請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2724
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋聖榮 | |
dc.contributor.author | Gabriel Felipe Nino Vasquez | en |
dc.contributor.author | 凡凱培 | zh_TW |
dc.date.accessioned | 2021-05-13T06:48:54Z | - |
dc.date.available | 2017-08-25 | |
dc.date.available | 2021-05-13T06:48:54Z | - |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-20 | |
dc.identifier.citation | Arif, M., Fallick, A. E., & Moon, C. J. (1996). The genesis of emeralds and their host rocks from Swat, northwestern Pakistan: a stable-isotope investigation. Mineralium Deposita,31(4), 255-268. doi:10.1007/s001260050032
Barton, M. D., & Young, S. (2002). Non-pegmatitic Deposits of Beryllium: Mineralogy, Geology, Phase Equilibria and Origin. Reviews in Mineralogy and Geochemistry,50(1), 591-691. doi:10.2138/rmg.2002.50.14 Bosshart, G. (1991). Emeralds from Colombia (Part 2). The Journal of Gemmology,22(7), 409-425. doi:10.15506/jog.1991.22.7.409 Bowersox, G., Snee, L. W., Foord, E. E., & Seal, R. R. (1991). Emeralds of the Panjshir Valley, Afghanistan. Gems & Gemology,27(1), 26-39. doi:10.5741/gems.27.1.26 Bozkaya, G., & Banks, D. A. (2015). Physico-chemical controls on ore deposition in the Arapucandere Pb–Zn–Cu-precious metal deposit, Biga Peninsula, NW Turkey. Ore Geology Reviews,66, 65-81. doi:10.1016/j.oregeorev.2014.10.014 Branquet, Y., Laumonier, B., Cheilletz, A., & Giuliani, G. (1999). Emeralds in the Eastern Cordillera of Colombia: Two tectonic settings for one mineralization. Geology,27(7), 597. doi:10.1130/0091-7613(1999)027<0597:eiteco>2.3.co;2 Cheilletz, A., Feraud, G., Giuliani, G., & Rodriguez, C. T. (1994). Time-pressure and temperature constraints on the formation of Colombian emeralds; an 40 Ar/ 39 Ar laser microprobe and fluid inclusion study. Economic Geology,89(2), 361-380. doi:10.2113/gsecongeo.89.2.361 Cheilletz, A., & Giuliani, G. (1996). The genesis of Colombian emeralds: a restatement. Mineralium Deposita,31(5), 359-364. doi:10.1007/bf00189183 Giuliani, G., France-Lanord, C., Zimmermann, J. L., Cheilletz, A., Arboleda, C., Charoy, B., . . . Giard, D. (1997). Fluid Composition, δD of Channel H2O, and δ18O of Lattice Oxygen in Beryls: Genetic Implications for Brazilian, Colombian, and Afghanistani Emerald Deposits. International Geology Review,39(5), 400-424. doi:10.1080/00206819709465280 Giuliani, G., France-Lanord, C., Coget, P., Schwarz, D., Cheilletz, A., Branquet, Y., . . . Piat, D. H. (1998). Oxygen isotope systematics of emerald: relevance for its origin and geological significance. Mineralium Deposita,33(5), 513-519. doi:10.1007/s001260050166 Giuliani, G., Cheilletz, A., Arboleda, C., Carrillo, V., Rueda, F., & Baker, J. H. (1995). An evaporitic origin of the parent brines of Colombian emeralds: fluid inclusion and sulphur isotope evidence. European Journal of Mineralogy,7(1), 151-166. doi:10.1127/ejm/7/1/0151 Giuliani, G., Dubessy, J., Ohnenstetter, D., Banks, D., Branquet, Y., Feneyrol, J., . . . Martelat, J. (2017). The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review. Mineralium Deposita. doi:10.1007/s00126-017-0738-4 Henderson, P. (1994). Rare earth element geochemistry. Amsterdam: Elsevier. Horton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin,122(9-10), 1423-1442. doi:10.1130/b30118.1 Keller, P. C. (1981). Emeralds of Colombia. Gems & Gemology,17(2), 80-92. doi:10.5741/gems.17.2.80 Keller, P. C. (1990). Hydrothermal Gem Deposits: The Emerald Deposits of Colombia. Gemstones and Their Origins, 39-55. doi:10.1007/978-1-4684-6674-4_3 “La Page Que Vous Cherchez N'est plus Disponible.” Faculté Des Sciences Et De Génie: Ce Que Vous Cherchez N'est plus Disponible, www.ggl.ulaval.ca/cgibin/isotope/generisotop_4alpha.cgi. Lu, Y., Song, S., Wang, P., Wu, C., Mii, H., Macdonald, J., John, C. M. (2017). Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry. Journal of Asian Earth Sciences. doi:10.1016/j.jseaes.2017.03.004 Mantilla, L. C., Silva, A., Serrano, J. J., Conde, J., Gomez, C., Ramirez, J. C.,. . . Pena, E. (2007) Investigación petrográfica y geoquímica de las sedimentitas del cretácico inferior (k1) y sus manifestaciones hidrotermales asociadas; planchas 169, 170, 189, 190 (cordillera oriental): implicaciones en la búsqueda de esmeraldas. Ministerio de minas y energía. Mora, A., Parra, M., Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres, V., & Jaramillo, J. V. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin,120(7-8), 930-949. doi:10.1130/b26186.1 Mora, A., Parra, M., Strecker, M. R., Kammer, A., Dimaté, C., & Rodríguez, F. (2006). Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics,25(2). doi:10.1029/2005tc001854 Ottaway, T. L., Wicks, F. J., Bryndzia, L. T., Kyser, T. K., & Spooner, E. T. (1994). Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature,369(6481), 552-554. doi:10.1038/369552a0 Pignatelli, I., Giuliani, G., Ohnenstetter, D., Agrosi, G., Mathieu, S., Morlot, C., & Branquet, Y. (2015). Colombian Trapiche Emeralds: Recent Advances in Understanding Their Formation. Gems & Gemology. doi:10.5741/gems.51.3.222 Puerto, J. I., Fernandez, J., Pantorrilla, A. (2012) Caracterización mineralógica y estructural de la mina de esmeraldas la pita (Boyacá- Colombia). Universidad Nacional de Colombia. Reyes, G., Montoya, D., Terraza, R., Fuquen, Jaime., Mayorga, M., (2006) Memoria geología del cinturon esmeraldifero occidental. Ingeominas. Rollinson, H. R. (1993). Using geochemical data: evaluation, presentation, interpretation. Harlow, Essex u.a.: Longman Scientific & Techn. u.a. White, N. C., & Hedenquist, J. W. (1990). Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration,36(1-3), 445-474. doi:10.1016/0375-6742(90)90063-g | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2724 | - |
dc.description.abstract | The Colombian emeralds are distributed in two parallel belts where the host rocks are mainly Cretaceous black shales and limestones. A better understanding of the mineralizing processes which form the emerald deposits in Colombia will improve the exploration activities within both belts.
This study focuses on the Western Emerald Belt (WEB) where seven mines were visited. The WEB is located in the central part of Colombia, on the western flank of the Eastern Cordillera. The most important emerald mines are located in Muzo, Maripi, Yacopi, Otanche and Coscuez municipalities. Thirty six samples were collected for analyses of carbon and oxygen isotopes with the purposes of: first, to know the main source of the fluid(s) which interacted with the shales in order to form the emeralds and associated minerals (pyrite, calcite, chalcopyrite, quartz, albite, etc.), and second, to identify if the analyses of stable isotopes combined with field and laboratory information are determinant and useful for the exploration of emeralds in the WEB. Geological information such as structural data, identification of debris flows, hydrothermal and hydraulic breccia as well as mineral assemblage were collected during the field trip. For microscopic analyses, 17 samples were characterized by petrographic observations, such as microstructures, mineral habits, paragenesis and deformation parameters. The identification of different carbonates and supergene minerals was conducted with a RAMAN spectrometer and Scanning Electron Microscope (SEM). The main conclusions of this research suggest that: 1. the mineralizing fluids came from a metamorphic / sedimentary origin. 2. A range for 18O (SMOW) between 18 to 21.8 ‰ and -4 to -10.3‰ for 13C (PDB) represents the isotopic signatures of the hydrothermal fluids which produced the emerald mineralization for the visited mines. 3. Calcites from the Muzo Formation in the WEB would have the possibility of being associated with emeralds, if apart from being in the previously mentioned ranges of isotopic values; the carbonate is in paragenesis with sulphides, albite and/or quartz originating from either hydrothermal or hydraulic breccia associated with thrust planes, folds and overthrust faults. For exploration purposes, it is important to define debris flows to avoid mining development in such areas. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:48:54Z (GMT). No. of bitstreams: 1 ntu-106-R04224117-1.pdf: 21531230 bytes, checksum: 2cc67815eedae6a800304caf1ea72af9 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Table of Contents
1. INTRODUCTION 1 1. LOCATION 2 2. METHODOLOGY 6 2.1 BIBLIOGRAPHICAL REVIEW 6 2.2 FIELD WORK AND SAMPLE COLLECTION 6 2.3 LABORATORY WORK 7 3. GEOLOGY 8 3.1 LITHOSTRATIGRAPHY 10 I. Furatena Formation 10 II. Muzo Formation 11 III. Capotes Formation 12 3.2 STRUCTURAL GEOLOGY 12 I. Rio Minero Fault 13 II. Zulia- Albania Fault 13 III. Pauna Anticline 13 IV. El Almendro Syncline 13 4. MINES DESCRIPTION 14 4.1 Group 1 15 4.1.1 Monteblanco Mine 15 4.2 Group 2 18 4.2.1 LA PITA 18 4.2.2 CUNAS 24 4.2.3 ESPAÑOLES 27 4.3 GROUP 3 30 4.3.1 COSCUEZ 30 4.4 GROUP 4 32 4.4.1 MASATO AND PUERTO SIAD 32 5. MINERALOGY AND GEOCHEMISTRY 35 7. DISCUSSION AND CONCLUSIONS 67 8. REFERENCES 73 | |
dc.language.iso | en | |
dc.title | "Geological and Geochemical Analyses for Emerald Exploration in the Muzo Formation along the Western Emerald belt, Colombia" | zh_TW |
dc.title | Geological and Geochemical Analyses for Emerald Exploration in the Muzo Formation along the Western Emerald belt, Colombia | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王珮玲,陳惠芬,林卉婷 | |
dc.subject.keyword | WEB,hydrothermal-sedimentary deposits,emerald,Muzo Formation,isotopic fractionation,subduction, | zh_TW |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU201703972 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 21.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。