Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2728
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor久米朋宣(Tomonori Kume)
dc.contributor.authorChuan-Ya Linen
dc.contributor.author林雋雅zh_TW
dc.date.accessioned2021-05-13T06:48:56Z-
dc.date.available2017-08-24
dc.date.available2021-05-13T06:48:56Z-
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-20
dc.identifier.citationBenton, A., (2015) Priority Species of Bamboo, in: Liese, W., Köhl, M. (Eds.), Bamboo: The Plant and Its Uses. Springer International Publishing, Cham, pp. 31-41.
Clark, L.G., Londoño, X., Ruiz-Sanchez, E., (2015) Bamboo Taxonomy and Habitat, in: Liese, W., Köhl, M. (Eds.), Bamboo: The Plant and Its Uses. Springer International Publishing, Cham, pp. 1-30.
Ding, L.X., Wang, Z.L., Zhou, G.M., Du, Q.Z., (2006) Monitoring Phyllostachys pubescens Stands Expansion in National Nature Reserve of Mount Tianmu by Remote Sensing. Journal of Zhejiang Forestry College 23, 297-300.
Eager, E.A., Rebarber, R., Tenhumberg, B., (2014) Global Asymptotic Stability of Plant-Seed Bank Models. Journal of Mathematical Biology 69, 1-37.
Giambelluca, T.W., X. Shuai, M.L. Barnes, R.J. Alliss, R.J. Longman, T. Miura, Q. Chen, A.G. Frazier, R.G. Mudd, L. Cuo, and A.D. Businger, (2014) Evapotranspiration of Hawai‘I. Final report submitted to the U.S. Army Corps of Engineers—Honolulu District, and the Commission on Water Resource Management, State of Hawai‘i.
Gotelli, N.J., (2008) A Primer of Ecology. Sinauer.
Gratani, L., Crescente, M.F., Varone, L., Fabrini, G., Digiulio, E., (2008) Growth Pattern and Photosynthetic Activity of Different Bamboo Species Growing in the Botanical Garden of Rome. Flora - Morphology, Distribution, Functional Ecology of Plants 203, 77-84.
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M., Müller, B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R.A., Vabø, R., Visser, U., DeAngelis, D.L., (2006) A Standard Protocol for Describing Individual-Based and Agent-Based Models. Ecological Modelling 198, 115-126.
Harcombe, P.A., (1987) Tree Life Tables. BioScience 37, 557-568.
Hsieh, I.F., Kume, T., Lin, M.Y., Cheng, C.H., Miki, T., (2016) Characteristics of Soil CO2 Efflux under an Invasive Species, Moso Bamboo, in Forests of Central Taiwan. Trees 30, 1749-1759.
Huang, Q.M., Yang, D.D., Gao, A.X., (1989) A Study on Photosynthesis of Bamboo. Scientia Silvae Sinicae (China).
Isagi, Y., Kawahara, T., Kamo, K., Ito, H., (1997) Net Production and Carbon Cycling in a Bamboo Phyllostachys pubescens Stand. Plant Ecology 130, 41-52.
Isagi, Y., Torii, A., (1997) Range Expansion and Its Mechanisms in a Naturalized Bamboo Species, Phyllostachys pubescens, in Japan. Journal of Sustainable Forestry 6, 127-141.
Jones, D.S., Plank, M., Sleeman, B.D., (2009) Differential Equations and Mathematical Biology, Second Edition. CRC Press.
Kleinhenz, V., Midmore, D.J., (2001) Aspects of Bamboo Agronomy. Advances in Agronomy 74, 99-153.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., (2006) World Map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift 15, 259-263.
Li, R., During, H.J., Werger, M.J.A., Zhong, Z.C., (1998a) Positioning of New Shoots Relative to Adult Shoots in Groves of Giant Bamboo, Phyllostachys pubescens. Flora 193, 315-321.
Li, R., Werger, M.J.A., During, H.J., Zhong, Z.C., (1998b) Biennial Variation in Production of New Shoots in Groves of the Giant Bamboo Phyllostachys pubescens in Sichuan, China. Plant Ecology 135, 103-112.
Li, R., Werger, M.J.A., During, H.J., Zhong, Z.C., (1999) Biomass Distribution in a Grove of the Giant Bamboo Phyllostachys pubescens in Chongqing, China. Flora 194, 89-96.
Lin, P.H., (2015) Root Respiration and Its Temperature Sensitivity in Moso Bamboo Forest, Central Taiwan, School of Forestry and Resource Conservation. National Taiwan University, Taipei, p. 75.
Lobovikov, M., Ball, L., Guardia, M., Russo, L., (2007) World Bamboo Resources: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization of the United Nations.
MacDonald, N., Watkinson, A.R., (1981) Models of an Annual Plant Population with a Seedbank. Journal of Theoretical Biology 93, 643-653.
McClure, F.A., (1966) The Bamboos: A Fresh Perspective. Harvard University Press.
McCune, B., Keon, D., (2002) Equations for Potential Annual Direct Incident Radiation and Heat Load. Journal of Vegetation Science 13, 603-606.
Mokany, K., Raison, R.J., Prokushkin, A.S., (2006) Critical Analysis of Root : shoot Ratios in Terrestrial Biomes. Global Change Biology 12, 84-96.
Nath, A.J., Lal, R., Das, A.K., (2015) Managing Woody Bamboos for Carbon Farming and Carbon Trading. Global Ecology and Conservation 3, 654-663.
Oborny, B., Czárán, T., Kun, Á., (2001) Exploration and Exploitation of Resource Patches by Clonal Growth: A Spatial Model on the Effect of Transport between Modules. Ecological Modelling 141, 151-169.
Okutomi, K., Shinoda, S., Fukuda, H., (1996) Causal Analysis of the Invasion of Broad-Leaved Forest by Bamboo in Japan. Journal of Vegetation Science 7, 723-728.
Rao, A.N., Ramanatha Rao, V., Williams, J.T., Dransfield, J., International Plant Genetic Resources, I., International Network for, B., Rattan, (1998) Priority Species of Bamboo and Rattan. IPGRI--Regional Office for Asia, the Pacific, and Oceania ; INBAR, Serdang, Selangor; [Beijing, China].
Shi, J.M., Guo, Q.R., Yang, G.Y., (2005) Study on the Photosynthetic Dynamic Variation of Phyllostachys Edulis. Forest Research.
Silvertown, J., Charlesworth, D., (2009) Introduction to Plant Population Biology. Wiley.
Song, X., Peng, C., Zhou, G., Gu, H., Li, Q., Zhang, C., (2016) Dynamic Allocation and Transfer of Non-Structural Carbohydrates, a Possible Mechanism for the Explosive Growth of Moso Bamboo (Phyllostachys Heterocycla). Scientific Reports 6, 25908.
Suzuki, S., Nakagoshi, N., (2008) Expansion of Bamboo Forests Caused by Reduced Bamboo-Shoot Harvest under Different Natural and Artificial Conditions. Ecological Research 23, 641-647.
Tachiki, Y., Makita, A., Suyama, Y., Satake, A., (2015) A Spatially Explicit Model for Flowering Time in Bamboos: Long Rhizomes Drive the Evolution of Delayed Flowering. Journal of Ecology 103, 585-593.
Tateno, R., Takeda, H., (2003) Forest Structure and Tree Species Distribution in Relation to Topography-Mediated Heterogeneity of Soil Nitrogen and Light at the Forest Floor. Ecological Research 18, 559-571.
Tilman, D., (1988) Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press.
Watanabe, M., (1986) A Proposal on the Life Form of Bamboos and the Ecological Typification of Bamboo Forests, in: Higuchi, T. (Ed.), Bamboo production and utilization. Proceedings of the 18th IUFRO world congress, Ljubljana, Yugoslavia, pp. 94-98.
Yen, T.M., (2016) Culm Height Development, Biomass Accumulation and Carbon Storage in an Initial Growth Stage for a Fast-Growing Moso Bamboo (Phyllostachy pubescens). Botanical Studies 57, 10.
Yuen, J.Q., Fung, T., Ziegler, A.D., (2017) Carbon Stocks in Bamboo Ecosystems Worldwide: Estimates and Uncertainties. Forest Ecology and Management 393, 113-138.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2728-
dc.description.abstract孟宗竹(Phyllostachys pubescens)是東亞地區重要的經濟物種,可供食用或作為結構材料,並能固碳。近二十年發現孟宗竹有擴張並取代周圍植被的現象。透過生態模擬了解孟宗竹生產及擴張的影響因子,或有助於為野外研究及管理政策提供新的見解。
長期記錄顯示管理孟宗竹林的新筍產量有豐欠年循環。現有假說認為兩年換葉周期與林齡結構失衡是豐欠循環的維繫機制。然並非各地管理孟宗竹林都有豐欠年,或同一竹林僅部分時期有明顯豐欠年,而既有假說於此無法提供解釋。本研究第一部分即透過年齡結構族群成長模型(Age-structured population growth model)分析影響新筍產量周期的潛在因素。模型結果顯示(1)來自老葉、一年生新葉的碳水化合物與 (2)來自儲藏於竹根、地下莖的碳水化合物,皆會讓孟宗竹林的新筍產量趨向長期穩定,而非豐欠循環。
根據前人研究,地下莖長度、資源量與空間分布是影響孟宗竹擴張的潛在因子,本研究第二部分即透過個體基礎模型(Individual-Based Model)探討導致孟宗竹易於擴張的影響因子。結果顯示,在資源量適中、地下部低成本的情況下,延長地下莖可以增加孟宗竹擴張成功的機會,並且讓擴張面積更大;而在資源量豐富、地下部高成本的情況下,延長地下莖則對族群存續並無好處。此結果或能進一步提供線索,解釋何以單桿散生竹多分布於溫帶、合軸叢生竹分布於熱帶。
zh_TW
dc.description.abstractMoso bamboo (Phyllostachys pubescens) is useful for food, materials, and carbon fixation. In East Asia countries, the Moso bamboo forest has expanded in these decades. The understanding of the factors that influence productivity and expansion phenomenon based on ecological modeling approaches might help to propose new insights for field measurements and development of management policy in the Moso bamboo forests.
Long-term records in managed Moso bamboo forests have shown the two-year cycles of new shoots production. One previous hypothesis said the two-year leaf lifespan and uneven composition of newer and older leaves every year is the causes of the two-year production cycles. However, why the cycles were not obvious in some cases if the leaf lifespan is the cue for the two-year cycles? The first part of this study aimed to understand the potential determinants of inter-annual cycles of new shoots production in Moso bamboo stand through an age-structured population growth model. The model analysis demonstrated that the two-year cycles could easily disappear due to the considerable contribution of carbohydrates originating from (1) photosynthesis of old leaves and first-year culms’ leaves and (2) carbon storage of roots and rhizomes. The results suggested that only the two-year leaf lifespan could not be a complete explanation for the biennial production cycles, and further study about the allocation of carbon from photosynthesis of different-age leaves could contribute.
In the second part, this study explored expansion of Moso bamboos. According to previous studies, the rhizome length and spatial distribution of resource might be the key factors for expansion. The second part of this study aimed to find out the possible factors promising Moso bamboo expansion based on an individual-based model developed in this study. The results indicated the rhizome length changed success frequency of expansion and territory of bamboo population. In general, elongating rhizome could improve the frequency of expansion when the cost for elongations was low and the amount of resource was middle-level. On the contrary, bamboo received little benefit or even negative impacts from elongation in high-cost and high-level resource amount condition. The former and latter simulations might provide reasonable interpretations for difference in habitat of bamboos with monopodial and sympodial rhizome systems, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:48:56Z (GMT). No. of bitstreams: 1
ntu-106-R03625004-1.pdf: 2956005 bytes, checksum: 1218fb3f7e3c719a93ef65c6a29dc514 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
Figures and Tables 4
Chapter 1 General Introduction 7
1.1 Bamboo Geographic Distribution and Uses 7
1.2 Annual Production Cycles of Moso bamboo 8
1.3 Expansion of Moso bamboo 9
1.4 Modeling Approach 10
1.5 Objectives 12
Chapter 2 Literature Review 13
2.1 Production of Moso bamboo 13
2.2 Rhizome 15
Chapter 3 The Potential Determinants of Inter-annual Production Cycles of Moso bamboo 19
3.1 Introduction 19
3.2 Materials and Methods 22
3.2.1 Model Description 22
3.2.2 Model Analysis 24
3.3 Results 26
3.3.1 Final States 26
3.3.2 Impact of Leaf Phenology 27
3.3.3 Impact of Carbon Storage 27
3.4 Discussion 28
3.4.1 Effect of Leaves Phenology and Belowground Carbon Storage 28
3.4.2 New Insight for Carbon Allocation 30
Chapter 4 The Possible Factors Promising Moso bamboo Expansion 33
4.1 Introduction 33
4.2 Materials and Methods 35
4.2.1 Model Description 35
4.2.2 Model Analysis 39
4.3 Results 41
4.3.1 Time Series 41
4.3.2 Impact of Rhizome Length 41
4.3.3 Impact of the Distribution and Amount of Resource 41
4.4 Discussion 43
4.4.1 Rhizome Length 43
4.4.2 Resource Amount and Distribution 44
Chapter 5 General Conclusion 47
Figures and Tables 49
Appendix 65
References 68
dc.language.isoen
dc.subject地下莖zh_TW
dc.subject竹zh_TW
dc.subject模擬zh_TW
dc.subject生產zh_TW
dc.subject豐欠年zh_TW
dc.subject葉片生理zh_TW
dc.subject竹林擴張zh_TW
dc.subjectmodellingen
dc.subjectbiennial cyclesen
dc.subjectproductionen
dc.subjectbambooen
dc.subjectrhizomeen
dc.subjectexpansionen
dc.subjectleaf phenologyen
dc.title透過模型解析孟宗竹林產量周期及擴張機制zh_TW
dc.titleA modeling approach for understanding annual production cycles and expansion phenomenon of Moso bamboo (Phyllostachys pubescens)en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee三木健(Takeshi Miki),梁偉立,澤大衛(David Zeleny),李靜峰
dc.subject.keyword竹,模擬,生產,豐欠年,葉片生理,竹林擴張,地下莖,zh_TW
dc.subject.keywordbamboo,modelling,production,biennial cycles,leaf phenology,expansion,rhizome,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201702905
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
Appears in Collections:森林環境暨資源學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf2.89 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved