請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27338完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陶秘華(Mi-Hua Tao) | |
| dc.contributor.author | Chun-Chi Chen | en |
| dc.contributor.author | 陳純琪 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:01:43Z | - |
| dc.date.available | 2018-12-31 | |
| dc.date.copyright | 2008-02-20 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-25 | |
| dc.identifier.citation | 1. Norder H, Courouce AM, Coursaget P, Echevarria JM, Lee SD, Mushahwar IK, Robertson BH, Locarnini S, Magnius LO. 2004. Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology 47: 289-309
2. Fung SK, Lok AS. 2004. Hepatitis B virus genotypes: do they play a role in the outcome of HBV infection? Hepatology 40: 790-2 3. Kao JH, Chen PJ, Lai MY, Chen DS. 2000. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 118: 554-9 4. Chu CJ, Hussain M, Lok AS. 2002. Hepatitis B virus genotype B is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C. Gastroenterology 122: 1756-62 5. Sumi H, Yokosuka O, Seki N, Arai M, Imazeki F, Kurihara T, Kanda T, Fukai K, Kato M, Saisho H. 2003. Influence of hepatitis B virus genotypes on the progression of chronic type B liver disease. Hepatology 37: 19-26 6. Yu MW, Yeh SH, Chen PJ, Liaw YF, Lin CL, Liu CJ, Shih WL, Kao JH, Chen DS, Chen CJ. 2005. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 97: 265-72 7. Schneider R, Fernholz D, Wildner G, Will H. 1991. Mechanism, kinetics, and role of duck hepatitis B virus e-antigen expression in vivo. Virology 182: 503-12 8. Chen HS, Kew MC, Hornbuckle WE, Tennant BC, Cote PJ, Gerin JL, Purcell RH, Miller RH. 1992. The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host. J Virol 66: 5682-4 9. Milich DR, Chen MK, Hughes JL, Jones JE. 1998. The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence. J Immunol 160: 2013-21 10. Chu CJ, Hussain M, Lok AS. 2002. Quantitative serum HBV DNA levels during different stages of chronic hepatitis B infection. Hepatology 36: 1408-15 11. Chisari FV. 2000. Rous-Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol 156: 1117-32 12. Feitelson MA, Reis HM, Liu J, Lian Z, Pan J. 2005. Hepatitis B virus X antigen (HBxAg) and cell cycle control in chronic infection and hepatocarcinogenesis. Front Biosci 10: 1558-72 13. Xu Z, Yen TS, Wu L, Madden CR, Tan W, Slagle BL, Ou JH. 2002. Enhancement of hepatitis B virus replication by its X protein in transgenic mice. J Virol 76: 2579-84 14. Horvath J, Raffanti SP. 1994. Clinical aspects of the interactions between human immunodeficiency virus and the hepatotropic viruses. Clin Infect Dis 18: 339-47 15. Chisari FV, Ferrari C. 1995. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13: 29-60 16. McMahon BJ. 2005. Epidemiology and natural history of hepatitis B. Semin Liver Dis 25 Suppl 1: 3-8 17. Hadziyannis SJ, Vassilopoulos D. 2001. Hepatitis B e antigen-negative chronic hepatitis B. Hepatology 34: 617-24 18. Beasley RP. 1988. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61: 1942-56 19. Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C. 2006. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25: 3823-33 20. Chen CJ, Yu MW, Liaw YF. 1997. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol 12: S294-308 21. Yang HI, Lu SN, Liaw YF, You SL, Sun CA, Wang LY, Hsiao CK, Chen PJ, Chen DS, Chen CJ. 2002. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 347: 168-74 22. Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, Huang GT, Iloeje UH. 2006. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. Jama 295: 65-73 23. Chen G, Lin W, Shen F, Iloeje UH, London WT, Evans AA. 2006. Past HBV viral load as predictor of mortality and morbidity from HCC and chronic liver disease in a prospective study. Am J Gastroenterol 101: 1797-803 24. Cooksley WG. 2004. Treatment of hepatitis B with interferon and combination therapy. Clin Liver Dis 8: 353-70 25. Wong DK, Cheung AM, O'Rourke K, Naylor CD, Detsky AS, Heathcote J. 1993. Effect of alpha-interferon treatment in patients with hepatitis B e antigen-positive chronic hepatitis B. A meta-analysis. Ann Intern Med 119: 312-23 26. Cooksley WG, Piratvisuth T, Lee SD, Mahachai V, Chao YC, Tanwandee T, Chutaputti A, Chang WY, Zahm FE, Pluck N. 2003. Peginterferon alpha-2a (40 kDa): an advance in the treatment of hepatitis B e antigen-positive chronic hepatitis B. J Viral Hepat 10: 298-305 27. Dienstag JL, Schiff ER, Wright TL, Perrillo RP, Hann HW, Goodman Z, Crowther L, Condreay LD, Woessner M, Rubin M, Brown NA. 1999. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med 341: 1256-63 28. Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H, Tanwandee T, Tao QM, Shue K, Keene ON, Dixon JS, Gray DF, Sabbat J. 2004. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med 351: 1521-31 29. Mailliard ME, Gollan JL. 2006. Emerging therapeutics for chronic hepatitis B. Annu Rev Med 57: 155-66 30. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang TT, Kitis G, Rizzetto M, Marcellin P, Lim SG, Goodman Z, Wulfsohn MS, Xiong S, Fry J, Brosgart CL. 2003. Adefovir dipivoxil for the treatment of hepatitis B e antigen-negative chronic hepatitis B. N Engl J Med 348: 800-7 31. Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, Jeffers L, Goodman Z, Wulfsohn MS, Xiong S, Fry J, Brosgart CL. 2003. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 348: 808-16 32. Angus P, Vaughan R, Xiong S, Yang H, Delaney W, Gibbs C, Brosgart C, Colledge D, Edwards R, Ayres A, Bartholomeusz A, Locarnini S. 2003. Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase. Gastroenterology 125: 292-7 33. Gish RG, Lok AS, Chang TT, de Man RA, Gadano A, Sollano J, Han KH, Chao YC, Lee SD, Harris M, Yang J, Colonno R, Brett-Smith H. 2007. Entecavir therapy for up to 96 weeks in patients with HBeAg-positive chronic hepatitis B. Gastroenterology 133: 1437-44 34. Sherman M, Yurdaydin C, Sollano J, Silva M, Liaw YF, Cianciara J, Boron-Kaczmarska A, Martin P, Goodman Z, Colonno R, Cross A, Denisky G, Kreter B, Hindes R. 2006. Entecavir for treatment of lamivudine-refractory, HBeAg-positive chronic hepatitis B. Gastroenterology 130: 2039-49 35. Tenney DJ, Levine SM, Rose RE, Walsh AW, Weinheimer SP, Discotto L, Plym M, Pokornowski K, Yu CF, Angus P, Ayres A, Bartholomeusz A, Sievert W, Thompson G, Warner N, Locarnini S, Colonno RJ. 2004. Clinical emergence of entecavir-resistant hepatitis B virus requires additional substitutions in virus already resistant to Lamivudine. Antimicrob Agents Chemother 48: 3498-507 36. Bryant ML, Bridges EG, Placidi L, Faraj A, Loi AG, Pierra C, Dukhan D, Gosselin G, Imbach JL, Hernandez B, Juodawlkis A, Tennant B, Korba B, Cote P, Marion P, Cretton-Scott E, Schinazi RF, Sommadossi JP. 2001. Antiviral L-nucleosides specific for hepatitis B virus infection. Antimicrob Agents Chemother 45: 229-35 37. Kim JW, Park SH, Louie SG. 2006. Telbivudine: a novel nucleoside analog for chronic hepatitis B. Ann Pharmacother 40: 472-8 38. Lai CL, Gane E, Liaw YF, Hsu CW, Thongsawat S, Wang Y, Chen Y, Heathcote EJ, Rasenack J, Bzowej N, Naoumov NV, Di Bisceglie AM, Zeuzem S, Moon YM, Goodman Z, Chao G, Constance BF, Brown NA. 2007. Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med 357: 2576-88 39. Lai CL, Lim SG, Brown NA, Zhou XJ, Lloyd DM, Lee YM, Yuen MF, Chao GC, Myers MW. 2004. A dose-finding study of once-daily oral telbivudine in HBeAg-positive patients with chronic hepatitis B virus infection. Hepatology 40: 719-26 40. Lai CL, Leung N, Teo EK, Tong M, Wong F, Hann HW, Han S, Poynard T, Myers M, Chao G, Lloyd D, Brown NA. 2005. A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B e antigen-positive chronic hepatitis B. Gastroenterology 129: 528-36 41. Yang H, Qi X, Sabogal A, Miller M, Xiong S, Delaney WEt. 2005. Cross-resistance testing of next-generation nucleoside and nucleotide analogues against lamivudine-resistant HBV. Antivir Ther 10: 625-33 42. Meuleman P, Libbrecht L, De Vos R, de Hemptinne B, Gevaert K, Vandekerckhove J, Roskams T, Leroux-Roels G. 2005. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41: 847-56 43. Meuleman P, Libbrecht L, Wieland S, De Vos R, Habib N, Kramvis A, Roskams T, Leroux-Roels G. 2006. Immune suppression uncovers endogenous cytopathic effects of the hepatitis B virus. J Virol 80: 2797-807 44. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA. 2003. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21: 639-44 45. Inagaki K, Lewis SM, Wu X, Ma C, Munroe DJ, Fuess S, Storm TA, Kay MA, Nakai H. 2007. DNA palindromes with a modest arm length of greater, similar 20 base pairs are a significant target for recombinant adeno-associated virus vector integration in the liver, muscles, and heart in mice. J Virol 81: 11290-303 46. Chen CC, Ko TM, Ma HI, Wu HL, Xiao X, Li J, Chang CM, Wu PY, Chen CH, Han JM, Yu CP, Jeng KS, Hu CP, Tao MH. 2007. Long-term inhibition of hepatitis B virus in transgenic mice by double-stranded adeno-associated virus 8-delivered short hairpin RNA. Gene Ther 14: 11-9 47. Guidotti LG, Matzke B, Schaller H, Chisari FV. 1995. High-level hepatitis B virus replication in transgenic mice. J Virol 69: 6158-69 48. Zheng Y, Chen WL, Louie SG, Yen TS, Ou JH. 2007. Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice. Hepatology 45: 16-21 49. Sharp PA. 1999. RNAi and double-strand RNA. Genes Dev 13: 139-41 50. Hannon GJ. 2002. RNA interference. Nature 418: 244-51 51. Hammond SM, Bernstein E, Beach D, Hannon GJ. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293-6 52. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. 2002. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110: 563-74 53. Dykxhoorn DM, Lieberman J. 2005. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56: 401-23 54. Waterhouse PM, Wang MB, Lough T. 2001. Gene silencing as an adaptive defence against viruses. Nature 411: 834-42 55. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-8 56. Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-97 57. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. 2001. Identification of novel genes coding for small expressed RNAs. Science 294: 853-8 58. Harfe BD. 2005. MicroRNAs in vertebrate development. Curr Opin Genet Dev 15: 410-5 59. Kloosterman WP, Plasterk RH. 2006. The diverse functions of microRNAs in animal development and disease. Dev Cell 11: 441-50 60. Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20 61. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP. 2005. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310: 1817-21 62. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769-73 63. He L, Hannon GJ. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522-31 64. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117: 69-81 65. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE. 2005. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553-63 66. Haasnoot J, Westerhout EM, Berkhout B. 2007. RNA interference against viruses: strike and counterstrike. Nat Biotechnol 25: 1435-43 67. Stevenson M. 2004. Therapeutic potential of RNA interference. N Engl J Med 351: 1772-7 68. Ryther RC, Flynt AS, Phillips JA, 3rd, Patton JG. 2005. siRNA therapeutics: big potential from small RNAs. Gene Ther 12: 5-11 69. Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. 2006. Prospects of RNA interference therapy for cancer. Gene Ther 13: 464-77 70. Jacque JM, Triques K, Stevenson M. 2002. Modulation of HIV-1 replication by RNA interference. Nature 418: 435-8 71. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA. 2002. siRNA-directed inhibition of HIV-1 infection. Nat Med 8: 681-6 72. Yokota T, Sakamoto N, Enomoto N, Tanabe Y, Miyagishi M, Maekawa S, Yi L, Kurosaki M, Taira K, Watanabe M, Mizusawa H. 2003. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep 4: 602-8 73. Kronke J, Kittler R, Buchholz F, Windisch MP, Pietschmann T, Bartenschlager R, Frese M. 2004. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J Virol 78: 3436-46 74. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, Maclachlan I, Polisky B. 2005. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23: 1002-7 75. Uprichard SL, Boyd B, Althage A, Chisari FV. 2005. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci U S A 102: 773-8 76. Wu HL, Huang LR, Huang CC, Lai HL, Liu CJ, Huang YT, Hsu YW, Lu CY, Chen DS, Chen PJ. 2005. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology 128: 708-16 77. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM, Lieberman J. 2006. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439: 89-94 78. Gitlin L, Karelsky S, Andino R. 2002. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418: 430-4 79. Gitlin L, Stone JK, Andino R. 2005. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J Virol 79: 1027-35 80. Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. 2004. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci U S A 101: 8676-81 81. Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ, Woodle MC, Zhong N, Lu PY. 2005. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11: 944-51 82. Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P, Yee JK, Rossi J, Zaia J, Akkina R. 2007. Safety and efficacy of a lentiviral vector containing three anti-HIV genes--CCR5 ribozyme, tat-rev siRNA, and TAR decoy--in SCID-hu mouse-derived T cells. Mol Ther 15: 1182-8 83. Boden D, Pusch O, Lee F, Tucker L, Ramratnam B. 2003. Human immunodeficiency virus type 1 escape from RNA interference. J Virol 77: 11531-5 84. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, Berkhout B. 2004. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78: 2601-5 85. An DS, Qin FX, Auyeung VC, Mao SH, Kung SK, Baltimore D, Chen IS. 2006. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 14: 494-504 86. ter Brake O, Konstantinova P, Ceylan M, Berkhout B. 2006. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14: 883-92 87. Grimm D, Kay MA. 2007. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15: 878-88 88. Bitko V, Musiyenko A, Shulyayeva O, Barik S. 2005. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11: 50-5 89. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T. 2004. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64: 3365-70 90. Simeoni F, Morris MC, Heitz F, Divita G. 2005. Peptide-based strategy for siRNA delivery into mammalian cells. Methods Mol Biol 309: 251-60 91. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J. 2005. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23: 709-17 92. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE, Wolff JA. 2007. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104: 12982-7 93. Wen WH, Liu JY, Qin WJ, Zhao J, Wang T, Jia LT, Meng YL, Gao H, Xue CF, Jin BQ, Yao LB, Chen SY, Yang AG. 2007. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology 46: 84-94 94. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173-8 95. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I. 2006. RNAi-mediated gene silencing in non-human primates. Nature 441: 111-4 96. Grimm D, Kay MA. 2006. Therapeutic short hairpin RNA expression in the liver: viral targets and vectors. Gene Ther 13: 563-75 97. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J. 2004. siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32: e49 98. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M. 2005. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11: 429-33 99. Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, Henderson CE, Aebischer P. 2005. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11: 423-8 100. Noguchi P. 2003. Risks and benefits of gene therapy. N Engl J Med 348: 193-4 101. Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion PL, Ferry N, Weinberg MS, Arbuthnot P. 2006. Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther 13: 411-21 102. Cavanaugh VJ, Guidotti LG, Chisari FV. 1998. Inhibition of hepatitis B virus replication during adenovirus and cytomegalovirus infections in transgenic mice. J Virol 72: 2630-7 103. Zhang Y, Chirmule N, Gao GP, Qian R, Croyle M, Joshi B, Tazelaar J, Wilson JM. 2001. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 3: 697-707 104. Ehrhardt A, Xu H, Dillow AM, Bellinger DA, Nichols TC, Kay MA. 2003. A gene-deleted adenoviral vector results in phenotypic correction of canine hemophilia B without liver toxicity or thrombocytopenia. Blood 102: 2403-11 105. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. 2003. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34: 263-4 106. Moss EG, Taylor JM. 2003. Small-interfering RNAs in the radar of the interferon system. Nat Cell Biol 5: 771-2 107. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. 2003. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834-9 108. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. 2001. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 98: 9742-7 109. Sen GC. 2001. Viruses and interferons. Annu Rev Microbiol 55: 255-81 110. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. 2005. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23: 222-6 111. Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR. 2006. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24: 559-65 112. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. 2005. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23: 457-62 113. Judge AD, Bola G, Lee AC, MacLachlan I. 2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13: 494-505 114. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA. 2006. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441: 537-41 115. An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH, Bonifacino A, Krouse AE, Darlix JL, Baltimore D, Qin FX, Chen IS. 2007. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci U S A 104: 13110-5 116. Perros M, Spegelaere P, Dupont F, Vanacker JM, Rommelaere J. 1994. Cruciform structure of a DNA motif of parvovirus minute virus of mice (prototype strain) involved in the attenuation of gene expression. J Gen Virol 75 ( Pt 10): 2645-53 117. Girod A, Wobus CE, Zadori Z, Ried M, Leike K, Tijssen P, Kleinschmidt JA, Hallek M. 2002. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 83: 973-8 118. Grieger JC, Samulski RJ. 2005. Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 99: 119-45 119. Warrington KH, Jr., Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N. 2004. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78: 6595-609 120. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM. 2004. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78: 6381-8 121. Riolobos L, Reguera J, Mateu MG, Almendral JM. 2006. Nuclear transport of trimeric assembly intermediates exerts a morphogenetic control on the icosahedral parvovirus capsid. J Mol Biol 357: 1026-38 122. Grieger JC, Choi VW, Samulski RJ. 2006. Production and characterization of adeno-associated viral vectors. Nat Protoc 1: 1412-28 123. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. 2002. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99: 11854-9 124. Thomas CE, Storm TA, Huang Z, Kay MA. 2004. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 78: 3110-22 125. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW, High KA. 2000. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24: 257-61 126. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA. 2006. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12: 342-7 127. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. 1996. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 70: 520-32 128. Nakai H, Storm TA, Kay MA. 2000. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol 74: 9451-63 129. Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA. 1998. The kinetics of rAAV integration in the liver. Nat Genet 19: 13-5 130. Miao CH, Nakai H, Thompson AR, Storm TA, Chiu W, Snyder RO, Kay MA. 2000. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J Virol 74: 3793-803 131. McCarty DM, Monahan PE, Samulski RJ. 2001. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8: 1248-54 132. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. 2003. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 10: 2105-11 133. Wang JC, Lynch AS. 1993. Transcription and DNA supercoiling. Curr Opin Genet Dev 3: 764-8 134. Nakai H, Thomas CE, Storm TA, Fuess S, Powell S, Wright JF, Kay MA. 2002. A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in recombinant adeno-associated virus-mediated liver transduction. J Virol 76: 11343-9 135. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X, McCarty DM. 2003. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 8: 911-7 136. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. 2003. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10: 2112-8 137. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X. 2005. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23: 321-8 138. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, Tuddenham EG, Kemball-Cook G, McIntosh J, Boon-Spijker M, Mertens K, Davidoff AM. 2006. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107: 2653-61 139. Brummelkamp TR, Bernards R, Agami R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-3 140. Chou YC, Jeng KS, Chen ML, Liu HH, Liu TL, Chen YL, Liu YC, Hu CP, Chang C. 2005. Evaluation of transcriptional efficiency of hepatitis B virus covalently closed circular DNA by reverse transcription-PCR combined with the restriction enzyme digestion method. J Virol 79: 1813-23 141. Dykxhoorn DM, Lieberman J. 2006. Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu Rev Biomed Eng 8: 377-402 142. Guidotti LG, Borrow P, Hobbs MV, Matzke B, Gresser I, Oldstone MB, Chisari FV. 1996. Viral cross talk: intracellular inactivation of the hepatitis B virus during an unrelated viral infection of the liver. Proc Natl Acad Sci U S A 93: 4589-94 143. Grimm D, Zhou S, Nakai H, Thomas CE, Storm TA, Fuess S, Matsushita T, Allen J, Surosky R, Lochrie M, Meuse L, McClelland A, Colosi P, Kay MA. 2003. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 102: 2412-9 144. Wu Z, Asokan A, Samulski RJ. 2006. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14: 316-27 145. Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA, Brinster RL, Palmiter RD. 1989. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59: 1145-56 146. Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. 2003. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther 8: 769-76 147. Wilson JA, Jayasena S, Khvorova A, Sabatinos S, Rodrigue-Gervais IG, Arya S, Sarangi F, Harris-Brandts M, Beaulieu S, Richardson CD. 2003. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci U S A 100: 2783-8 148. Hannon GJ, Rossi JJ. 2004. Unlocking the potential of the human genome with RNA interference. Nature 431: 371-8 149. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. 2004. Rational siRNA design for RNA interference. Nat Biotechnol 22: 326-30 150. Grimm D. 2002. Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 28: 146-57 151. Flotte TR, Berns KI. 2005. Adeno-associated virus: a ubiquitous commensal of mammals. Hum Gene Ther 16: 401-7 152. Nayersina R, Fowler P, Guilhot S, Missale G, Cerny A, Schlicht HJ, Vitiello A, Chesnut R, Person JL, Redeker AG, Chisari FV. 1993. HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 150: 4659-71 153. Rehermann B, Fowler P, Sidney J, Person J, Redeker A, Brown M, Moss B, Sette A, Chisari FV. 1995. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 181: 1047-58 154. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. 1996. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4: 25-36 155. Rehermann B. 2003. Immune responses in hepatitis B virus infection. Semin Liver Dis 23: 21-38 156. Wieland SF, Guidotti LG, Chisari FV. 2000. Intrahepatic induction of alpha/beta interferon eliminates viral RNA-containing capsids in hepatitis B virus transgenic mice. J Virol 74: 4165-73 157. Robek MD, Wieland SF, Chisari FV. 2002. Inhibition of hepatitis B virus replication by interferon requires proteasome activity. J Virol 76: 3570-4 158. Ferir G, Kaptein S, Neyts J, De Clercq E. 2007. Antiviral treatment of chronic hepatitis B virus infections: the past, the present and the future. Rev Med Virol 18: 19-34 159. Morrey JD, Bailey KW, Korba BE, Sidwell RW. 1999. Utilization of transgenic mice replicating high levels of hepatitis B virus for antiviral evaluation of lamivudine. Antiviral Res 42: 97-108 160. Julander JG, Sidwell RW, Morrey JD. 2002. Characterizing antiviral activity of adefovir dipivoxil in transgenic mice expressing hepatitis B virus. Antiviral Res 55: 27-40 161. Werle-Lapostolle B, Bowden S, Locarnini S, Wursthorn K, Petersen J, Lau G, Trepo C, Marcellin P, Goodman Z, Delaney WEt, Xiong S, Brosgart CL, Chen SS, Gibbs CS, Zoulim F. 2004. Persistence of cccDNA during the natural history of chronic hepatitis | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27338 | - |
| dc.description.abstract | 時至今日,全球約有3.5億人口為B型肝炎病毒慢性感染,由於患者發生肝臟病變的機率較非帶原者高,因此慢性B型肝炎感染為重要之人類疾病。目前臨床之治療方式,包括干擾素alpha和類核苷酸類藥物,對於B型肝炎病毒治療效果有限,然而近年來許多臨床研究報告指出,長期的抑制效果對於預防慢性感染患者發生肝臟病變,有很大的幫助。所以發展更有效的新型的治療方法是這個領域非常重要的研究方向。本論文主要研究目的,在於發展以基因治療之方式表現RNA干擾 (RNA interference) 機制,作為慢性B型肝炎新型的治療方法。
RNA干擾作用,是由一段小片段的雙股RNA,透過專一性辨識動物或植物細胞中具完全互補序列的mRNA,而達到分解mRNA的效果。RNA干擾作用除了在體外的組織培養細胞中被廣泛證明能夠抑制基因表現之外,在不同動物模式中,RNA干擾作用也可以有效的降低標的基因的表現。RNA干擾所達到的抑制效果具有高專一性,且對於細胞毒性很低,所以許多研究藉由RNA干擾來作為基因相關疾病以及病原菌感染的新型治療方式。 為測試RNA干擾對於B型肝炎病毒慢性感染的治療效果,本論文中使用B型肝炎病毒基因轉殖小鼠作為評估治療的模型。所使用之基因轉殖小鼠為ICR種系,其帶有長度為原長之1.3倍的B型肝炎病毒基因。小鼠之肝臟中持續表達高量的B型肝炎病毒RNA及DNA,超過90 % 的肝臟細胞中可偵測到B型肝炎病毒核蛋白 (HBcAg) 表現。血清中帶有大量具感染力之B型肝炎病毒顆粒,以及B型肝炎病毒之表面抗原 (HBsAg) 與e抗原 (HBeAg)。血清中偵測到的B型肝炎病毒力價,以及肝臟中病毒複製程度,與臨床慢性感染之患者一致。 如何有效的將RNA干擾作用送入小鼠肝臟細胞中,並且達到長期表現的效果,為一重要課題。本論文中利用雙股腺相關病毒載體 (double-stranded adeno-associated virus vector,dsAAV vector)。相較於傳統之單股腺相關病毒載體 (single-stranded adeno-associated virus vector,ssAAV vector),注射雙股AAV載體可以達到較高的感染效率,以及更強的基因表現。最初的實驗中使用的腺相關病毒為血清型第八型 (dsAAV8),在所有已知的AAV當中,AAV8對於肝臟的感染力最強。將shRNA之表現組放置於病毒基因體中,利用脾臟內注射之方式將1012 vg的病毒顆粒注射至B型肝炎病毒基因轉殖小鼠,兩週之後,帶有B型肝炎病毒特異性之shRNA的dsAAV8可以降低血清中B型肝炎病毒力價達1,000-10,000倍。分析小鼠肝臟,發現RNA干擾機制對於B型肝炎病毒DNA以及RNA皆有很強的抑制,且大部分肝臟細胞中的B型肝炎病毒核蛋白表現都已偵測不到。相對的,注射帶有非B型肝炎病毒特異性之shRNA的控制組腺相關病毒則對B型肝炎病毒表現無明顯影響。為了排除可能的免疫反應,利用定量PCR偵測發炎反應分子,發現所有注射腺相關病毒之小鼠肝臟中,皆未偵測到干擾素 (interferon,IFN) 與腫瘤壞死因子的表現 (tumor necrosis factor-α,TNF-α)。持續觀察RNA干擾之治療效果,發現最強的抑制效果出現在腺相關病毒注射後2-3週,隨後B型肝炎病毒表現逐漸回升,在注射之後四個月,抑制效果約為10倍左右。 接下來的實驗中,分析不同注射方式,對於腺相關病毒載體所表現之RNA干擾的影響。結果發現,相對於脾臟注射的方式,經由尾靜脈注射腺相關病毒載體,RNA干擾的強度可以持續較久的時間。分析小鼠血清中生化指數發現,經由脾臟注射腺相關病毒載體2-3週後,ALT有短暫上升的現象。此外,肝臟中腺相關病毒載體基因體DNA數量降低速度較快,故RNA干擾的效果亦較快回升。可能原因是大量腺相關病毒載體注射至脾臟後,與抗原呈現細胞接觸,引起毒殺T細胞免疫反應,進而清除被腺相關病毒感染的肝臟細胞。利用尾靜脈注射腺相關病毒載體則可避免此現象。具抑制效果的腺相關病毒載體注射後,可以持續抑制血清中HBV的力價達超過100倍達5個月,然而抑制效果仍會隨著時間慢慢減弱,血清中B型肝炎病毒力價回升至10倍以內的時間,約為注射之後9-10個月。 為延長RNA干擾抑制病毒的效果,本論文中採用重複注射腺相關病毒載體之方式,以期將治療效果加以延長。除了血清型第八型之外,第七型和第九型腺相關病毒對於肝臟細胞也具有很強的感染能力,因此我們將帶有shRNA的三種不同血清型腺相關病毒載體,經由尾靜脈注射到B型肝炎病毒基因轉殖小鼠體內。結果發現注射這三種血清型腺相關病毒載體皆可引起明顯的抑制效果,其中以第八型載體抑制效果最強,第七型及第九型略低,而兩者之間則無明顯差異。利用體內交叉注射實驗,證明表現RNA干擾之第七型及第九型載體,在注射過第八型載體之小鼠體內達到的抑制病毒效果,完全沒有受到影響。這些結果顯示了利用這三種不同血清型載體,在小鼠體內進行重複注射的可行性。最後,帶有B型肝炎病毒特異性shRNA之第八型載體治療過之基因轉殖小鼠,在其B型肝炎病毒力價已回復至未治療前的程度之時間點 (注射後60-62週),再次注射同樣B型肝炎病毒特性特異性shRNA的第九型載體,結果顯示血清中B型肝炎病毒力價會再度受到抑制。 另一部份,本論文中所使用的B型肝炎病毒基因轉殖小鼠的肝臟中,可以發現hyperplasia以及pre-neoplastic現象,組織切片抗體染色發現PCNA陽性之細胞核數目增加,顯示肝臟細胞增生的現象。分析小鼠血清中肝功能指數檢驗發現ALT以及ALP明顯上升。這些小鼠於其年齡十八個月大時,出現肉眼可見之肝臟腫瘤的機率超過80 %,更重要的是,肝臟腫瘤的發生機率與小鼠體內HBV力價有關。接受過腺相關病毒載體之RNA干擾基因治療,並長期維持血清中HBV力價低於107 copy / ml的基因轉殖小鼠,產生肝臟腫瘤機率則降低至25 %,若有出現腫瘤則直徑較小。已有越來越多臨床研究顯示發生肝硬化或是肝細胞癌的發生機率,可能與B型肝炎病毒e抗原有關,並與血清中B型肝炎病毒力價成正比。根據這些結果可知,本論文中所使用之B型肝炎病毒基因轉殖小鼠,可能有助於瞭解病毒對肝臟細胞的影響,並導致腫瘤發生的原因,藉由長期抑制B型肝炎病毒則可以達到防止肝臟病變發生的機率。 | zh_TW |
| dc.description.abstract | Nowadays, chronic hepatitis B virus infection remains one of the most important infectious diseases for human. It is estimated 350 million people worldwide are chronically infected with HBV. Compared to healthy people, these patients have higher risks in developing progressed liver diseases. Current anti-HBV drugs, including alpha interferons and nucleoside / nucleotide analogues, can only achieve limited effects. Furthermore, durable therapeutic effects are hindered by unresponsiveness or emergence of drug-resistance mutants. Accordingly, requests of new anti-HBV agents continue. Accumulating studies showed that long-term suppression of HBV might be beneficial to chronic infected patients, by preventing liver pathologies. The major purpose of the present study is to develop gene therapy approach to introduce RNA interference as a new anti-HBV therapeutics strategy.
RNA interference (RNAi) is a mechanism taking place in animal or plant cells which degrades mRNAs by introducing small RNA duplexes (< 30 bp) with complementary sequences. Besides in vitro cell culture systems, RNAi has been approved as effective in in vivo circumstances. Taking advantages of its high specificity and low toxicity, RNAi has been widely applied in numerous medical utilizations. We evaluated RNAi therapeutic effects on chronic HBV infections using an ICR/HBV transgenic mouse model, which carries 1.3-fold of HBV genome. Southern and Northern blot showed that these HBV transgenic mice continuously expressed profound HBV RNA and DNA in liver. Immunohistochemistry analysis showed that HBcAg expression was detected in nuclei of over than 90 % of mouse hepatocytes. High levels of HBV infectious particles, HBsAg and HBeAg were also detected in circulation. The serum HBV DNA titer (~ 1x 108 copies / ml) in this transgenic mouse line was comparable to that found in chronic infected patients. In order to achieve efficient and durable RNAi effects in ICR/HBV mice, novel recombinant adeno-associated viral vectors (AAV) containing double-stranded (ds) genome were used to deliver short hairpin RNA (shRNA). In the initial animal experiments, serotype 8 AAV was used because it was reported to mediate the highest liver infectivity among all known AAV serotypes. HBV titer- and age-matched male HBV transgenic mice were intrasplenically injected with 1 x 1012 vg of dsAAV8 encoding various shRNAs. Two weeks after injection, dsAAV8 expressing one of the HBV-specific shRNA reduced serum HBV titer by 1,000- to 10,000-fold. HBV DNA and RNA expression in mouse liver was almost completely eliminated. HBcAg expression in most hepatocytes in AAV-treated mice was reduced to undetectable level. In contrast, AAV vectors encoding non-specific shRNA and saline treatment resulted in no significant reduction of HBV in the ICR/HBV transgenic mice. Real-time RT-PCR measurement revealed that inflammatory factors including IFNs and TNF-α were not involved in the RNAi-mediated anti-HBV effects. Kinetic studies showed that HBV suppression peaked at two to three weeks after injection, and gradually decreased afterward. Four months after injection, about 10-fold decreased in HBV titer was still maintained. Interestingly, dsAAV8 vectors infused through tail vein resulted in more persistent RNAi effects than intrasplenic injection. ALT elevation between two to three weeks after intrasplenic injection of AAV vectors was consistently observed. Liver AAV genome DNA, as well as RNAi effects in mice treated with intrasplenic AAV vectors decreased faster than those by intravenous injection. It is speculated that AAV directly injected into spleen is likely to induce cytotoxic T cell responses which might destroy AAV-transduced hepatocytes. In contrast, systemic delivery of AAV vectors avoided these scenarios, and accordinly the anti-HBV RNAi effect could more stably sustain. Nevertheless, substantial decreases of RNAi effects were still observed, that reductions in HBV titers were reduced to 10-fold on 40 weeks after injection. In order to further extend anti-HBV effect, strategy of repetitive injection of AAV vectors was adopted. Besides serotypes 8, two recently identified serotypes AAV7 and AAV9 have also been illustrated as potent gene delivery vectors for liver. Therefore, dsAAV7, dsAAV8 and dsAAV9 vectors expressing HBV-specific shRNA were prepared and intravenously injected to HBV transgenic mice. Significant anti-HBV activities could be achieved by the three vectors, with dsAAV8 the strongest. Serotypes 7 and 9 induce substantial, but slightly lower silencing effects than AAV8. In vivo cross-administration experiments were conducted to verify that dsAAV7 and dsAAV9 transductions on mice pre-exposed to dsAAV8 were fully active. Finally, HBV transgenic mice which were initially injected with dsAAV8 expressing HBV-specific shRNA, with HBV titer returned to pre-treated levels (sixty to sixty-two weeks later), were re-injected with dsAAV9 vector encoding the same shRNA. Serum HBV titers revealed that RNAi effects were active on these mice and HBV suppressions could be further prolonged. Notably, higher proliferation rates and several pathologies were observed in liver of ICR/HBV. These mice ultimately developed liver tumors at the age of 18-month-old. Remarkably, HBV transgenic mice treated with RNAi gene therapy displaying HBV titer less than 1 x 107 copy / ml had significant lower tumor incidence or, if any, smaller tumor nodules. Increasing evidences have shown HBeAg and / or HBV DNA titers in patients’ sera were positively related to the risks of cirrhosis and hepatocellular carcinoma. Thus the ICR/HBV mouse represents an animal model which reproduces the clinical observations. Combination of RNAi and AAV vectors to reach long-term antiviral therapeutic effects might have great merits to impede progressive liver diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:01:43Z (GMT). No. of bitstreams: 1 ntu-97-D92445005-1.pdf: 19956183 bytes, checksum: 390c7cd19a9781783e00df2253f777d1 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Table of content 1
中文摘要 7 Abstract 10 Introduction 13 1. Hepatitis B virus (HBV) 13 1.1 Genomic structure of HBV 13 1.2 HBV genotype 13 1.3 Viral proteins 14 1.4 Replication and life cycle 16 1.5 HBV infections 16 1.6 Clinical outcome of chronic HBV infection (CHB) 17 1.7 Goals of CHB therapy 18 1.8 Therapeutics for chronic HBV infection 19 1.8.1 Interferon-alpha (IFN-a) 19 1.8.2 Polymerase inhibitors: nucleoside and nucleotide analogues 19 1.9 Small animal models of HBV infection 21 2. RNA interference, RNAi 23 2.1 Mechanism 23 2.2 microRNA biogenesis 23 2.3 DNA-derived shRNA expression 24 2.4 Anti-viral applications of RNAi 25 2.5 Delivery of RNAi in vivo 26 2.6 RNAi-associated toxicity 27 2.6.1 IFN response 27 2.6.2 Saturations of endogenous microRNA biogenesis 28 3. Adeno-associated virus, AAV 29 3.1 Genomic structure of AAV 29 3.2 Viral structure proteins 30 3.3 AAV infection 30 3.4 Replication and life cycle 31 3.5 Recombinant AAV vector 33 3.6 Double-stranded AAV vector 35 4. Experimental design 37 Materials and methods 39 1. Cell culture 39 2. Plasmid constructions and preparations 39 2.1 pSuper/shRNA plasmid construction 39 2.1.1 Primer annealing and ligation 39 2.1.2 Transformation 40 2.1.3 Check colony 40 2.2 pAAVEMBL/shRNA plasmid construction 40 2.3 Large scale plasmid purification, Giga kit (QIAGEN) 41 3. Transfection 42 4. HBsAg measurement (Enzyme Linked ImmunoAbsorbent Assay, ELISA) 42 4.1 EIA (SURASE B-96, General Biologicals Corp., HsinChu, Taiwan) 42 4.2 ELISA (Homemade system) 43 5. HBeAg measurement 44 5.1 EIA (EASE BN-96, General Biologicals Corp., HsinChu, Taiwan) 44 5.2 ELCIA (Electro chemiluminescence immunoassay, Elecsys 2010, Roche) 44 6. RNA protection assay 44 6.1 Small RNA extraction (Cat. No., #1560, mirVana™ miRNA Isolation kit, Ambion, Austin, TX, USA) 44 6.2 Probe construction and synthesis (Cat. No. #1550, mirVana™ miRNA Probe Construction, Ambion) 45 6.2.1 DNA template synthesis 45 6.2.2 Transcription 46 6.3 Hybridization and detection (Cat. No. #1552, mirVana™ miRNA Detection, Ambion) 47 Hybridization 47 6.3.2 RNase digestion and probe detection 47 7. Animal experiments 48 7.1 Mice and general manipulation 48 7.2 Hydrodynamic injection 48 7.3 HBV transgenic mice 49 7.4 AAV vector administration: intrasplenic injection and intravenous injection 49 7.4.1 Preparation of AAV vector 49 7.4.2 Intravenous injection 49 7.4.3 Intrasplenic injection 49 7.5 Biochemical analysis 50 8. Recombinant AAV production and purification 50 8.1 Preparation of 293 cells 50 8.2 Cotransfection (Calcium phosphate precipitation methods) 50 8.3 Harvest of AAV vectors from cells 51 8.4 AAV vector purification 52 8.5 Vector quantification 53 8.5.1 Vector DNA extraction (QickGene DNA tissue kit, Cat. No. Fuji, Tokyo, Japan) 53 8.5.2 Vector DNA quantification, real time PCR (SYBR Green I) 53 9. Histological analysis 55 9.1 Histology 55 9.2 Electron microscope 55 10. Immunohistochemistry 56 11. Analysis of HBV gene expression and replication 57 11.1 HBV DNA titer determination by real time PCR (Cat. No. 03 003 248 001, hybridization probe, Roche) 57 11.2 Southern blot analysis of HBV replicative DNA 58 11.2.1 DNA extraction 58 11.2.2 Southern blot analysis 58 11.3 Northern blot analysis of RNA 60 11.3.1 RNA extraction 60 11.3.2 Northern blot analysis 60 12. Analysis of AAV genome and transgene expressions 61 12.1 Southern blot analysis of AAV viral genome in mouse liver 61 12.2 GFP expression in mice liver 62 12.3 Small RNA expression in mice liver 62 13. Real time reverse transcription-polymerase chain reaction 63 13.1 Reverse transcription 63 13.2 Real-time PCR (Cat. No. 03 003 248 001, hybridization probe, Roche) 63 14. Anti-AAV neutralization assay 64 Result 66 1. HBV suppressions by plasmids expressing shRNA 66 1.1 pSuper/shRNA in vitro suppressive effects 66 1.2 pSuper/shRNA in vivo suppressive effects 67 1.3 pAAVEMBL/shRNA in vitro suppressive effects 67 1.4 pAAVEMBL/shRNA in vivo suppressive effects 68 2. HBV suppressions by dsAAV8/shRNA on transgenic mice 69 2.1 HBV suppressions by dsAAV8 vectors expressing shRNA on transgenic mice 69 2.1.1 HBV gene expression suppressions by shRNA-expressing dsAAV8 vector 69 2.1.2 HBV replication suppressions by shRNA-expressing dsAAV8 vectors 70 2.2 Kinetics of HBV suppressions on transgenic mice 71 2.2.1 Kinetics of RNAi suppressive effects 71 2.2.2 Analysis of AAV vector genome DNA in mouse liver 72 2.2.3 Inflammatory factors expressions on AAV vector-treated mice 72 2.3 Comparative analysis of AAV-mediated RNAi effects by different injection routes 73 2.3.1 Distinct kinetics in HBV suppressions mediated by AAV vectors by intraspleen versus intravenous injection 73 2.3.2 Liver toxicities induced by intrasplenically injected AAV vectors 74 2.3.3 Prolonged HBV suppressive effects by intravenously injected dsAAV8/HBV-S1 74 3. Long-term RNAi suppressive effects of hepatitis B in transgenic mice by repeated administration of hepato-tropic adeno-associated viral vectors 76 3.1 Comparative analysis of AAV pseudotyped with serotype 7, 8, and 9 for in vivo transductions by reporter vector 76 3.2 RNAi effects mediated by AAV vector of serotype 7, 8, and 9 in HBV transgenic mice 77 3.2.1 HBV silencing effects induced by different serotype AAV vectors 77 3.2.2 AAV vector genome DNA and shRNA expressions in mouse liver 78 3.3 Neutralization antibody induced by AAV vectors 79 3.4 Cross-reactivity of different AAV vectors in vivo 80 3.5 Prolonged HBV suppressions by re-administration of AAV vectors 81 4. Spontaneous hepatic tumorigenesis on HBV transgenic mice and prevention of tumor development by long-term RNAi therapy 82 4.1 Developments of liver tumor in HBV transgenic mice 82 4.1.1 Hepatic pathologies in HBV transgenic mice 82 4.1.2 Development of liver tumors in elder mice 83 4.2 Long-term RNAi suppressions reduce hepatic tumor formation 83 4.2.1 Liver tumors in AAV vector-treated mice 83 4.2.2 Correlations of HBV DNA levels and hepatic tumor incidence 85 Discussion 87 1. RNAi effects are target sequence-dependent 87 2. Suppressing HBV by shRNA-encoding AAV vectors 89 3. Deliver route-dependent AAV-mediated RNAi efficacies 92 4. AAV serotype 7, 8, and 9 infectivity for liver 94 5. RNAi-induced toxicities 96 6. Prolonged RNAi effects by repetitive AAV injections 97 7. Safety of RNAi-based gene therapy 98 8. Liver tumor emergence on ICR/HBV mice 100 8.1 Clinical HBV-associated HCC 100 8.2 HBV-associated liver injuries and neoplasia in animal models 101 8.3 RNAi-based therapy provide merits for liver tumor prevention 103 Perspectives 106 References 108 Figure 1 shRNA targeting sites on HBV genome and pSuper plasmid construction 126 Figure 2 pSuper/shRNA suppressive effects on HBV gene expression in vitro 127 Figure 3 pSuper/shRNA suppressive effects on HBV gene expression in vivo 128 Figure 4 pAAVEMBL/shRNA plasmid construction 129 Figure 5 pAAVEMBL/shRNA suppressive effects on HBV gene expression in vitro 130 Figure 6 pAAVEMBL/shRNA suppressive effects on HBV gene expression in vivo 131 Figure 7 Inhibition of HBV gene expressions by dsAAV8 vectors in transgenic mice 132 Figure 8 Inhibition of HBcAg by dsAAV8 vectors in transgenic mice 133 Figure 9 Inhibition of HBV replications by dsAAV8 vectors in transgenic mice 134 Figure 10 Kinetics of HBV silencing effects mediated by dsAAV8/HBV-S1 vector 135 Figure 11 Long-term suppressions of dsAAV8/HBV-S1 for HBV RNA and DNA in mouse liver 136 Figure 12 Vector genome in AAV-injected mouse liver 137 Figure 13 Analysis of cytokine mRNAs in dsAAV8 vector-treated animals 138 Figure 14 Durability of HBV suppressive effects depends on vector injection route 139 Figure 15 Examinations of hepatic toxicities in AAV vectors-injected mice 140 Figure 16 Long-term HBV suppressions mediated by intravenously injected dsAAV8/HBV-S1 141 Figure 17 Comparison of liver transduction efficiencies by different AAV serotypes 142 Figure 18 Comparison of different AAV serotypes in shRNA-mediated HBV suppression 143 Figure 19 Inhibition of liver HBV mRNA and DNA in different serotype AAV-treated transgenic mice 144 Figure 20 Vector genome of different AAV serotype vectors and small RNA expressions in mouse liver 145 Figure 21 Serologic cross-reactivities of different AAV serotypes 146 Figure 22 Preimmunization with dsAAV8 did not block the RNAi effects mediated by alternative AAV serotypes encoding HBV-S1 shRNA 147 Figure 23 Multiple administration of different serotype dsAAV/HBV-S1 in transgenic mice 148 Figure 24 Histologic analysis in HBV transgenic mouse liver 149 Figure 25 Liver tumor development in HBV transgenic mice by the age of 18-month 150 Figure 26 Liver immunohistochemical analysis for PCNA and HBcAg expressions 151 Figure 27 Prevention of liver tumor incidence by prolonged RNAi therapy 152 Figure 28 HBV suppressions in transgenic mice received multiple dsAAV/HBV-S1 administration 153 Figure 29 Liver tumor incidence on AAV-treated transgenic mice 154 Figure 30 Biochemical tests in HBV transgenic mice 155 Figure 31 Liver tumor incidence on HBV transgenic mice 156 Table 1 Summary of HBV titer and liver tumor in 18-month-old HBV transgenic mice 157 Appendix 1-Oligonucleotides for shRNA constructions 158 Appendix 2-Oligonucleotides for RPA 159 Appendix 3-Primers and probes for quantitative PCR 160 | |
| dc.language.iso | en | |
| dc.title | 發展RNA干擾基因療法作為B型肝炎病毒新型療法 | zh_TW |
| dc.title | Development of novel RNAi-based gene therapy for chronic hepatitis B infection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張明富(Ming-Fu Chang),陳健弘(Chien-Hung Chen),吳慧琳(Hui-Lin Wu),馬辛一(Hsin-I Ma) | |
| dc.subject.keyword | B型肝炎病毒,基因治療,腺相關病毒載體,RNA干擾,肝臟腫瘤, | zh_TW |
| dc.subject.keyword | Hepatitis B virus,gene therapy,adeno-associated viral vector,RNA interference,liver tumor, | en |
| dc.relation.page | 161 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 19.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
