Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹恆偉(Hen-Wai Tsao)
dc.contributor.authorHsueh-Yen Yangen
dc.contributor.author楊學炎zh_TW
dc.date.accessioned2021-06-12T17:59:09Z-
dc.date.available2009-01-30
dc.date.copyright2008-01-30
dc.date.issued2008
dc.date.submitted2008-01-28
dc.identifier.citation[1] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. H. Romeny, J. B. Zimmerman, and k. Zuiderveld, “Adaptive histogram equalization and its variations,” Comp. Vis. Graph. Image Process., Vol. 39, No. 3, pp. 355- 368, 1987.
[2] Y.-T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,” IEEE Transactions on Consumer Electronics, vol. 43, no. 1, Feb.
1997
[3] Soong-Der Chen, Adb. Rahman Ramli, ”Contrast Enhancement using Recursive Mean-Separate Histogram Equalization for Scalable Brightness Preservation,” IEEE Transactions on Consumer Electronics, vol. 49, no. 4, Nov 2003
[4] Yafei Tian, Qingtao Wan, Fengjun We, “Local Histogram Equalization Based on the Minimum Brightness Error,” IEEE International Conference on Imaging Graphics, ICIG 2007
[5] Chao Wang, Zhongfu Ye, “Brightness Preseving Histogram Equalization with Maximum Entropy,” IEEE Trans. On CE, Vol. 51, No.4, Nov. 2005
[6] Abduallah M. Alsuwailem, “A New Approach For Real- Time Histogram Equalization Using FPGA,” IEEE International Symposium on Intelligent Signal Processing and Communication System, IEEE ISPACS, 2005
[7] Y.-T. Kim, “Quantized bi-histogram equalization,” IEEE International Conference Acoustics, Speech and Signal Processing, IEEE ICASSP, April 21-24, 1997
[8] S. Y. Kim, D. Han, S. J. Choi and J. S. Park, “Image contrast enhancement based on the piecewise-linear approximation of CDF,” IEEE Trans. On Consumer Electronics, Vol. 45, No. 3, Aug. 1999
[9] Stephen M. Pizer, “Contrast-Limited Adaptive Histogram Equalization: Speed and Effectiveness,“ IEEE Proceeding of the First Conference on Visualization in Biomedical Computing, May 22-25, 1990
[10] Joung-Youn Kim, “An Advanced Contrast Enhancement using Partially Overlapped Sub-Block Histogram Equalization,” IEEE Transactions on Circuit and System for Video Tech., Vol. 11, No. 4, Apr. 2001
[11] Jie Zhao, “Automatic Digital Image Enhancement for Dark Pictures,” IEEE Intern. Conf. on Acoustics, Speech and Signal Proc., IEEE ICASSP, May 14-19, 2006
[12] Yu Wang, ”Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Transactions on Consumer Electronics, vol. 45, no. 1, pp. 68-75, Feb. 1999
[13] Alessandro CAPRA, “Dynamic Range Optimization by Local Contrast Correction and Histogram Image Analysis,” International Conference on Consumer Electronics, IEEE ICCE , 2006
[14] J. Alex Stark, “Adaptive Image Contrast Enhancement Using Generalizations of Histogram Equalization,” IEEE Transactions on Image Proc., Vol. 9, No. 5, May 2000
[15] R. B. Paranjape, W. M. Morrow, and R. M. Rangayyan, “Adaptiveneighborhood histogram equalization for image enhancement,” CVGIP:Graphical Models and Image Processing, 54(6): 259-267, May 1992
[16] R. Dale-Jones and T. Tjahjadi, “A study of modification of the local histogram equalization algorithm,” Pattern Recognition, 26(9): 1373-1381, 1993
[17] J.-G. Leu, “Image contrast enhancement based on intensities of edge pixels,” CVGIP: Graphical Models and Image Processing, 54(3):497-506, 1992
[18] H.-D. Cheng, M. Xue, and X. shi, “Contrast enhancement based on a novel homogeneity measurement,” Pattern Recognition, 36(11): 2687-2697, Nov. 2003
[19] Tae Keun Kim, “Contrast Enhancement System Using Spatially Adaptive Histogram Equalization with Temporal Filtering,” IEEE Transactions on Consumer Electronics, Vol. 44, No. 1, Feb. 1998
[20] K. Wongsritong, “Contrast enhancement using multi-peak histogram equalization with brightness preserving,” IEEE Asia-Pacific Conferences on Circuit and System, IEEE APCCAS, Nov. 24-27, 1998
[21] Seungjoon Yang, ”Contrast enhancement using histogram equalization with bin underflow and bin overflow,” IEEE International Conference on Image Processing, IEEE ICIP, Sept. 14-17, 2003
[22] John B. Zimmerman, ”An Evaluation of the Effectiveness of Adaptive Histogram Equalization for Contrast Enhancement,” IEEE Transactions on Medical Imaging Processing, Vol. 7, Dec. 1988
[23] S. M. Pizer, J. B. Zimmerman, “Adaptive Histogram Equalization and its Variations,” Comp. Vis. Graph. Image Process., Vol. 39, No. 3, pp. 335-368, 1997
[24] Albert M. Vossepoel, ”Adaptive Histogram Equalization Using Variable Regions,” IEEE International Conference on Pattern Recognition, IEEE ICPR, Nov. 14-17, 1988
[25] S.S.Y. Lau, ”Global Image Enhancement using local Information,” IEEE Electron. Letters, Jan. 20, 1994
[26] Vicent Caselles, “Shape Preserving Local Histogram Modification,” IEEE Transactions on Med. Imaging Proc., Vol. 8, No. 2, Feb. 1999
[27] Vasile Buzuloiu, “Adaptive-Neighborhood Histogram Equalization of Color Images,” IEEE Electronics Imaging, Vol. 10, pp. 445-459, Apr. 2001
[28] S. Chitwong, ”Local Area Histogram Equalization Based Multi-spectral Image Enhancement From Clustering Using Competitive Hopfield Neural Network,” IEEE Canadian Conference on Electrical and computer Engineering, May 4-7, 2003
[29] Zeyun Yu, “A Fast and Adaptive Method for Image Con-trast Enhancement,” IEEE International Conference on Image Processing, IEEE ICIP, Oct. 24-27, 2004
[30] Jiang Duan, “Novel Histogram Processing for Colour Image Enhancement,” IEEE International Image and Graphics, IEEE ICIG, 2004
[31] Mark Eramian, “Histogram Equalization using Neightbor- hood Metrics,” IEEE International Canadian Conference on Computer and Robot Vision, IEEE CRV, 2005
[32] Zhi Yu Chen, “A Generalized and Automatic Image Contrast Enhancement using Gray Level Grouping,” IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE ICASSP, May 14-19, 2006
[33] Yu Wang,”Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Trans. Consumer Electronics, vol. 45, no. 1, pp. 68-75, Feb. 1999
[34] Mona Mahmoudi, “Fast Image and Video Denoising via Non-local Means of Similar Neighborhood,” IEEE Signal Processing Letters, vol.12, No.12, Dec. 2005
[35] Tai-Wai Chan, ”A Novel Content-Adaptive Video Denoising Filter,” IEEE Intern. Conf. on Acoustics, Speech and Signal Processing, IEEE ICASSP, 2005
[36] Liwei Guo, ”A Multihypothesis Motion Compensated Temporal Filter for Video Denoising,” IEEE International Conference on Image Processing, IEEE ICIP, 2006
[37] Liwei Guo, “An Encoder-Embedded Video Denoising filer based on the Temporal LMMSE Estimator,” IEEE International Conference on Multimedia and Expo, IEEE ICME, July 9-12, 2006
[38] Hye-Yeon Cheong, “Adaptive Spatio-Temporal Filtering for Video Denoising,” IEEE International Conference on Image Processing, IEEE ICIP, Oct. 24-27, 2004
[39] S. C. Pei,”Color image enhancement using weighted histogram separation,” IEEE International Conference on Image Processing, IEEE ICIP, Oct. 8-11, 2006
[40] S. S. Agaian,”Transform coefficient histogram-based image enhancement algorithm using contrast entropy,” IEEE Trans. Imag. Proc., vol. 16, no. 3, Mar. 2007
[41] S. K. Lee,”A efficient content-based image enhancement in compressed domain using retinex theory,” IEEE Trans. Cir. And Syst. For Video Tech., vol. 17, no. 2, Feb. 2007
[42] J. C. Chen, Chun-Fu Shen, Shao-Yi Chien, “CRISP: coarse-grain reconfigurable image signal processor for digital still cameras,” IEEE International Symposium Circuit and Systems, IEEE ISCAS, May 2006
[43] Yu Wen Huang, Shao-Yi Chien, Bing-Yu Hsieh, and Liang-Gee Chen, ” Global Elimination Algorithm and Architecture Desgin for Fast Block Matching Motion Estimation,” IEEE Transactions on Circuits System Video Technology, vol. 14, pp. 898-907, Jun. 2004
[44] Wei-Min Chao, Yung-Chi Chang and Liang-GeeChen, “Platform Architecture Design for MPEG-4 Video Coding,” IEEE International Conference Image Processing, IEEE ICIP, Sept. 14-17, 2003
[45] Tung-Chien Chen, Shao-Yi Chien, Yu-Wen Huang and Liang-Gee Chen, “Analysis and Architecture Design of an HDTV720p 30 Frames/s H.264/AVC Encoder,” IEEE Transactions on Circuits and Systems for Video Technology, vol.16, no.6, pp.673-688, Jun. 2006
[46] S. Sakaue, A. Tamura, M. Nakayama and S. Maruno, “Adaptive gamma processing of the video cameras for the expansion of the dynamic range,” IEEE Trans. on Consumer Electronics, Vol. 41, pp. 555-562, 1995
[47] Y. S. Jehng, L.G. Chen and T.D. Chiueh, “An efficient and simple VLSI tree architecture for motion estimation,” IEEE Trans. Signal Processing, vol. 41, pp. 889-900, Feb. 1993
[48] H. Yeo, “A Novel modular systolic array architecture with two dimensional data reuse for full-search block matching motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol.5 pp. 407-416, Oct. 1995
[49] Y. K. Lai, “A data-interlacing architecture with two-dimensional data reuse for full-search block matching algorithm,” IEEE Trans. Circuits Syst. Video Technol., vol.8 pp. 124-127, Apr. 1998
[50] Y. H. Yeh, “Cost-effective VLSI architecture and buffer size optimization for full-search block matching algorithm,” IEEE Trans.VLSI Syst., vol.7 pp.345-358, Sept. 1999
[51] Wei-Feng He, “VLSI Implementation of Full Pixel Motion Estimation Processor for MPEG-4 AS Profile,” IEEE 7th International conference on solid state and integrated circuit technol., 2004
[52] David Sheldon Hooper, “Image Contrast Enhancement,” U.S. Patent 20060232823A1, Oct. 19, 2006
[53] Jie Zhao, “Methods and Systems for Automatic Digital Image Enhancement with Local Adjustment,” U.S. Patent 20070092-137A1, Aug. 26, 2007
[54] Pin-Ting Lin, ”Method for Dynamically Adjusting Video Brightness,” U.S. 20050093795A1, May 5, 2005
[55] Yu-Cheng Fan, Hsueh-Yen Yang, Hen-Wai Tsao, “Direct access test scheme for IP core protection,” IEEE Asia-Pacific Conference On Advanced System Integrated circuits, IEEE APASIC, Aug. 4-5, 2004
[56] Yu-Cheng Fan, Hsueh-Yen Yang, Hen-Wai Tsao, “High Definition Television to Standard Definition Television Transcoder,” IEEE International Coference on System and signals, IEEE ICSS, April 28-29, 2005
[57] Hsueh-Yen Yang, Yu-Ching Lee, Yu-Cheng Fan, Hen-Wai Tsao, “A Novel Algorithm of Local Contrast Enhancement for Medical Image,” IEEE Nuclear Science Symp. and Medical Image Conference, IEEE NSS-MIC, Oct. 27- Nov. 3, 2007
[58] Hsueh-Yen Yang, Yu-Ching Lee, Yu-Cheng Fan, Hen-Wai Tsao, “A Novel Algorithm of Local Contrast Enhancement for Medical Image,” Submitted to IEEE Transactions on Nuclear Science, 2007
[59] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 3rd Edition, Prentice Hall, 2007
[60] Erik Reinhard, Greg Ward, Sumanta Pattanaik, Paul Debevec, “High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting,” Morgan Kaufmann, 2005
[61] David R. Smith, Paul D. Franzon, “Verilog styles for synthesis of digital systems,” Prentice Hall, 2000
[62] Bub Zeidman, R.M. Zeidman, “Verilog Designer’s Library,” Prentice Hall, 1999
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27251-
dc.description.abstract由於數位成像技術的發展,使人眼視覺得以儲存及處理,在一般消費性電子上,現行數位攝影應用早已變得相當熱門,例如專業的單眼相機及內建於行動電話的攝影功能;當我們執行數位成像時,一些環境的因素及攝影過程的行為有可能影響拍攝結果影像的品質,例如機體的晃動和周遭環境的亮度改變;當我們在暗夜或者低亮度的條件下拍攝,成像結果的可見度會因光線反射不足而降低,因為光源的分佈亦決定了物體表面的光反射量,所以不均勻的光源即可造成拍攝結果影像失去原本期望的特徵。
  直方圖等化(Histogram Equalization)是最常使用的影像強化技術,其可有效地以全影像的機率分佈密度來重整原始直方圖,進而增加影像的可見度,因為區域影像的亮度分佈範圍不會和全域亮度分佈範圍相同,在硬體實現時須注意到計算的有效性,分析目前的方法發現研究的重心應放置在亮度強化幅度的可控制性及計算複雜度的降低。
  我們提出區域雙直方圖等化,其實現操作可分為三個部份:亮度評估,雙線性等化和可適性亮度限制。為了分析區域亮度的分佈,我們使用亮度估計去實現,其中會搜尋亮度相似的像素位置,再以加權方式增加相似像素的影響,如此作法雖可有效地的分析區域亮度變化,但計算複雜度亦相對地增加,在區域亮度強化的處理中,其結果可能會受周遭陡然變化的區域像素干擾,在此應用加權計算即來消除不相似亮度值的干擾,可增加相似的影像特徵值,區域雙直方圖等化不再以全域平均值控制區域亮度強化的幅度,改以上述的加權平均值操作,接著以雙線性等化的計算處理,將原始輸入亮度值轉換,雙線性等化的計算用以取代傳統直方圖等化的計算,由於影像可能含許多區域亮度需調整,所以提出可適性亮度限制曲線來簡化區域影像的修正,利用單一曲線輔助修正控制。目前可適性亮度修正技術未有合適的架構設計,再加上可適性亮度修正的架構設計存在許多問題,如計算複雜度及資料流之排序週期,針對複雜度的問題,我們提出取樣式處理來減少外部記憶體的資料搬動,區域雙直方圖等化的最大的特徵是其較符合架構設計的須求。
  以標準的晶片實現流程來實現我們的架構,當我們完成系統層的模擬,接著便可以硬體描述語言描述架構設計,在完成其模擬及結果的比較後,我們便可開始以電腦輔助設計工具來完成實體層的晶片實現,合成時須以9.25 ns為週期限制來合成,其合成後邏輯閘數為69.5K,我們晶片使用UMC 0.18um 1P6M CMOS技術來實現,其晶片核心的尺吋大小為1.96mm X1.96mm,經由比較的結果,可以了解我們的晶片可以較少的週期實現一個移動向量的搜尋,以及晶片所使用的記憶體位元數及面積皆是合理的大小,其結果亦說明此晶片可以實現更大尺吋的影像或視訊應用,並且符合開始晶片的規劃,如此我們的晶片便可以有效地在MPEG系統中實現可適性亮度估計,並相容於目前視訊應用。
zh_TW
dc.description.abstractDue to the developments of digital imaging techniques, the visions of human eye become storable and removable. When using digital camera, few environment factor and user behaviors probably affect the quality of captured image, for example the camera motion and surrounding brightness. When we take picture under the condition of dark eve or low illumination, image visibility will be decreased by insufficient light reflection. Because the distribution of light source decides the reflection direction, unequal intensity may cause the resultant image lose expected feature.
According to the overviews and analysis of adaptive brightness correction, we can understand that the techniques can provide an available solution for the interference of environment brightness in digital camera, but current methods are still no suitable algorithm design. Therefore, we propose the local bi-histogram equalization (LBHE) to remedy the local visibility and control the degree of enhancement. The procedure can be divided into four calculations: brightness estimation, bi-linear equalization, adaptive brightness constraint. We also present the sample-based data flow to reduce the data movement of external memory. We design hybrid architecture to implement adaptive brightness correction with MPEG system.
Based on the specification of video application, our chip would be implemented with the real time requirements of 30 frame per second (fps) and D1 format (720x 480). The standard cell-based VLSI design flow is adopted to realize our work. Our design is synthesized with the timing constraint of 108 MHz and the total logic gate count is about 69.5K. The chip is implemented with UMC 0.18 µm 1P6M CMOS technology. The layout result present the core size is about 1.96 mm × 1.96 mm. Through the comparison content, we can find that our design can exactly satisfy the chip specification with reasonable implementation constraints.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:59:09Z (GMT). No. of bitstreams: 1
ntu-97-R91943063-1.pdf: 7884996 bytes, checksum: 36eb69e849f94c361249ca3142933744 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
Contents i
List of Figures iii
List of Tables v
ABSTRACT 0
Chapter 1 . INTRODUCTION 1
1.1. Introduction 1
1.2. Motivation 4
1.3. Thesis Organization 7
Chapter 2 . OVERVIEW OF BRIGHTNESS CORRECTION 9
2.1. Histogram Equalization 9
2.1.1. Global Histogram Equalization (GHE) 10
2.1.2. Adaptive Histogram Equalization (AHE) 12
2.2. Brightness Preservation 13
2.2.1. Bi-Histogram Equalization (BHE) 13
2.2.2. Recursive Mean-Separated Histogram (RMSHE) 15
2.3. Adaptive Brightness Correction 18
Chapter 3 . ALGORITHM DESIGN OF LOCAL BI-HISTOGRAM EQUALIZATION 23
3.1 Local Bi-Histogram Equalization (LBHE) 23
3.1.1 Luminance Estimation (LE) 25
3.1.2. Bi-linear Equalization 28
3.1.3. Adaptive Brightness Constraints 29
3.1.4. Adaptive Color Correction 31
3.2. Simulation Results with Digital Still Image 33
3.2.1. Local Brightness Difference 34
3.2.2. Comparison and Analysis 36
3.3. Simulation Results with Digital Video 38
Chapter 4 . ARCHITECTURE DESIGN OF LOCAL BI-HISTOGRAM EQUALIZATION 41
4.1. System Specifications 41
4.1.1. MPEG System with Adaptive Brightness Correction 41
4.1.2. Hybrid Motion/Brightness Estimation 44
4.2. Data Flow 45
4.2.1. Sample-based Brightness Estimation 45
4.2.2. Sample-based Motion Estimation 47
4.2.3. Sample-based Hybrid Estimation 51
4.3. Local Bi-Histogram Equalization 53
4.3.1 Input Network 55
4.3.2 Pixel Match 56
4.3.3. Systolic Addition 57
4.3.4 Finite State Machine (FSM) Design 58
4.3.5 Bi-linear Equalization 60
4.3.6 ROM-based Multiplier 61
Chapter 5 . CHIP IMPLAMENTATION 63
5.1. Chip Specifications 63
5.2. Design Flow 64
5.3 Implementation Results 69
Chapter 6 . CONCLUSION 73
Bibliography 75
dc.language.isoen
dc.subject色彩修正直方圖等化zh_TW
dc.subject可適性亮度修正zh_TW
dc.subjectColor Correctionen
dc.subjectAdaptive Brightness Correctionen
dc.subjectHistogram Equalizationen
dc.title可適性亮度修正於視訊應用之演算法及架構設計zh_TW
dc.titleAlgorithm and Architecture Design of Adaptive Brightness Correction for Video Applicationen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.coadvisor范育成(Yu-Cheng Fan)
dc.contributor.oralexamcommittee郭景致(Ching-Chih Kuo),李揚漢(Yang-Han Lee)
dc.subject.keyword可適性亮度修正,色彩修正直方圖等化,zh_TW
dc.subject.keywordAdaptive Brightness Correction,Color Correction,Histogram Equalization,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2008-01-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
7.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved