請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27333完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙福杉 | |
| dc.contributor.author | Yen-Yu I. Shih | en |
| dc.contributor.author | 施彥宇 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:01:34Z | - |
| dc.date.available | 2008-09-01 | |
| dc.date.copyright | 2008-01-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-25 | |
| dc.identifier.citation | Abdi S, Lee DH, Chung JM. 1998. The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesthesia and analgesia 87(6):1360-1366.
Alkire MT, Haier RJ, Fallon JH. 2000. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. ConsciousCogn 9(3):370-386. Alkire MT, Nathan SV. 2005. Does the amygdala mediate anesthetic-induced amnesia? Basolateral amygdala lesions block sevoflurane-induced amnesia. Anesthesiology 102(4):754-760. Aloisi AM, Porro CA, Cavazzuti M, Baraldi P, Carli G. 1993. 'Mirror pain' in the formalin test: behavioral and 2-deoxyglucose studies. Pain 55(2):267-273. Aloisi AM, Zimmermann M, Herdegen T. 1997. Sex-dependent effects of formalin and restraint on c-Fos expression in the septum and hippocampus of the rat. Neuroscience 81(4):951-958. Ansah OB, Leite-Almeida H, Wei H, Pertovaara A. 2007. Striatal dopamine D2 receptors attenuate neuropathic hypersensitivity in the rat. Experimental neurology 205(2):536-546. Austin VC, Blamire AM, Allers KA, Sharp T, Styles P, Matthews PM, Sibson NR. 2005. Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia. NeuroImage 24(1):92-100. Austin VC, Blamire AM, Grieve SM, O'Neill MJ, Styles P, Matthews PM, Sibson NR. 2003. Differences in the BOLD fMRI response to direct and indirect cortical stimulation in the rat. Magn ResonMed 49(5):838-847. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. 1992. Time course EPI of human brain function during task activation. Magn ResonMed 25(2):390-397. Bingel U, Quante M, Knab R, Bromm B, Weiller C, Buchel C. 2002. Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain 99(1-2):313-321. Bock C, Krep H, Brinker G, Hoehn-Berlage M. 1998. Brainmapping of alpha-chloralose anesthetized rats with T2*-weighted imaging: distinction between the representation of the forepaw and hindpaw in the somatosensory cortex. NMR Biomed 11(3):115-119. Bramham CR, Southard T, Sarvey JM, Herkenham M, Brady LS. 1996. Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and trk receptor mRNA expression in behaving rats: evidence for interhemispheric communication. The Journal of comparative neurology 368(3):371-382. Branston NM. 1995. Neurogenic control of the cerebral circulation. CerebrovascBrain Metab Rev 7(4):338-349. Burdett NG, Menon DK, Carpenter TA, Jones JG, Hall LD. 1995. Visualisation of changes in regional cerebral blood flow (rCBF) produced by ketamine using long TE gradient-echo sequences: preliminary results. Magn ResonImaging 13(4):549-553. Casey KL. 1999. Forebrain mechanisms of nociception and pain: analysis through imaging. ProcNatlAcadSciUSA 96(14):7668-7674. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E. 2004. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24(41):8940-8949. Cavazzuti M, Porro CA, Biral GP, Benassi C, Barbieri GC. 1987. Ketamine effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow Metab 7(6):806-811. Chang C, Shyu BC. 2001. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 897(1-2):71-81. Chaplan SR, Malmberg AB, Yaksh TL. 1997. Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. The Journal of pharmacology and experimental therapeutics 280(2):829-838. Charuchinda C, Supavilai P, Karobath M, Palacios JM. 1987. Dopamine D2 receptors in the rat brain: autoradiographic visualization using a high-affinity selective agonist ligand. J Neurosci 7(5):1352-1360. Chen YC, Choi JK, Andersen SL, Rosen BR, Jenkins BG. 2005a. Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180(4):705-715. Chen YI, Choi JK, Jenkins BG. 2005b. Mapping interactions between dopamine and adenosine A2a receptors using pharmacologic MRI. Synapse (New York, NY 55(2):80-88. Choi JK, Chen YI, Hamel E, Jenkins BG. 2006. Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. NeuroImage 30(3):700-712. Chudler EH, Dong WK. 1995. The role of the basal ganglia in nociception and pain. Pain 60(1):3-38. Chudler EH, Sugiyama K, Dong WK. 1993. Nociceptive responses in the neostriatum and globus pallidus of the anesthetized rat. Journal of neurophysiology 69(6):1890-1903. Chugani HT, Hovda DA, Villablanca JR, Phelps ME, Xu WF. 1991. Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. JCerebBlood Flow Metab 11(1):35-47. Cohen SR, Kimes AS, London ED. 1991a. Morphine decreases cerebral glucose utilization in limbic and forebrain regions while pain has no effect. Neuropharmacology 30(2):125-134. Cohen SR, Kimes AS, London ED. 1991b. Morphine decreases cerebral glucose utilization in limbic and forebrain regions while pain has no effect. Neuropharmacology 30(2):125-134. Cohen Z, Bonvento G, Lacombe P, Hamel E. 1996. Serotonin in the regulation of brain microcirculation. ProgNeurobiol 50(4):335-362. Craig AD. 2003. Pain mechanisms: labeled lines versus convergence in central processing. Annual review of neuroscience 26:1-30. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, Rosen BR, Finklestein SP. 2001. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proceedings of the National Academy of Sciences of the United States of America 98(22):12766-12771. Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, Rosen BR, Lo EH. 2003. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 23(2):510-517. Dingledine R, Borges K, Bowie D, Traynelis SF. 1999. The glutamate receptor ion channels. Pharmacological reviews 51(1):7-61. Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AM. 2005. Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48(2):236-245. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T. 1994. Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. Journal of neurophysiology 72(2):542-564. Dubuisson D, Dennis SG. 1977. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4(2):161-174. Duncan GE, Miyamoto S, Leipzig JN, Lieberman JA. 1999. Comparison of brain metabolic activity patterns induced by ketamine, MK-801 and amphetamine in rats: support for NMDA receptor involvement in responses to subanesthetic dose of ketamine. Brain research 843(1-2):171-183. Farrell MJ, Laird AR, Egan GF. 2005. Brain activity associated with painfully hot stimuli applied to the upper limb: a meta-analysis. HumBrain Mapp 25(1):129-139. Fox PT, Raichle ME. 1986. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. ProcNatlAcadSciUSA 83(4):1140-1144. Fox PT, Raichle ME, Mintun MA, Dence C. 1988. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462-464. Frahm J, Bruhn H, Merboldt KD, Hanicke W. 1992. Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. JMagn ResonImaging 2(5):501-505. Franklin KB, Abbott FV, English MJ, Jeans ME, Tasker RA, Young SN. 1990. Tryptophan-morphine interactions and postoperative pain. Pharmacology, biochemistry, and behavior 35(1):157-163. French ED, Ceci A. 1990. Non-competitive N-methyl-D-aspartate antagonists are potent activators of ventral tegmental A10 dopamine neurons. Neuroscience letters 119(2):159-162. Fuchs PN, Melzack R. 1996. Restraint reduces formalin-test pain but the effect is not influenced by lesions of the hypothalamic paraventricular nucleus. Experimental neurology 139(2):299-305. Giesler GJ, Jr., Katter JT, Dado RJ. 1994. Direct spinal pathways to the limbic system for nociceptive information. Trends in neurosciences 17(6):244-250. Gold MS, Thut PD. 2001. Lithium increases potency of lidocaine-induced block of voltage-gated Na+ currents in rat sensory neurons in vitro. The Journal of pharmacology and experimental therapeutics 299(2):705-711. Gozzi A, Ceolin L, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A. 2007. A multimodality investigation of cerebral hemodynamics and autoregulation in pharmacological MRI. Magnetic resonance imaging 25(6):826-833. Hagelberg N, Jaaskelainen SK, Martikainen IK, Mansikka H, Forssell H, Scheinin H, Hietala J, Pertovaara A. 2004. Striatal dopamine D2 receptors in modulation of pain in humans: a review. Eur J Pharmacol 500(1-3):187-192. Hagelberg N, Martikainen IK, Mansikka H, Hinkka S, Nagren K, Hietala J, Scheinin H, Pertovaara A. 2002. Dopamine D2 receptor binding in the human brain is associated with the response to painful stimulation and pain modulatory capacity. Pain 99(1-2):273-279. Heeger DJ, Ress D. 2002. What does fMRI tell us about neuronal activity? NatRevNeurosci 3(2):142-151. Heiss WD, Herholz K. 2006. Brain receptor imaging. JNuclMed 47(2):302-312. Hess A, Sergejeva M, Budinsky L, Zeilhofer HU, Brune K. 2007. Imaging of hyperalgesia in rats by functional MRI. European journal of pain (London, England) 11(1):109-119. Huang C, Li HT, Shi YS, Han JS, Wan Y. 2004. Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain. Neuroscience letters 368(3):327-331. Hustveit O, Maurset A, Oye I. 1995. Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacology & toxicology 77(6):355-359. Hyder F, Behar KL, Martin MA, Blamire AM, Shulman RG. 1994. Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. JCerebBlood Flow Metab 14(4):649-655. Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL. 2001. Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR Biomed 14(7-8):413-431. Jacobs AH, Li H, Winkeler A, Hilker R, Knoess C, Ruger A, Galldiks N, Schaller B, Sobesky J, Kracht L, Monfared P, Klein M, Vollmar S, Bauer B, Wagner R, Graf R, Wienhard K, Herholz K, Heiss WD. 2003. PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 30(7):1051-1065. Julius D, Basbaum AI. 2001. Molecular mechanisms of nociception. Nature 413(6852):203-210. Kapur S, Seeman P. 2002. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Molecular psychiatry 7(8):837-844. Keilholz SD, Silva AC, Raman M, Merkle H, Koretsky AP. 2004. Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging. Magn ResonMed 52(1):89-99. Keilholz SD, Silva AC, Raman M, Merkle H, Koretsky AP. 2006. BOLD and CBV-weighted functional magnetic resonance imaging of the rat somatosensory system. Magn ResonMed 55(2):316-324. Kornblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR. 2000. In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). NatBiotechnol 18(6):655-660. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. ProcNatlAcadSciUSA 89(12):5675-5679. Lamas X, Farre M, Moreno V, Cami J. 1994. Effects of morphine in postaddict humans: a meta-analysis. Drug and alcohol dependence 36(2):147-152. Lewis ME, Pert A, Pert CB, Herkenham M. 1983. Opiate receptor localization in rat cerebral cortex. The Journal of comparative neurology 216(3):339-358. Lilja J, Endo T, Hofstetter C, Westman E, Young J, Olson L, Spenger C. 2006. Blood oxygenation level-dependent visualization of synaptic relay stations of sensory pathways along the neuroaxis in response to graded sensory stimulation of a limb. JNeurosci 26(23):6330-6336. Lindauer U, Villringer A, Dirnagl U. 1993. Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. AmJPhysiol 264(4 Pt 2):H1223-H1228. Littlewood CL, Jones N, O'Neill MJ, Mitchell SN, Tricklebank M, Williams SC. 2006. Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacology (Berl). Liu ZM, Schmidt KF, Sicard KM, Duong TQ. 2004. Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn Reson Med 52(2):277-285. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150-157. Lopez-Avila A, Coffeen U, Ortega-Legaspi JM, del Angel R, Pellicer F. 2004. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain 111(1-2):136-143. Lorenz J, Minoshima S, Casey KL. 2003. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126(Pt 5):1079-1091. Lowe AS, Beech JS, Williams SC. 2007. Small animal, whole brain fMRI: Innocuous and nociceptive forepaw stimulation. NeuroImage 35(2):719-728. Magnusson JE, Fisher K. 2000. The involvement of dopamine in nociception: the role of D(1) and D(2) receptors in the dorsolateral striatum. Brain research 855(2):260-266. Malisza KL, Docherty JC. 2001. Capsaicin as a source for painful stimulation in functional MRI. JMagn ResonImaging 14(4):341-347. Manning BH. 1998. A lateralized deficit in morphine antinociception after unilateral inactivation of the central amygdala. J Neurosci 18(22):9453-9470. Manning BH, Franklin KB. 1998. Morphine analgesia in the formalin test: reversal by microinjection of quaternary naloxone into the posterior hypothalamic area or periaqueductal gray. BehavBrain Res 92(1):97-102. Manning BH, Morgan MJ, Franklin KB. 1994. Morphine analgesia in the formalin test: evidence for forebrain and midbrain sites of action. Neuroscience 63(1):289-294. Mansikka H, Erbs E, Borrelli E, Pertovaara A. 2005. Influence of the dopamine D2 receptor knockout on pain-related behavior in the mouse. Brain research 1052(1):82-87. Mao J, Mayer DJ, Price DD. 1993. Patterns of increased brain activity indicative of pain in a rat model of peripheral mononeuropathy. J Neurosci 13(6):2689-2702. Marinelli S, Pascucci T, Bernardi G, Puglisi-Allegra S, Mercuri NB. 2005. Activation of TRPV1 in the VTA excites dopaminergic neurons and increases chemical- and noxious-induced dopamine release in the nucleus accumbens. Neuropsychopharmacology 30(5):864-870. Martikainen IK, Hagelberg N, Mansikka H, Hietala J, Nagren K, Scheinin H, Pertovaara A. 2005. Association of striatal dopamine D2/D3 receptor binding potential with pain but not tactile sensitivity or placebo analgesia. Neuroscience letters 376(3):149-153. Martin WJ, Hohmann AG, Walker JM. 1996. Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects. J Neurosci 16(20):6601-6611. Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, Shiomi S, Ochi H, Watanabe Y. 2003. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 20(4):2040-2050. McMahon SB, Koltzenburg M. 2005. Wall and Melzack's Textbook of Pain: Churchill Livingstone. Millan MJ. 1999. The induction of pain: an integrative review. Progress in neurobiology 57(1):1-164. Morrow TJ, Paulson PE, Danneman PJ, Casey KL. 1998. Regional changes in forebrain activation during the early and late phase of formalin nociception: analysis using cerebral blood flow in the rat. Pain 75(2-3):355-365. Moylan Governo RJ, Morris PG, Prior MJ, Marsden CA, Chapman V. 2006. Capsaicin-evoked brain activation and central sensitization in anaesthetised rats: a functional magnetic resonance imaging study. Pain 126(1-3):35-45. Nakao Y, Itoh Y, Kuang TY, Cook M, Jehle J, Sokoloff L. 2001. Effects of anesthesia on functional activation of cerebral blood flow and metabolism. ProcNatlAcadSciUSA 98(13):7593-7598. Neugebauer V. 2007. The amygdala: different pains, different mechanisms. Pain 127(1-2):1-2. Nicholls JG, Martin AR, Wallace BG, Fuchs PA. 2001. From Neuron to Brain: Sinauer Associates, Inc., Sunderland, MA, USA. Nikolajsen L, Hansen CL, Nielsen J, Keller J, Arendt-Nielsen L, Jensen TS. 1996. The effect of ketamine on phantom pain: a central neuropathic disorder maintained by peripheral input. Pain 67(1):69-77. Ogawa S, Lee TM, Kay AR, Tank DW. 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. ProcNatlAcadSciUSA 87(24):9868-9872. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. 1992. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. ProcNatlAcadSciUSA 89(13):5951-5955. Paxinos G, Watson C. 1998. The Rat Brain in stereotaxic coordinates: San Diego: Academic Press. Peeters RR, Tindemans I, De SE, Van der LA. 2001. Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn ResonImaging 19(6):821-826. Pelissier T, Laurido C, Hernandez A, Constandil L, Eschalier A. 2006. Biphasic effect of apomorphine on rat nociception and effect of dopamine D2 receptor antagonists. Eur J Pharmacol 546(1-3):40-47. Peppiatt CM, Howarth C, Mobbs P, Attwell D. 2006. Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700-704. Pertovaara A, Martikainen IK, Hagelberg N, Mansikka H, Nagren K, Hietala J, Scheinin H. 2004. Striatal dopamine D2/D3 receptor availability correlates with individual response characteristics to pain. The European journal of neuroscience 20(6):1587-1592. Peyron R, Laurent B, Garcia-Larrea L. 2000. Functional imaging of brain responses to pain. A review and meta-analysis. NeurophysiolClin 30(5):263-288. Phelps ME. 2000. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41(4):661-681. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. 1979. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. AnnNeurol 6(5):371-388. Porro CA, Cavazzuti M, Baraldi P, Giuliani D, Panerai AE, Corazza R. 1999. CNS pattern of metabolic activity during tonic pain: evidence for modulation by beta-endorphin. The European journal of neuroscience 11(3):874-888. Porro CA, Cavazzuti M, Galetti A, Sassatelli L. 1991. Functional activity mapping of the rat brainstem during formalin-induced noxious stimulation. Neuroscience 41(2-3):667-680. Porszasz R, Beckmann N, Bruttel K, Urban L, Rudin M. 1997. Signal changes in the spinal cord of the rat after injection of formalin into the hindpaw: characterization using functional magnetic resonance imaging. ProcNatlAcadSciUSA 94(10):5034-5039. Rabben T, Skjelbred P, Oye I. 1999. Prolonged analgesic effect of ketamine, an N-methyl-D-aspartate receptor inhibitor, in patients with chronic pain. The Journal of pharmacology and experimental therapeutics 289(2):1060-1066. Rykaczewska-Czerwinska M. 2006. Antinociceptive effect of lidocaine in rats. Pharmacol Rep 58(6):961-965. Saddi G, Abbott FV. 2000. The formalin test in the mouse: a parametric analysis of scoring properties. Pain 89(1):53-63. Schnoebel R, Wolff M, Peters SC, Brau ME, Scholz A, Hempelmann G, Olschewski H, Olschewski A. 2005. Ketamine impairs excitability in superficial dorsal horn neurones by blocking sodium and voltage-gated potassium currents. BrJPharmacol 146(6):826-833. Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H. 1979. Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205(4407):723-725. Schwarz AJ, Danckaert A, Reese T, Gozzi A, Paxinos G, Watson C, Merlo-Pich EV, Bifone A. 2006. A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. Neuroimage 32(2):538-550. Shah YB, Haynes L, Prior MJ, Marsden CA, Morris PG, Chapman V. 2005. Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats. Psychopharmacology (Berl) 180(4):761-773. Shen Q, Ren H, Cheng H, Fisher M, Duong TQ. 2005. Functional, perfusion and diffusion MRI of acute focal ischemic brain injury. J Cereb Blood Flow Metab 25(10):1265-1279. Sherman SM, Guillery RW. 1996. Functional organization of thalamocortical relays. Journal of neurophysiology 76(3):1367-1395. Shih YY, Chang C, Chen JC, Jaw FS. 2008a. BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys. Shih YY, Chen JC, Liu RS. 2005. Development of wavelet de-noising technique for PET images. ComputMedImaging Graph 29(4):297-304. Shih YY, Chen YY, Chen CC, Chen JC, Chang C, Jaw FS. 2008b. Whole brain fMRI mapping of acute nociceptive responses induced by formalin in rats using atlas registration based event related analysis. J of Neurosci Res. Shih YY, Chen YY, Chen JC, Chang C, Jaw FS. 2007. ISPMER: Integrated System for Combined PET, MRI, and Electrophysiological Recording in Somatosensory Studies in Rats. Nucl Instrum Meth A 580(2):938-943. Shin HC, Oh S, Jung SC, Park J, Won CK. 1997. Differential modulation of short and long latency sensory responses in the SI cortex by IL-6. Neuroreport 8(13):2841-2844. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. 1998. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. ProcNatlAcadSciUSA 95(1):316-321. Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ. 2003. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 23(4):472-481. Sicard KM, Henninger N, Fisher M, Duong TQ, Ferris CF. 2006. Long-term changes of functional MRI-based brain function, behavioral status, and histopathology after transient focal cerebral ischemia in rats. Stroke 37(10):2593-2600. Silva AC, Koretsky AP. 2002. Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. ProcNatlAcadSciUSA 99(23):15182-15187. Silva AC, Lee SP, Yang G, Iadecola C, Kim SG. 1999. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. JCerebBlood Flow Metab 19(8):871-879. Sloniewski P, Morys J, Pilgrim C. 1995. Stimulation of glucose utilization in the rat claustrum by pain. Folia Neuropathol 33(3):163-168. Smith DJ, Bouchal RL, deSanctis CA, Monroe PJ, Amedro JB, Perrotti JM, Crisp T. 1987. Properties of the interaction between ketamine and opiate binding sites in vivo and in vitro. Neuropharmacology 26(9):1253-1260. Spenger C, Josephson A, Klason T, Hoehn M, Schwindt W, Ingvar M, Olson L. 2000. Functional MRI at 4.7 tesla of the rat brain during electric stimulation of forepaw, hindpaw, or tail in single- and multislice experiments. ExpNeurol 166(2):246-253. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. 1992. The formalin test: an evaluation of the method. Pain 51(1):5-17. Tuor UI, Malisza K, Foniok T, Papadimitropoulos R, Jarmasz M, Somorjai R, Kozlowski P. 2000. Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain 87(3):315-324. Tuor UI, McKenzie E, Tomanek B. 2002. Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats. Magn ResonImaging 20(10):707-712. Tuor UI, Wang R, Zhao Z, Foniok T, Rushforth D, Wamsteeker JI, Qiao M. 2007. Transient hypertension concurrent with forepaw stimulation enhances functional MRI responsiveness in infarct and peri-infarct regions. J Cereb Blood Flow Metab. Ueki M, Mies G, Hossmann KA. 1992. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta AnaesthesiolScand 36(4):318-322. Van CN, Verhoye M, Van der LA. 2006. Stimulation of the rat somatosensory cortex at different frequencies and pulse widths. NMR Biomed 19(1):10-17. Van der Linden A, Van Camp N, Ramos-Cabrer P, Hoehn M. 2007. Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR in biomedicine 20(5):522-545. Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, Angst J. 1997. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7(1):9-24. Weber R, Ramos-Cabrer P, Wiedermann D, Van CN, Hoehn M. 2006. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 29(4):1303-1310. Woolf CJ, Thompson SW. 1991. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 44(3):293-299. Yaksh TL, Al-Rodhan NR, Jensen TS. 1988. Sites of action of opiates in production of analgesia. Progress in brain research 77:371-394. Yang JW, Shih HC, Shyu BC. 2006. Intracortical circuits in rat anterior cingulate cortex are activated by nociceptive inputs mediated by medial thalamus. Journal of neurophysiology 96(6):3409-3422. Zanzonico P. 2004. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. SeminNuclMed 34(2):87-111. Zhang HQ, Murray GM, Turman AB, Mackie PD, Coleman GT, Rowe MJ. 1996. Parallel processing in cerebral cortex of the marmoset monkey: effect of reversible SI inactivation on tactile responses in SII. Journal of neurophysiology 76(6):3633-3655. Zhao F, Jin T, Wang P, Kim SG. 2007. Isoflurane anesthesia effect in functional imaging studies. NeuroImage 38(1):3-4. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27333 | - |
| dc.description.abstract | 近年來,以功能性造影方法研究小動物疼痛反應有相當迅速的發展。動物模型的建立不僅可用於模擬人體可能的神經生理反應,更可提供新型藥物及治療方法的測試與評估。然而,由於疼痛訊號在腦部的處理相當錯綜複雜,欲了解不同腦部區域對於疼痛機制的表現便需要同時取得神經反應的空間分部及其隨時間的變化。功能性磁振造影與正子電腦斷層造影由於可在非侵入式的情況下量測活體腦部血液動力參數及分子層面的訊息,因此是常被用於攝取腦神經活動的技術。本論文即以血氧對比磁振造影、腦血量權重磁振造影、及氟-18去氧葡萄糖正子電腦斷層造影觀察小動物腦部對於疼痛的反應。為求實驗結果的精確,本論文亦發展了一套影像後處理及分析平台。在後基因體世代中,藉由生醫影像技術研究小動物腦部對疼痛之反應,將可協助探討臨床上的疼痛問題,進而升醫療品質,並在生物醫學研究中扮演相當重要的角色。 | zh_TW |
| dc.description.abstract | Assessing nociception in small animals using imaging techniques has drastically increased in the last decade. The development of animal models mimics the potential neurophysical effects in humans and undertakes the evaluation of new drugs and therapeutic strategies in the preclinical stages. However, owing to the complexity of the pain processing in brain, understanding the mechanisms within different brain areas raises a need for simultaneously detecting the spatiotemporal patterns of neuronal activities. Functional magnetic resonance imaging and positron emission tomography are the most commonly used techniques providing non-invasive, in vivo measurement of the cerebral hemodynamics as well as molecular processes. This thesis encompasses a range of widely used functional brain imaging techniques, including blood-oxygenation-level-dependent fMRI, cerebral blood volume weighted fMRI, and 18F-fluorodeoxyglucose microPET to capture nociception induced hemodynamic responses and metabolic features in the rodent brain. To better improve the quality of the results, the development of a novel image analysis platform is also incorporated. The study of nociception in small animal, along with continued expansion of advanced biomedical imaging techniques in the post-genomic era nowadays, have been crucial in the drive toward healthcare optimization that allows linking preclinical pain studies and clinical issues within living subjects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:01:34Z (GMT). No. of bitstreams: 1 ntu-97-F93548021-1.pdf: 2926365 bytes, checksum: f3e39ccaf0a04858807f36bd7c39ba3a (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Content
1. Introduction…………………………………………………………………….. 1 1.1 Preface……………………………………………………………………… 1 1.2 Pain and functional imaging…………………..…………………………… 3 1.3 Objectives…………………………………………………………………... 6 2. Data analyzing interface……….……………………………………………...... 8 2.1 Introduction………………………………………………………………… 8 2.2 Material and methods………..…………………………………………….. 9 2.2.1 Stereotaxic frame for measurements of the rat brain………………… 9 2.2.2 Image analysis……………………………………………..……….. 10 2.3 Discussion………………………………………………………………… 16 3. BOLD fMRI mapping of nociceptive responses in rats.…………………...… 18 3.1 Introduction……………………………………………………………….. 18 3.2 Materials and Methods………………………………………………….… 19 3.2.1 Subjects……………………………………………………………. 19 3.2.2 Animal experiments…………………………………………..…….. 19 3.2.3 Image experiments……………………………………….…………. 21 3.2.4 Image analysis…………………………………………………….... 22 3.3 Results…………………………………………………………………….. 27 3.3.1 Formalin-evoked BOLD responses: a single case illustration…....... 27 3.3.2 Spatial distribution of formalin-evoked BOLD responses…………. 28 3.3.3 Temporal patterns of formalin-evoked BOLD responses………….. 29 3.4 Discussion………………………………………………………………. 36 3.5 Effect of ketamine anesthesia………………………………...…………… 43 3.5.1 Introduction…………………………...……………………...…….. 43 3.5.2 Results…………………………………………………………….... 44 3.5.3 Discussion…………………………………………………..………. 45 4. FDG microPET mapping of nociceptive responses in rats…………………… 51 4.1 Introduction………………………………………………………….……. 52 4.2 Material and methods……………………………………..……………… 54 4.2.1 Subjects…………………………………………………………..…. 54 4.2.2 Image experiments……………………………………….…………. 54 4.2.3 Data analysis……………………………………………………....... 55 4.3 Results…………………………………………………………..………… 58 4.3.1 Nociception induced by formalin stimuli…………………………. 58 4.3.2 Antinociceptive effect of lidocaine and morphine pretreatment…. 58 4.4 Discussion………………………………………………………………… 61 5. CBV fMRI mapping of nociceptive responses in rats……………………..…. 65 5.1 Introduction……………………………………………………….………. 65 5.2 Material and methods……………………………………..……………… 67 5.2.1 Subjects…………………………………………………………..…. 67 5.2.2 Animal experiments……..……………………………….…………. 67 5.2.3 Image experiments……..……………………………….…………. 68 5.2.4 Data analysis……………………………………………………....... 69 5.3 Results & Discussion………….………………………………..………… 71 6. Conclusion……………………………………………………………………. 76 References……………………………………………………………………….. 77 Abbreviation…………………………………………………………………….... 88 Publication List…………………………………………………………………... 90 | |
| dc.language.iso | en | |
| dc.subject | 正子電腦斷層造影 | zh_TW |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 疼痛 | zh_TW |
| dc.subject | Pain | en |
| dc.subject | fMRI | en |
| dc.subject | PET | en |
| dc.title | 以功能性造影研究大鼠腦部之傷害性反應 | zh_TW |
| dc.title | Imaging Nociceptive Responses in Rodent Brain | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 張程,陳志成 | |
| dc.contributor.oralexamcommittee | 鄭國順,劉仁賢,黃基礎,謝建興 | |
| dc.subject.keyword | 疼痛,功能性磁振造影,正子電腦斷層造影, | zh_TW |
| dc.subject.keyword | Pain,fMRI,PET, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
