Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27286
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張孟基(Men-Chi Chang),盧虎生(Huu-Sheng Lur)
dc.contributor.authorHsin-Hsiu Fangen
dc.contributor.author方信秀zh_TW
dc.date.accessioned2021-06-12T18:00:08Z-
dc.date.available2010-01-30
dc.date.copyright2008-01-30
dc.date.issued2008
dc.date.submitted2008-01-28
dc.identifier.citation戶刈義次。(1963)。作物學試驗法。東京農業技術學會印行。第159-176頁。
張孟基。(2002)。植物對於低溫逆境之反應及耐受性。中華農藝。12:131-139。
趙雲洋。(2007)。水稻OsMAPK3基因於非生物性逆境及除草劑耐性之功能研究。國立臺灣大學農藝學研究所博士論文。
Agarwal M., Y. Hao, A. Kapoor, C.-H. Dong, H. Fujii, X. Zheng, and J.-K. Zhu (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Biol. Chem. 281: 37636-37645.
Anchordoguy T.J., A.S. Rudolph, J.F. Carpenter, J.H. Crowe (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324-31.
Andaya V.C., D.J. Mackill (2003). Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J. Exp. Bot. 54:2579-2585.
Bates L. S. (1973) Rapid determination of free proline for water stress studies, Plant Soil. 39: 205-207.
Bertin P. and J. Bouharmont (1997) Use of somaclonal variation and in vitro selection for chilling tolerance improvement in rice. Euphytica. 96: 135-142.
Biedenkapp H., U. Borgmeyer, A.E. Sippel, K.H. Klempnauer (1988) Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature. 335:835-837.
Burnett, W. V. (1997) Northern blotting of RNA denaturated in glyoxal without buffer recirculation. Biotechniques. 22: 668-671.
Catherine B., M. Geisler, J. Trygg, N. Huner, and V. Hurry (2006) Consensus by Democracy. Using Meta-Analyses of Microarray and Genomic Data to Model the Cold Acclimation Signaling Pathway in Arabidopsis. Plant Physiol. 141:1219-1232.
Chinnusamy V., M. Ohta, S. Kanrar, B.H. Lee, X. Hong, M. Agarwa, J.K. Zhu (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis, Genes. Develop. 17:1043-1054.
Cook D., S. Fowler, O. Fiehn, and M. F. Thomashow (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. USA. 101: 15243–15248.
Dhekney S. A., R. E. Litz , D. A. Moraga Amador and A. K. Yadav (2007) Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes. In Vitro Cell. Devel. Biol. 43:195-202.
Dong C.H., M. Agarwal, Y. Zhang, Q. Xie and J.K. Zhu (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA. 103: 8281-8286.
Dubouzet J.G., Y. Sakuma, Y. Ito, M. Kasuga, E.G. Dubouzet, S. Miura, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33: 751-763.
Dubouzet J.G., Y. Sakuma, Y. Ito, M.Kasuga, E.G. Dubouzet, S. Miura, M. Seki, K.Shinozaki, K. Yamaguchi-Shinozaki (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33: 751–763.
Gilmour, S.J., D.G. Zarka, E.J. Stockinger , M.P. Salazar , J.M. Houghton , and M.F. Thomashow (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433-442.
Gilmour S.J., A.M. Sebolt, M.P. Salazar, J.D. Everard, M.F. Thomashow (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124: 1854–1865.
Glaszmann J.C. (1987) Isozymes and classification of Asian rice varieties. Theoretical and Applied Genetics 74:21-30.
Glaszmann J.C., R.N. Kaw, G.S. Khush (1990) Genetic divergence among cold tolerant rices (Oryza sativa L.). Euphytica 45: 95-104.
Gómez-Porras J.L., D.M. Riaño-Pachón, I. Dreyer, J.E. Mayer, B. Mueller-Roeber (2007) Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics. 8:260.
Grandori C., S.M. Cowley, L.P. James and R.N. Eisenman (2000) The MYC/MAX/MAD network and the transcriptional control of cell behavior. Annu. Rev. Cell. Dev. Biol. 16: 653-699.
Guy C.L., K.J. Niemi, and R. Brambl (1985) Altered gene expression during cold acclimation of spinach. Prol. Natl. Acad. Sci. USA. 82: 3673-3677.
Haake V., D. Cook, J.L. Riechmann, O. Pineda, M.F. Thomashow, J.Z. Zhang (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis, Plant Physiol. 130:639-648.
Heather A. V. B. and M. F. Thomashow (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol. Plant. 126 : 72-80.
Hsieh, T.H., J.T. Lee , P.T. Yang , L.H. Chiu , Y.Y. Charng, Y.C. Wang , and M.T. Chan (2002) Heterology expression of the Arabidopsis C-repeat/ dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129 :1086-1094.
Hurry, V., A. Strand , R. Furbank, M. Stitt (2000) The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J. 24:383-396.
Ishitani M., L. Xiong, H. Lee, B. Stevenson, and J.-K. Zhu (1998) HOS1, a Genetic Locus Involved in Cold-Responsive Gene Expression in Arabidopsis. Plant Cell 10: 1151-1162.
Ito Y., K. Katsura, K.Maruyama, T. Taji, M. Kobayashi, M. Seki, K.Shinozaki, K.Yamaguchi-Shinozaki ( 2006 ) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47: 141-153.
Jaglo K.R., S. Kleff, K.L. Amundsen, X. Zhang, V. Haake, J.Z. Zhang, T.Deits, M.F. Thomashow (2001) Components of the Arabidopsis -repeat/ dehydration - responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species, Plant Physiol. 127: 910- 917.
Jaglo-Ottosen K.R., S.J. Gilmour, D.G. Zarka, O. Schabenberger, M.F. Thomashow (1998) Arabidopsis CBF1 overexpression induces COR genes andenhances freezing tolerance. Science. 280:104-106.
Jain M., A. Nijhawan, R. Arora, P. Agarwal, S. Ray, P. Sharma, S. Kapoor, A. K. Tyagi, and J. P. Khurana (2007) F-Box Proteins in Rice. Genome-Wide Analysis, Classification, Temporal and Spatial Gene Expression during Panicle and Seed Development, and Regulation by Light and Abiotic Stress. Plant Physiol. 143: 1467-1483.
James V. A., I. Neibaur and F. Altpeter (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance . Transgen. Res. 17 : 93-104.
Kasuga M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki and K. Shinozaki (1999 ) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291.
Kiyosue T., K. Yamaguchi-Shinozaki and K. Shinozaki (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 35:225-231.
Knight, H., E. L. Veale, G. J. Warren and M.R. Knight (1999) The sfr6 mutation in Arabidopsis suppresses low temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11: 875-886.
Lee B.H., D.A. Henderson, J.K. Zhu (2005) The Arabidopsis. cold-responsive transcriptome and its regulation by ICE1. Plant Cell. 17:3155-3175.
Lee H., L. Xiong, Z. Gong, M. Ishitani, B. Stevenson, and J. K. Zhu (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning . Genes Dev. 15: 912-924.
Lee T.M., H.S. Lur , C. Chu (1993) Roles of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant Cell Environ. 16: 481-490.
Lee S. C., K. W. Huh, K. An, G. An, S. R. Kim (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol. Cells 18:107-114.
Leegod, R. C., R. T. Furbank (1986) Stimulatoin of photosynthesis by 2% oxygen at low-temperatures is restored by phosphate. Planta. 168:84-93.
Levitt J. (1980) Chilling, freezing and high temperature stresses. Responses of plants to environmental stresses. New York: Acadamic 2nd ed, Vol 1. Academic Press, New York, 497.
Li P., F. Chen, C. Quan and G.Y. Zhang (2005) OsDREB1 gene from rice enhances cold tolerance in tobacco. Tsinghua Sci. Technol. 10: 478-483.
Lim C. J. , J. E. Hwang , H. Chen , J. K. Hong , K. A. Yang , M. S. Choi , K. O. Lee , W. S. Chung , S. Y. Lee , C. O. Lim (2007) Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem. Biophys. Re.s Commun. 362: 431-436.
Liu Q., M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, K. Shinozaki (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391-1406.
Liu Y G, R F. Whittier (1995) Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25 : 674 - 681.
Liu Y. G. and Y. Chen (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques. 43: 649-656.
Lyons, J. M. ( 1973 ) Chilling injury in plants. Annu. Rev. Plant. Physiol. 24 : 445 - 466.
Magome, H., S.Yamaguchi, A. Hanada , Y. Kamiya , and K. Oda (2004). dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J. 37:720-729.
Mao Y., K. A. Pavangadkar, M. F. Thomashow, S. J. Triezenberg (2006) Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochim. Biophys. Acta. 1759: 69-79
Maruyama, K., Y. Sakuma , M. Kasuga , Y. Ito , M. Seki , H. Goda , Y. Shimada , S.Yoshida, K. Shinozaki, and K. Yamaguchi-Shinozaki (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38 : 982-993.
Mishra G., W. Zhang, F. Deng, J. Zhao, X. Wang ( 2006 ) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science . Apr 312 : 264-266.
Miura K., J. B. Jin, J. Lee, C. Y. Yoo, V. Stirm, T. Miura, E. N. Ashworth, R. A. Bressan, D.-J. Yun, and P. M. Hasegawa ( 2007 ) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell. 19:1403-1414.
Murre, C., P.S.McCaw, H.Vaessin , M.Caudy, L.Y. Jan, Y.N. Jan, C.V. Cabrera, J.N. Buskin, S.D. Hauschka, A. Lassar, H. Weintraub and D. Baltimore (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537-544.
Nakagoshi H., T. Nagase, C. Kanei-Ishii, Y. Ueno and S. Ishii (1990) Binding of the c-myb proto-oncogene product to the simian virus 40 enhancer stimulates transcription. J. Biol. Chem. 265:3479-3483
Nakashima, K. and K. Yamaguchi-Shinozaki (2005) Molecular studies on stress-responsive gene expression in Arabidopsis and improvement of stress tolerance in crop plants by regulon biotechnology. Jpn. Agric. Res. Q. 39:221-229
Novillo F., J.′ M. Alonso, J. R. Ecker, and J. Salinas (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA. 101: 3985-3990.
Oh C. S., Y.-H. Choi, S. J. Lee, D. B. Yoon, H.-P. Moon and S. N. Ahn (2004) Mapping of quantitative trait loci for cold tolerance in weedy rice. Breed. Sci. 54 : 373-380.
Oh S. J., C. W. Kwon, D. W. Choi, S. I. Song, and J. K. Kim (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice . Plant Biotech. J. 5:646-656.
Oh S.J., S.I. Song, Y.S. Kim, H.J. Jang, S.Y. Kim, M. Kim, Y.K. Kim, B.H. Nahm and J.K. Kim (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341-351.
Oka H I. (1988). Origin of cultivated rice. Japanese Scientific Society Press Tokyo / Elsevier. Amsterdam,. p254.
Owens C.L., M.F. Thomashow, J.F. Hancock, A.F. Iezzoni (2002 ) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry, J. Am. Soc. Hortic. Sci. 127:489- 494.
Packer, A. H. (1968) Applying cost-effectiveness concepts to the community health system. J. Operat. Res. 16 :227-253.
Peterson M.L., S.S. Lin, D. Jones, J.N. Rutger (1974). Cool night temperatures cause sterility in rice. Calif. Agric. 28 : 12-14.
Pino M.T., J. S. Skinner, E.J. Park, Z. Jeknic, P. m. Hayes, M. F. Thomashow and T. H. H. Chen (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotech. J. 5: 591-604.
Qin, F., M. Kakimoto, Y. Sakuma , K. Maruyama, Y. Osakabe, L.-S., P.Tran, K. Shinozaki and K. Yamaguchi-Shinozaki (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 50, 54-69.
Sakuma Y., Q. Liu, J.G. Dubouzet, H. Abe, K. Shinozaki, and K. Yamaguchi-Shinozaki (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998 - 1009.
Sakuma, Y., K. Maruyama , F. Qin, Y. Osakabe , K. Shinozaki and K. Yamaguchi-Shinozaki (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress- and heat-stress-responsive gene expression. Proc. Natl. Acad, Sci. USA. 103, 18828-18833.
Sakuma, Y., K. Maruyama , Y. Osakabe , F. Qin, M. Seki, K. Shinozaki and K. Yamaguchi-Shinozaki (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18, 1292-1309.
Schindler U., A.E. Menkens, H. Beckmann, J.R. Ecker, A.R. Cashmore (1992) Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J. 4:1261-1273.
Shakya, S. and, V. P. Agrawal (1993) Rubisco screening for cold tolerance in rice, Plant Physiol. (Supplement) 102:442.
Sharkey, T. D., M. Stitt , D. Heineke, R. Gerhardt, K. Raschke, H. W. Heldt (1986) Limitation of photosynthesis by carbon metabolism. II. O2-insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol. 81:1123-1129.
Shen Y.G., W.K. Zhang, S.J. He, J.S. Zhang, Q. Liu, S.Y. Chen (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor-induced by cold dehydration and ABA stress, Theor. Appl. Genet. 106: 923-930.
Shinwari Z.K., K. Nakashima, S. Miura, M. Kasuga, M. Seki, K. Yamaguchi-Shinozaki, K. Shinozaki (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250: 161-170.
Singh R. P., J. P. Brennan, T. Farrell, R. Williams, R. R. L. Lewin and J. Mullen (2005) Economic Analysis of Improving Cold Tolerance in Rice in Australia. Rice Cooperat. Res. Cent. p.1-13.
Skinner J.S., J. V. Zitzewitz, P. Szucs, L. Marquez-Cedillo, T. Filichkin, K. Amundsen, E.J.Stockinger, M.F. Thomashow, T.H. Chen, P.M. Hayes (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol. Biol. 59: 533-551.
Song D.F. , N. Han , H.W. Bian , M.Y. Zhu (2005) Analysis of cbf1 Flanking Sequences in Transgenic Tobacco by TAIL-PCR. Acta Agronomica Sinica. 31: 1377-1379.
Steponkus P.L. (1984). Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant. Physiol. 35: 543-84.
Steponkus P.L., M. Uemura, M.S. Webb (1993a). Membrane destabilization during freeze-induced dehydration. Curr. Topics Plant Physiol. 10:37-47
Steponkus P.L., M. Uemura, M.S. Webb (1993b). A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. Advances in Low-Temperature Biology, ed. PL Steponkus. 2:211-312.
Sthapit B.R. and J.R. Witcombe (1998). Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Sci. 38:660-665.
Stitt, M., H. Grosse , K. C. Woo (1988) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 18:1-7.
Stockinger E.J., S.J. Gilmour, M.F. Thomashow (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA. 94: 1035-40.
Stockinger E.J., Y. Mao, M.K. Regier, S.J. Triezenberg and M.F. Thomashow (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res. 29:1524-1533.
Strauss G., H. Hauser (1986). Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc. Natl. Acad. Sci. USA. 83:2422-2426.
Thomashow M.F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50: 571-599.
Tamura K., J. Dudley, M. Nei and S.Kumar (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evo. 24: 1596-1599.
Uemura M., P.L. Steponkus (1997). Effect of cold acclimation on membrane lipid composition and freeze-induced membrane destabilization. See Ref. 68:171–79.
Viswanathan C., J.K. Zhu (2002) Molecular genetic analysis of cold-regulated gene transcription. Philos. Trans. R. Soc. Lond. B. 357: 877-886.
Vlachonasios K.E., M.F. Thomashow and S.J. Triezenberg (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15: 626-638.
Xiao H. , M. Siddiqua, S. Braybrook and A. Nassuth (2006) Three grape CBF/DREB1 genes respond to low temperature,drought and abscisic acid. Plant. Cell Environ. 29: 1410-1421.
Xin, Z. & J. Browse (1998) eskimo1 mutants of Arabidopsis are consitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA. 95: 7799-7804.
Xinag D.-J.,Y. Zhang, K.-D. Yin (2007) Transformation of ICE1 Gene Mediated by Agrobacterium Improves Cold Tolerance in Transgenie Rice. Chinese J. Rice Sci. 21 : 482-486.
Xiong L., Schumaker K.S., J.K. Zhu (2002) Cell signaling during cold, drought and salt stresses. Plant Cell 14: 165-183.
Xiong Y. and S.Z. Fei (2006) Functional and phylogenetic analysis of. a DREB/CBF-like gene in perennial ryegrass (Lolium. perenne L.). Planta 224 : 878-888.
Xue G.P. (2002) Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res. 30: e77
Yamaguchi-Shinozaki K. and K. Shinozaki (2004) Improving drought and cold stress tolerance in transgenic rice. Proceedings of World Rice Research Conference “Rice is life: scientific perspectives for the 21st century” Tsukuba, Japan. p: 94-97.
Yamaguchi-Shinozaki K. and K. Shinozaki (2005) Organization of cis-acting regulatory elements in osmotic- and coldstress- responsive promoters. Trends Plant Sci. 10: 88-94.
Yang T.W., L.J. Zhang, T.G. Zhang, H. Zhang, S.J. Xu, L.Z. An (2005) Transcriptional regulation network of cold-responsive genes in higher plants. Plant Sci. 169:987-95.
Yazdi-Samadi B., H. Dashti, A. Nabipour and A. Sarrafi ( 2006 ) Reciprocal substitutions analysis of freezing resistance in wheat (Triticum aestivum L.).Plant Breed. 125 : 217-220.
Zarka D.G., J.T.Vogel, D. Cook, M.F. Thomashow (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol. 133: 910-918.
Zhang Z. H., S. Li, W. Li, W. Chen, Y. G. Zhu (2005) A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Sci. 168:527-534.
Zhao T.J., S. Sun, Y. Liu, J.M. Liu, Q. Liu, Y. B. Yan, and H. M. Zhou (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J. Biol. Chem. 81:10752-10759.
Zhu J.K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol. 53: 247-273.
Zhu J. , H. Shi, B.-h. Lee, B. Damsz, S Cheng, V. Stirm, J.-K. Zhu, P. M. Hasegawa, and R. A. Bressan (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc. Natl. Acad. Sci. USA. 101: 9873-9878.
Zhu J., P.E. Verslues, X. Zheng, B.H. Lee, X. Zhan, Y. Manabe, I. Sokolchik, Y. Zhu, C.H. Dong, J.K. Zhu, P. M. Hasegawa, and R. A. Bressan (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc. Natl. Acad. Sci. USA. 102: 9966-9971.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27286-
dc.description.abstract植物處於低溫逆境可因冷馴化作用提升對低溫的耐受性。實驗證實 CBFs/DREBs ( C-repeat binding factor/ dehydration response element binding factor ) 為參與冷馴化過程之主要轉錄因子,且在單、雙子葉植物功能上都具有高度的保守性。近來於阿拉伯芥中發現 ICE1 ( inducer of CBF expression ) 為 bHLH ( basic helix-loop-helix ) 之轉錄因子,可作用於 CBFs 之啟動子調控該基因之表現。本論文旨在藉由水稻功能性基因體學之研究配合轉殖水稻之分析,瞭解阿拉伯芥 AtICE 及大麥 HvICE 在不同非生物逆境下所扮演之生理功能。同時比較 AtICE 與 HvICE 在非生物逆境下之作用方式有無不同。為達此目的,首先經由生物資訊方式,可知水稻基因體至少有 4 個 OsICEs。由水稻基因晶片之數據整理得知 OsICE1 於高鹽及乾旱處理下可被大量誘導,卻不受低溫影響;OsICE2 以及 OsICE3 之表現會受到高鹽及乾旱所抑制,而 OsICE4 則可被高鹽、乾旱處理所誘導基因表現,此外 OsICE4 和 OsICE3 皆可被低溫誘導表現。然後本試驗以台農 67 號 ( TNG67, 耐冷、耐鹽但不耐乾旱) 及台中在來 1 號 ( TCN1, 不耐冷、不耐鹽但較耐乾旱 ) 水稻進行不同非生物逆境處理下 OsDREBs 調控組 ( regulon ) 及相關下游基因表達模式之探討。結果發現 TCN1 於低溫處理時 OsICE2 表現量較 TNG67 為低,且OsDREB1F、OsDREB1G、OsDREB1H、OsDREB1I 及 OsDREB1J 於 TCN1 之表現量亦明顯低於 TNG67。
為了深入探討單、雙子葉植物之 ICEs 對非生物性逆境耐受性之影響是否相同,進一步建立 35S::AtICE1 及 35S::HvICE1 轉基因水稻。經南方墨點法鑑定轉殖基因插入拷貝數,並使用熱不對稱交錯聚合酵素鏈鎖反應方式取得插入基因之側翼序列,進行基因定型分析後,可確定轉殖株之轉入基因為單一或雙拷貝之同質結合體。RT-PCR 結果發現 35S::AtICE1 及 35S::HvICE1 轉殖株於正常生長條件下轉入之 ICE 皆可過量表現,但下游 OsDREBs 整體之基因表現量相較於低溫處理之非轉殖株而言並沒有相對大量提高。非生物逆境耐受性之生理分析,包括葉綠素含量、丙二醛及脯胺酸含量之測定顯示 35S::AtICE1 轉殖株其 OsDREB1A; 1B; 1C 及 2B 之表現量明顯增加者,可提高植株對低溫逆境之耐受性,但於高鹽及乾旱環境之耐受性並沒有明顯差異。然而,35S::HvICE1 轉殖株其 OsDREB1B、 1C 和 1E 表現量僅些微增加者之表現量,轉殖株可增加對乾旱及低溫的耐受性,但卻相對降低對高鹽逆境之耐受性。
此實驗結果表示 AtICE1 以及 HvICE1 之功能並不盡然完全相同,推測可能有其它 ICEs 參與 CBFs/DREBs 之調控或者 ICEs 需經複雜的轉譯後修飾作用,分別參與水稻於不同非生物逆境耐受性之反應。
zh_TW
dc.description.abstractThrough cold acclimation, plant can increase its tolerance capability upon exposure to low temperature. Previous study showed that CBFs/DREBs (C-repeat binding factor/ dehydration response element binding factor) were the major transcription factors that involved in cold acclimation process. The function of CBFs/DREBs evolved highly conserve between dicot and monocot. Recent study from Arabidopsis has defined ICE1 (inducer of CBF expression), a bHLH (basic helix-loop-helix) protein, as an important transcriptional factor that acts on the promoter of CBF gene and regulates its expression. In this study, based on rice functional genomic approach with transgenic rice analysis, we aimed to understand physiological function of Arabidopsis AtICE1 and Barly HvICE1 under different abiotic stresses. Meanwhile, the action mold of AtICE1 and HvICE1 will be compared under various stresses. To reach this goal, first, by bioinformatics search at least four of OsICE genes were found in rice genome. From currently available rice microarray data revealed that OsICE1 expression was highly induced by salt and drought but not affected in low temperature. OsICE2 and OsICE3 transcripts were repressed upon exposure to salt and drought environment. On the other hand, OsICE4 expression was salt and drought induced. Besides, OsICE3 and OsICE4 gene expression were both increased under low temperature stress. Then, we used TNG67 (Oryza sativa L., japonica; cold and salt tolerant but drought sensitive) and TCN1 (Oryza sativa L., indica; cold and salt sensitive but drought resistant) rice cultivars to investigate OsICEs; OsDREBs and OsDREBs regulon-related downstream genes expression profiles under abiotic stress treatments. The results indicated that OsICE2 expression level were down-regulated quickly in TCN1 at low temperature. And the amount of OsDREB1F、OsDREB1G、OsDREB1H、OsDREB1I and OsDREB1J expressions in TCN1 were also less than those of TNG67.
To further elucidate the physiological effects of AtICE1 and HvICE1 under various abiotic stresses, we generated ICEs-overexpressed transgenic rice lines, 35S::AtICE1 and 35S::HvICE1. By Southern blotting analysis, TAIL-PCR, and PCR-based genotyping, we determined the copy numbers of transgene, T-DNA inserted flanking sequence and obtained either one or two copies of homozygous transgenic lines. RT-PCR result showed under normal growth condition indeed we can detect the overexpression of ICE genes in 35S::AtICE1 and 35S:: HvICE1 transgenic rices. However; compared to low-temperature stress-treated wild type plant, the whole gene expression profile of ICE-corresponding downstream genes (OsDREBs) did not obviously changed. The physiological analysis of abiotic stress tolerance assay, including chlorophyll, malondialdehyde (MDA) and proline content measurements showed that 35S::AtICE1 transgene rice with OsDREB1A; 1B; 1C and 2B transcripts enhanced could increase cold tolerance but not for drought and salt tolerance. 35S::HvICE1 transgene rice that with slightly OsDREB 1B; 1C and 1E gene expression increased could raise up its drought and cold tolerance but not salt tolerance.
Taken together, the above results suggested that AtICE1 and HvICE1 may function not exactly the same in cold acclimation pathway. This may due to other ICEs co-operate in the regulation of CBFs/DREBs and CBFs/DREBs regulon-related gene expression or ICEs activity can be adjusted through post-translation modifications that lead to different responses when exposure to different abiotic stresses.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:00:08Z (GMT). No. of bitstreams: 1
ntu-97-R94621111-1.pdf: 5399578 bytes, checksum: dc134055d9146b130e71bc2334cd554d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目 錄
表目錄 iv
圖目錄、附錄目錄 v、vi
縮寫字對照 vii
中文摘要 1
Abstract 3
第一章 前言 5
第二章 前人研究 7
一、低溫對於水稻產量之影響及作物耐冷性研究的重要性 7
二、 低溫下之訊息傳遞及基因表現 8
三、 CBFs/DREBs 於植物冷馴化過程之重要角色 9
四、 CBFs/DREBs 啟動子序列相關資訊及基因間的交互調控 11
五、 ICE 基因之發現及功能分析 12
六、 研究目標、策略及實驗架構 15
第三章 材料方法 17
一、 TNG67 及 TCN1 水稻種子 17
二、 轉殖水稻取得來源及其質體建構圖譜 17
三、 水稻生長條件及低溫、高溫、NaCl 及 ABA 處理條件 17
1. 水稻種子催芽條件 17
2. 使用 Hygromycin 篩選具有轉入基因的水稻幼苗 18
3. 低溫、高溫、高鹽及 ABA 等逆境處理條件 18
3.1 三葉齡幼苗生理分析之逆境處理條件 18
3.2 三葉齡幼苗基因表現分析之逆境處理條件 18
四、 水稻轉殖株之分子鑑定與生理分析 19
1. 南方墨點法 19
1.1 轉殖水稻葉片 DNA 萃取 19
1.2 DNA酵素酶切作用 19
1.3 DNA 洋菜瓊脂膠體電泳與轉漬 20
1.4 DNA 探針 ( probe ) 製作 20
1.5 預雜合與雜合反應 21
1.6 清洗轉漬膜與偵測片段 21
2. 以 TAIL – PCR 方式鑑定轉殖基因插入位置 21
3. PCR-base Genotyping 分析 22
4. 水稻轉殖株基因表現分析 22
4.1 總 RNA 萃取 22
4.2 RNase Free DNase I處理 23
4.3 RNA 瓊脂凝膠電泳 ( electrophoresis ) 23
4.4 二步驟 RT-PCR 反應 24
5. 水稻轉殖株生理分析 24
5.1 葉綠素含量測定 24
5.2 脂質過氧化作用之測定 25
5.3 脯胺酸 ( Proline ) 含量之測定 25
6. 親緣演化樹之建立 26
7. 順式作用DNA序列 ( cis-acting DNA element ) 分析 27
8. 基因晶片資料取得方式 27
9. 統計分析 27
第四章 實驗結果 28
一、 OsDREBs 之胺基酸序列比對及親緣關係分析( phylogenetic analysis ) 28
二、 ICEs 之胺基酸序列比對及其演化分佈圖 28
三、 水稻幼苗於不同逆境處理下 OsDREBs 及 OsICEs 於基因晶片分析之結果 30
四、 阿拉伯芥在不同逆境處理下 DREBs 及 ICEs於基因晶片分析之結果 31
五、 TNG67 及 TCN1 於不同低溫處理時間下 OsICEs 及 OsDREBs 之表現 32
六、 TNG67 及 TCN1 於高溫、高鹽及ABA處理下 OsICEs 及 OsDREBs 之表現 33
七、 轉殖水稻轉入基因拷貝數 34
八、 TAIL – PCR 釣取轉殖基因插入位點之側翼序列並決定插入位置 34
九、 PCR-base Genotyping 決定轉殖水稻同型或異型結合子之結果 35
十、 轉殖株轉入基因表現之鑑定 36
十一、轉殖水稻於低溫、高鹽及乾旱處理後之外表型及生理分析結果 36
十二、轉入基因對 TNG67 內生基因之影響 37
第五章 討論 39
一、水稻TNG 67及TCN1之OsDREB1s於逆境處理下之表現量有明顯差異 39
二、TAIL-PCR 取得側翼序列之成功率偏低 40
三、轉殖株基因表現結果以及生理分析之相關性 40
四、ICEs 對水稻逆境耐受性之影響可能需要經由轉譯後修飾作用 41
五、OsDREBs 之啟動子序列含有許多ICE蛋白質認識之ICEr (region)序列 42
六、AtICE1 與 HvICE1 在不同非生物逆境下基因作用模式之比較 43
第六章 未來工作 44
一、建立 ICEs 及 OsDREBs 在不同非生物逆境下之表現模式 44
二、使用西方墨點法 (Western blotting) 偵測轉入ICE基因之蛋白質表現量
及受到轉譯後修飾的情況 44
三、使用生物晶片方式進行大規模篩選受到調控之基因 44
四、進行 OsICEs 或 OsDREBs 之基因轉殖以更深入瞭解其與水稻非生物逆境耐受性之關係 45
參考文獻 46
dc.language.isozh-TW
dc.title過量表現 HvICE1 或 AtICE1 ( Inducer of CBF Expression ) 水稻轉殖株之分子鑑定及非生物逆境耐受性分析zh_TW
dc.titleMolecular Characterization and Abiotic Stresses Tolerance Analysis in HvICE1 and AtICE1 ( Inducer of CBF Expression ) Over-expression Transgenic Rice (Oryza sativa L.)en
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉麗飛(Li-Fei Liu),吳素幸(Shu-Hsing Wu),侯新龍(Shin-Lon Ho)
dc.subject.keywordICE,CBF,DREB,冷馴化,低溫耐受性,非生物逆境,轉基因水稻,zh_TW
dc.subject.keywordICE,CBF,DREB,cold acclimation,cold tolerance,abiotic stress,transgenic rice,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2008-01-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
5.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved