moreal F. M. M. (1990), in “Surface Complexation Modeling : Hydrous Ferric Oxide” John Wiely, New York. Ennaassia Et., Kacemi K. El., Kossir A. and Cote G. (2002), “Study of the removal of Cd(Ⅱ) from phosphoric acid solutions by precipitation of CdS with Na2S”, Hydrometallurgy, 64, 101-109. Farely K. J., Dzombak D. A. and Morel F. M. M. (1985), “a Surface Precipitation Model for the Sorption of Cations on Metal Oxide”, J. Colloid and Interface Sci., 106, 226-242. Forbes E.A., Posner A.M. and Quirk J.P. (1976), “Specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite”, J. Soil Sci. 27 154-166. Freundlich, H.M.F. (1906), “Over the adsorption in solution”. Journal for Physical Chemistry, 57A, 385-470. Gan Q.,(2000), “A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water”, Waste 135 management., 20, 695-701. Ganzler K., Salgo A. and Valko K. (1986), “Microwave extraction:a novel sample preparation method for chromatography”, J.Chromatogr., 371, 299-306. Ganzler K., Szinai I. and Salgo A. (1990), “Effective sample preparation method for extracting biologically active compounds from different matrices by a microwave technique”, J.Chromatogr., 520, 257. Geday R., Smith F., Westaway K., Ali H., Baldisera L., Laberge L. and Rousell J.R. (1986), “The use of microwave oven for rapid organic synthesis”, Tetrahedron Lett., 27(3), 279-282 Giguere R.J., Bray T.L., Duncan S.M. and Majetich G. (1986), “Application of commercial microwave ovens to organic synthesis”, Tetrahedron Lett., 27(41), 4945-4948. Gonzalez M. and Barnes M. (2002), “Comparison of microwave-assisted extraction and waste extraction test (WET) preparation for inductively coupled plasma spectroscopic analyses of waste samples”, Anal. Bioanal. Chem., 374, 255-261. Grant E. H. (1992), “Microwaves: Industrial, Scientific and Medical Applications”, Artech House INC., Boston London. 136 Gündoğan R., Acemioğlu B.and Alma M.H. (2004), “Copper (II) adsorption from aqueous solution by herbaceous peat”, J. Colloid Interface Sci. 269 303-309. Guo C.Y., Wu C.H. and Lo S.L. (2005) ”Removal of Copper from Industrial sludge by Traditional and Microwave Acid Extraction”, J. Hazard. Mater., B120, 249-256. Haque K. E. (1999) “Microwave Energy for Mineral Treatment Processes – a Brief Review”, Int. J. Miner. Process., 57, 1-24. Harahsheh M.A. and Kingman S.W. (2004) “Microwave assisted leaching—a review”, Hydrometallurgy, 73, 189-203. Hayes K. F. and Leckie J. O. (1987) “Modeling Ionic Strength Effects on Cation Adsorption at Hydrous Oxide / Solution Interfaces”, J. Colloid Interface Sci., 115, 564-572. Hayes K. F., Papelis C. and Leckie J. O. (1988) “Modeling Ionic Strength Effects on Cation Adsorption at Hydrous Oxide / Solution Interfaces”, J. Colloid Interface Sci, 125, 717-726 Ho Y.S. and McKay G. (1998), “Sorption of dyes from aqueous solution by peat”, Chem. Eng. J.70, 115-124. Ho Y. S., Huang C. T. and Huang H. W. (2002), “Equilibrium sorption isotherm 137 for metal ions on tree fern”, Process Biochem. 37, 1421-1430. Horikoshi S., Hidaka H. and Serpone N. (2002a) “Environmental Remediation by an Integrated Microwave/UV Illumination method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersion”, Environ. Sci. Technol., 36, 1357-1366. Horikoshi S., Serpone N. and Hidaka H. (2002b) “Environmental Remediation by an Integrated Microwave/UV Illumination Technique. 3. A Microwave-Powered Plasma Light Source and Photoreactor to Degrade Pollutants in Aqueous Dispersions of TiO2 Illuminated by the Emitted UV/Visible Radiation”, Environ. Sci. Technol., 36, 5229-5237. Horikoshi S., Saitou A., Hidaka H. and Serpone N. (2003a) ” Environmental Remediation by an Integrated Microwave/UV Illumination method. V. Thermal and Nonthermal Effects of Microwave Radiation on the Photocatalyst and on the Photodegradation of Rhodamine-B under UV/Vis Radiation”, Environ. Sci. Technol., 37, 5813-5822. Horikoshi S., Hidaka H. and Serpone N. (2003b) “Environmental remediation by an integrated microwave/UV-illumination technique: IV. Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO2/H2O dispersions”, J. Photochem. Photobiol. A Chem., 138 159(3), 289-300. Horikoshi S., Hidaka H. and Serpone N. (2003c) “Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions”, Chem. Phys. Lett. 376(3-4), 475. Horikoshi S., Tokunaga N., Hidaka H. and Serpone N. (2004a) “Environmental remediation by an integrated microwave/UV illumination method: VII. Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A”, J. Photochem. Photobiol. A Chem., 162(1), 33-40. Horikoshi S., Tokunaga N., Hidaka H. and Serpone N. (2004b) “Environmental Remediation by an Integrated Microwave/UV Illumination Technique. 8. Fate of Carboxylic Acids, Aldehydes, Alkoxycarbonyl and Phenolic Substrates in a Microwave Radiation Field in the Presence of TiO2 Particles under UV Irradiation”, Environ. Sci. Technol., 38, 2198-2208. Horikoshi S., Hidaka H. and Serpone N. (2006) ” Environmental remediation by an integrated microwave/UV illumination technique: IX. Peculiar hydrolytic and co-catalytic effects of platinum on the TiO2 photocatalyzed degradation of the 4-chlorophenol toxin in a microwave radiation field”, J. Photochem. 139 Photobiol. A Chem., 177(2-3), 129-143. Horikoshi S., Serpone N. and Hidaka H. (2007) “The microwave-/photo-assisted degradation of bisphenol-A in aqueous TiO2 dispersions revisited: Re-assessment of the microwave non-thermal effect”, J. Photochem. Photobiol. A Chem., 188(1), 1-4. Huang Y. K., Chang J. S., Kwon Y. U. and Park S. E. (2004), “Microwave synthesis of cubic mesoporous silica SBA-16”, Microporous and Mesoporous Materials, 68, 21-27. Inouye, K. (1968), “The role of copper (Ⅱ) in the oxidation of ferrous hydroxide colloid with special reference to the corrosion on iron in an SO2-containing environment”, J. Colloid and Interface Sci., 27(2), 171-179. Jacob K.T. and Alcock C.B. (1975) “Thermodynamics of CuAlO2 and CuAl2O4 and Phase equilibria in the system Cu2O-CuO-Al2O3”. J. Am. Ceram. Soc. 58 (5-6), 192-195. Janney M.A. and Kimrey H.D. (1991), “Diffusion-controlled processes in microwave-fired oxide ceramics”, In: Snyder Jr. W.B., Sutton W.H., Iskander M.F., Johnson D.L., Editors. Microwave processing of materials II, Materials Research Society Proceeding, Pittsburgh: Materials Research Society, 189, 215-227. 140 Jin Q., Liang F., Zhang H. , Zhao L. and Song D. (1999) , “Application of microwave techniques in analytical chemistry”, Anal. Chem., 18(7), 479-484. Jou C. J. G. (2006), “An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation”, Journal of Environmental Management, 78, 1-4. Karthikeyan K. G. and Elliott H. A. (1999), “Surface Complexation Modeling of Copper Sorption by Hydrous Oxides of Iron and Aluminum”, J. Colloid Interface Sci., 220, 88-95. Kawala Z. amd Atamanczuk T., (1998), “Microwave-Enhanced Thermal Decontamination of soil”, Environ. Sci. Technol., 32, 2602-2607. Kaz L. E. and Hayes K. F. (1995a), “Surface Complexation Modeling I. Strategy for Modeling Monomer Complex Formation at Moderate Surface Coverage”, J. Colloid Interface Sci., 170, 477-490. Kaz L. E. and Hayes K. F. (1995b), “Surface Complexation Modeling Ⅱ. Strategy for Modeling polymer and Precipitation Reaction at High Surface Coverage, J. Colloid Interface Sci., 170, 491-501. Kazinczy B., Kotai L., Gacs I., Sajo I. E., Sreedhar B. and Lazar K. (2003), “Study of the Preparation of Zinc (Ⅱ) Ferrite and ZnO from Zinc-and Iron-Containing Industrial Wastes”, Ind. Eng. Chem. Res., 42, 318-322. 141 Kiefer E., Sigg L. and Schosseler P. (1997), “Chemical and Spectroscopic Characterization of Algae Surface”, Environ. Sci. Technol, 31, 759-764 Kingman S. W. and Rowson N. A. (1998), “Microwave treatment of minerals – A review“, Minerals Engineering, 11(11), 1081-1087. Kubrakova I. (1997), “Microwave-assisted sample preparation and preconcentration for ETAAS”, Spectrochimica Acta Part B, 52, 1469-1481. Lachas H., Richaus R., Jarvis K. E., Herod A.A., Dugwell D. R. and Kandiyoti R. (1999), “”, Analyst, 124, 177. Lagergen, S. (1989), “Zur Theorie der sogenannten adsorption gelöster stoff, Kungliga Svenska Vetenskapasakademiens”, Handlingar 24, 1-39. Langmuir I. (1918), “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum”, J. Am. Chem. Soc., 40, 1361-1403 Lamble K.J. and Hill S.J. (1998), “Critical Review – Microwave digestion procedures for environmental materials”, Analyst, 123, 103R-133R. Li, Y. S., Liu C. C. and Chiou C. S. (2004), “Adsorption of Cr(III) from wastewater by wine processing waste sludge”, J. Colloid Interface Sci. 273, 95-101. Lopez-Avila V. and Young R. (1994), “Microwave-Assisted extraction of organic compounds from standard reference soils and sediments”, Anal. Chem, 142 66(7), 1097-1106. Loupy A. (2002) “Microwave in Organic synthesis”, Wiley-VCH Verlag, Weinheim, Germany, 367. Mangialardi, T. (2003) “Disposal of MSWI fly ash through a combined washing-immobilisation process” J. Hazard. Mater. B, 98, 225-240. Meima J.A. and Comans R. N. J. (1998), “Application of Surface Complexation / Precipitation Modeling to Contaminant Leaching from Weathered Municipal Solid Waste Incinerator Bottom Ash”, Environ. Sci. Technol., 32, 688-693. Menendez J. A., Inguanzo M. and Pis J. J. (2002), “Microwave-induced Pyrolysis of sewage sludge”, Wat. Res., 36, 3261-3264. Menendez J. A., Dom´ınguez A., Inguanzo M. and Pis J. J. (2004), “Microwave pyrolysis of sewage sludge--analysis of the gas fraction”, J. Anal. Appl. Pyrolysis, 71, 657-667. Menendez J. A., Dom´ınguez A., Inguanzo M. and Pis J. J. (2005), “Microwave Induced Drying, pyrolysis, and Gasification (MWDPG) of sewage sludge: Vitrification of Solid Residue”, J. Anal. Appl. Pyrolysis, 74, 406-412. Namasivayam C. and Ranganathan K. (1994), “Removal of Cd(II) from wastewater by adsorption on “waste” Fe(III)/Cr(III) hydroxide”, Wat. Res., 291737-1744. 143 Nemerow NL. (1978), Industrial water pollution : origins, characteristics, and treatment. New York: Addition-Wesley, 482-510. Netpradit S., Thiravetyan P. and Towprayoon S. (2003), ”Application of ‘waste’ metal hydroxide sludge from adsorption of azo reactive dyes”, Wat. Res., 37, 763-772. Netpradit S., Thiravetyan P. and Towprayoon S. (2004a), “Adsorption of three dyes by metal hydroxide sludge: effct of temperature, pH, and electrolytes”, J. Colloid Interface Sci., 270, 255-261. Netpradit S., Thiravetyan P. and Towprayoon S. (2004b), “Evaluation of metal hydroxide sludge for reactive dye adsorption in fixed-bed column test”, Wat. Res., 38, 71-78. Oliveira L. C. A., Petkowicz D. I., Smaniotto A. and Pergher S. B. C. (2004), “Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water”, Wat. Res., 38, 3699-3704. Ou, H. H., S. L. Lo, and Y. H. Liou, (2007), “Microwave-Induced Titanate Nanotubes and the Corresponding Behaviour after Thermal Treatment”, J. of Nanotechnology, (in Press). Pan S. C., Lin C. C. and Tseng D. H. (2003), “Reusing sewage sludge ash as adsorbent for copper removal from wastewater”, Resources, Conservation and 144 Recycling, 39, 79-90. Perez-Cid B., Lavilla I. and Bendicho C. (1999), “Application of microwave extraction for partitioning of heavy metals in sewage sludge”, Anal. Chim. Acta, 378 , 201-210. Perez-Cid B., Albores F. A., Gomez E. F. and Lopez E. F. (2001), “Use of microwave single extraction for metal fraction in sewage sludge samples”, 431, 209-218. Park S.E., Kim D. S., Chang J.S. and Kim W. Y. (1998), “Synthesis of MCM-41 using microwave heating with ethylene glycol”, Catalysis Today, 44, 301-308. Ramakrishnan, K.N (1999) “Powder particle size relationship in microwave synthesised ceramic powders” Mater. Sci. Eng. A, 259(1), 120-125. Ricordel S., Taha S., Cisse I. And Dorange G. (2001), “Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling”, Separation and Purification Technology, 24, 389-401. Sandroni V. and Smith C. M. M. (2002), “Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively couple plasma-atomic emission spectrometer”, Analytica Chemica Acta, 468, 335-344. Sandroni V., Smith C. M. M. and Donovan A. (2003), “Microwave digestion of sediment, soil and urban particulate matter for trace metal analysis”, Talanta, 145 60 715-723. Sedhom E., Dauerman L., Ibrahim N. and Windgasse G. (1992), “Microwave Treatment of Hazardous wastes: “Fixation” of Chromium in soil”, Journal of Microwave Power and Electromagnetic Energy, 27(2), 81-86. Shaheen W.M. (2002) The solid-solid interaction and catalytic properties of CuO/Al2O3 system treated with ZnO and MoO3. Thermochim. Acta 385, 105-116. Standard methods for the examination of water and wastewater 17th Edition, APHA 1989. American Public Health Association, Washington, DC. 3-132, 7-18, 7-19, 7-36, 7-37. Thostenson E. T. and Chou T.-W. (1999)”Microwave processing : fundamentals and application”, Composites : Part A, 30, 1055-1071. Tai, H. S. and Jou, C. J. G. (1999) “Immobilization of chromium- contaminated soil by means of microwave energy” J. Hazard. Mater, 65, 267-275. Vanttan S. K., Docols B. A. and Green D. B. (2000)”Microwave-assisted synthesis of Group 6 (Cr, Mo, W)zerovalent organometallic carbonyl compounds”, Organometallics, 19, 2397-2399. Wu C. H., Lin C. F. and Horng P. Y. (2004), “Adsorption of Copper and Lead Ions onto Regenerated Sludge from a Water Treatment Plant”, Journal of 146 Environmental Science & Health, Part A,39, 237-252 Weber W.J. and Morris J.C. (1962), Advances in water pollution research: Removal of biologically-resistant pollutants from waste water by adsorption, In Proc. Int. Conf. On Water Pollution Symp. 2, 231-266. Pergamon Press, Oxford. Wei Y.L., Wang H.C., Yang Y.W. and Lee J.F. (2004) “The chemical transformation of copper in aluminium oxide during heating.” J. Phys. Condens. Matter 16, S3485-S3490. Yadoji P., Peelamedu R., Agrawal, D. and Roy R. (2003) “Microwave sintering of Ni_/Zn ferrites: comparison with conventional sintering”, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 98 (3), 269-278. Zlotozynski A.. (1995), “The application of microwave radiation to analytical and environmental chemistry”, Crit. Rev. Anal. Chem., 25(1), 43-76. 胡冠九,徐明華,1997,“微波萃取在環境有機樣品分析之應用”, 江蘇環境 科技 ,第一期 , 31-36。 張毓寬,2002。”鉻污泥資源化基礎研究”,國立成功大學資源工程研究所碩 士論文。 駱健美,盧學英和張敏卿,2001, “微波萃取技術及應用”, 化工進展, 第12 期, 第46-49 頁。 147 黃麟晴,2003。”電子業含銅污泥鐵磁化法之研究”,國立中山大學環境工程 研究所碩士論文。 柯家宇,2004,重金屬含銅污泥鐵氧磁體安定化之研究,國立成功大學環境 工程學系碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27348 | - |
| dc.description.abstract | 重金屬污泥在台灣為一產量甚大的有害事業廢棄物,其中以含銅污泥產
量為最大宗。若未加以處理而棄置,則會造成土壤及地下水的污染並危害人 體健康。本研究嘗試以微波輻射程序進行重金屬污泥之安定化,期望達到無 害化及資源化之目標。 實驗中探討之影響因子為:微波誘發程序影響、安定劑劑量與種類、微 波時間及功率、反應氣氛、微波吸收質、微波混成程序及溫度之影響。除了 探討其重金屬溶出濃度及安定化效率,並研究其固相化學反應。而安定化污 泥亦進行資材化之研究,探討其對於金屬離子的吸附性質與吸附量。 結果顯示不同的處理程序當中,以同時添加還原性金屬安定劑並供給微 波輻射方能有效達到含銅重金屬污泥之安定化,且還原性金屬添加劑量與該 金屬之反應性成反比。當微波功率越強或微波時間越長時都有較佳之安定化 效果。但在高功率微波照射下,樣品間會產生較大之之熱壓力造成顆粒之間 的裂隙進而降低安定化的穩定性。 當無添加安定劑時,以空氣做為反應氣體及冷卻氣體(Air/Air)會造成污 泥中的有機物完全燃燒並使銅大量溶出;而填充氮氣(N2/N2)則能阻隔有機物 與氧氣接觸,因此銅溶出濃度較低。若同時添加安定劑與控制反應氣氛,實 廠污泥填充氮氣(N2/N2)能有效的增進安定化效率,縮短安定化所需的時間; 若配合空氣進行冷卻(N2/Air),則可使高能鋁粉氧化釋出氧化熱,促成銅物 種脫水反應及CuO 的生成。而無機污泥(De10)方面,在(Air/Air)環境鋁粉會 逐漸釋出氧化熱,安定化效率會逐漸上升;而N2/N2 組電弧程序的產生應為 主要污泥安定化的方式。 而在微波程序中,有機物的悶燒與否將微影響污泥安定化之穩定性。但 若污泥中的有機物及水分一併去除而僅添加安定劑,則會使得安定化效果不 IV 佳。當添加吸收微波能力較強的微波吸收質於污泥中時,微波安定化之效率 有明顯的提升。而在銅污泥安定時卻造成Al 及Fe 的溶出濃度增加,可能是 Al0 可在微波提供能量的狀況下,直接或間接將Fe3+及Cu2+還原成Fe2+ (或其 他溶解性較高的鐵氧化物)及Cu0 或CuO,而本身則氧化為Al3+。 在微波混成程序中添加活性碳收並控制反應環境(N2/N2),仍能達到安定 化之效果;安定化反應包括脫水反應、物種轉換、玻璃化、還原反應及硫化 物生成。高溫固相化學反應方面,當溫度高達900 ℃時,CuAl2O4 有較高的 轉換率。當混合Cu4SO4(OH)6 與α-Al2O3 進行高溫鍛燒時,顯示溫度升高有 助於CuO 的生成,但是CuO 與α-Al2O3 的顆粒可能只在表面層生成 CuAl2O4,因此無法明確地以XRD 鑑定。以CuO 與α-Al2O3 混合,反應轉換 率不高;若以CuO 與γ-Al2O3 混合,在800 ℃有大量CuAl2O4 生成,因為 γ-Al2O3 有較鬆散之結晶結構,有助於CuO 與γ-Al2O3 嵌合及CuAl2O4 生成。 資材化研究方面,當溶液的pH 範圍在2-11 之間時,安定化污泥表面的 電荷皆為負電,因此適合作為陽離子之吸附劑。動力學研究中,吸附實驗數 據較符合pseudo-second order model,顯示銅離子與安定化污泥之間的吸附 可視為一種活性吸附機制。而等溫吸附實驗(Isotherm)數據與Langmuir equation 有較高的相關係數。從熱力學的參數中可得知銅離子於安定化污泥 表面的吸附為吸熱反應。但是整體的吸附現象確有可能包含物理性及化學性 吸附。而銅離子於安定化污泥表面的吸附容量分別約為23 mg/g (SL07-FeA) 及15.5 mg/g (SL07-AlA), 此吸附容量大於許多其他固體廢棄物吸附劑的吸 附容量。因此安定化污泥可被應用於含重金屬廢水吸附的資材化物質。 | zh_TW |
| dc.description.abstract | The leaching concentration of heavy metal sludge is above the TCLP
criteria for land disposal (< 15 mg/L) and regarded as a hazardous solid waste. Without proper treatments, the hazardous sludge would contaminate the soil and ground water and even human health. Therefore, a stabilizing process for the tremendous amount of heavy metal sludge is required before land disposal and reuse. In this study, microwave processes were conducted for the stabilization of heavy metal sludge. The effects different processes, stabilizing agents, process time, microwave power, reaction atmosphere, microwave adsorbents, microwave hybrid process and temperature variation were investigated. The solid state reaction and adsorption study of stabilized sludge were also discussed. Results indicated that better stabilization ratio was reached when microwave radiation was applied coincided with the addition of reductive metal powder. The adding dose of metal powder at same stabilization ration was in reverse order of metal reactivity. As copper was stabilized, Fe and Al also leached out during TCLP process. Al3+, Fe2+ and Cu0 (or CuO) was formed as redox reaction was occurred. The stabilization efficiency improved at higher microwave power, but the thermal pressure caused by higher microwave power could decline the VI reproducibility of experimental data. For raw heavy metal sludge (TD10), the sludge would smolder under oxygen atmosphere leading to the leaching of metal ions when only microwave radiation was applied. Moreover, as microwave radiation was served coupled with stabilizing agent to TD10, an inert reaction atmosphere (N2) during heating and oxidizing atmosphere (air) for cooling gave better performance. Oxidation heat released from the oxidation of aluminum powder may be attributed to the formation of CuO. When metal powder was added into inorganic sludge (De10) with microwave radiation at N2/N2, the microarcing process may be responsible for the dehydration reaction of sludge. Appropriate amounts of microwave adsorbents in the sludge would increase the homogeneity of microwave energy to increase the reactions between stabilizing agents and copper. In Hybrid Microwave process, when processing time was longer than 18 min and AC dosage was more than 3 g, a minor portion of the De10 was vitrified and leading to low copper leachability. Adding carbonaceous materials in the samples would enhance the transformation of copper into CuAl2O4 due to the additional burning heat. Also, in this process, the reduction reaction may be attributed to the formation of Cu2S. In the solid state reaction, the transformation of CuAl2O4 was higher at 900 ℃. Calcination of mixture of CuO and γ-Al2O3 gave better transformation ratio of CuAl2O4 when VII compared with mixture of CuO and α- Al2O3. The diffusion rate of solid particles, formation of surface layer, lattice structure, and amorphous intermediate product may be attributed to the differences of transformation ratio. In the adsorption study, the surface charge of stabilized-sludge was negative at the pH range of 2-11. The removal of copper ions increased as the initial pH rose, and the final pH maintained at a constant of pH 7.2 while the initial pH is from 6 to 8. In the kinetic study, the adsorption of copper ions onto adsorbent was fitted to the pseudo-second order model with great correlation coefficient (R2 = 0.994). This result shows the adsorption of copper ions onto stabilized-sludge to be an activated adsorption mechanism. The experimental data was also analyzed by the isotherm equations and correlation coefficient of the Langmuir equation was better than that for the Freundlich equation. In isotherm experiment, both the Q0 and b increased as the temperature ure rose from 15℃ to 55℃. This implies that this adsorption reaction was an endothermic reaction which can also be demonstrated by the thermodynamic study with the parameters, ΔG0, ΔH0 and ΔS0. The adsorption capacity of copper ions onto stabilized-sludge was around 15-23 mg/g, which was greater than that on many other solid wastes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:02:02Z (GMT). No. of bitstreams: 1 ntu-97-D92541006-1.pdf: 3106563 bytes, checksum: 429bb8c96d365aa6b6310580a1c18337 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書............................................................................................ I
誌謝................................................................................................................... II 中文摘要..........................................................................................................III 英文摘要...........................................................................................................V 目錄...............................................................................................................VIII 表目錄............................................................................................................ XII 圖目錄...........................................................................................................XIII 附錄目錄..................................................................................................... XVII 第一章 緒論......................................................................................................1 1.1 前言.....................................................................................................1 1.2 研究目的.............................................................................................2 1.3 研究內容.............................................................................................2 第二章 文獻回顧..............................................................................................4 2.1 重金屬污泥的來源與現況.................................................................4 2.1.1 重金屬污泥來源與性質..............................................................4 2.1.2 重金屬污泥處置現況及問題......................................................4 2.2 微波理論.............................................................................................7 2.2.1 微波原理......................................................................................7 2.2.2 溶液於微波場之反應..................................................................8 2.2.3 固相樣品於微波場之反應..........................................................9 2.2.4 物質於微波系統中溫度的量測................................................10 2.2.5 微波裝置....................................................................................11 2.2.6 微波之應用................................................................................12 2.3 吸附理論...........................................................................................23 IX 2.3.1 吸附原理....................................................................................23 2.3.2 影響吸附的因子........................................................................26 2.3.3 吸附模式....................................................................................27 2.3.4 吸附動力學................................................................................33 第三章 材料與方法........................................................................................35 3.1 污泥來源與前處理...........................................................................35 3.2 實驗藥品與器材...............................................................................36 3.2.1 藥品與器材................................................................................36 3.2.2 實驗設備與裝置........................................................................38 3.3 實驗方法...........................................................................................42 3.3.1 毒性特性溶出程序....................................................................42 3.3.2 微波輔助消化............................................................................42 3.3.3 亞鐵離子之分析........................................................................45 3.3.4 合成污泥製備............................................................................46 3.3.5 微波誘發處理技術....................................................................46 3.3.5.1 微波誘發處理程序之選擇.................................................47 3.3.5.2 安定劑劑量、微波功率與微波時間之影響.....................47 3.3.5.3 反應氣氛之影響.................................................................47 3.3.5.4 結合安定劑與反應氣氛之影響.........................................48 3.3.5.5 有機物質之影響.................................................................48 3.3.5.6 亞鐵離子測定.....................................................................49 3.3.5.7 氧化銅與氫氧化銅溶出性比較.........................................49 3.3.5.8 微波吸收劑之影響.............................................................50 3.3.5.8.1 含水率之影響..............................................................50 3.3.5.8.2 含碳物質之影響..........................................................50 X 3.3.5.9 微波混成程序.....................................................................51 3.3.5.10 溫度之影響.......................................................................51 3.3.5.11 固相化學之探討...............................................................52 3.3.6 環境友善資材再利用................................................................53 3.3.6.1 吸附劑的備製.....................................................................53 3.3.6.2 污泥表面電荷.....................................................................54 3.3.6.3 吸附動力學實驗.................................................................54 3.3.6.4 pH 值的影響........................................................................54 3.3.6.5 等溫吸附研究.....................................................................55 第四章 實驗結果與討論................................................................................56 4.1 總量分析與TCLP 溶出量...............................................................56 4.2 合成污泥之製備...............................................................................58 4.3 微波誘發處理技術...........................................................................60 4.3.1 微波誘發處理程序之選擇.......................................................60 4.3.2 安定劑劑量、微波功率與微波時間對污泥安定之影響.......64 4.3.3 反應氣氛對污泥安定之影響...................................................72 4.3.4 結合安定劑與反應氣氛對污泥安定之影響..........................74 4.3.5 有機物質之影響......................................................................77 4.3.6 亞鐵離子測定..........................................................................80 4.3.7 微波吸收劑之影響..................................................................83 4.3.7.1 含水率之影響...................................................................83 4.3.7.2 含碳物質之影響...............................................................87 4.3.8 微波混成程序..........................................................................90 4.3.9 溫度之影響..............................................................................96 4.3.10 固相化學探討......................................................................100 XI 4.3.10.1 均勻性之影響...............................................................100 4.3.10.2 合成污泥含水率影響...................................................101 4.3.10.3 高溫固相反應I .............................................................104 4.3.10.4 高溫固相反應II............................................................105 4.3.10.5 高溫固相反應III ..........................................................107 4.4 資材化研究.....................................................................................112 4.4.1 初步試驗..................................................................................112 4.4.2 pHzpc .........................................................................................113 4.4.3 pH 值之影響............................................................................114 4.4.4 吸附動力學.............................................................................117 4.4.5 等溫吸附實驗.........................................................................122 4.4.6 不同安定化污泥之差異.........................................................126 第五章 結論..................................................................................................127 5.1 微波誘發處理程序.........................................................................127 5.2 安定化污泥之資材化應用............................................................130 5.3 建議................................................................................................131 參考文獻........................................................................................................132 附錄................................................................................................................148 | |
| dc.language.iso | zh-TW | |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 重金 | zh_TW |
| dc.subject | 屬污泥 | zh_TW |
| dc.subject | 安定化 | zh_TW |
| dc.subject | 銅 | zh_TW |
| dc.subject | 微波 | zh_TW |
| dc.title | 以微波輔助重金屬污泥回收再利用之研究 | zh_TW |
| dc.title | Microwave Enhanced Reclamation of Heavy Metal Sludge | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李公哲,曾迪華,魏銘彥,官文惠 | |
| dc.subject.keyword | 重金,屬污泥,銅,微波,安定化,吸附, | zh_TW |
| dc.subject.keyword | Heavy metal sludge,Copper,Microwave,Stabilization,Adsorption, | en |
| dc.relation.page | 147 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
