請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27226完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭振泰 | |
| dc.contributor.author | Ming-Han Hsieh | en |
| dc.contributor.author | 謝明翰 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:58:28Z | - |
| dc.date.available | 2013-02-01 | |
| dc.date.copyright | 2008-02-01 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-29 | |
| dc.identifier.citation | Ambrose, R. B., Wool, T. A., Martin, J. L., Connolly, J. P., and Schanz, R. W., (1991), 'WASP5, A Hydrodynamic and Water Quality Model - Model Theory, User's Manual, and Programmer's Guide', Environmental Research Laboratory, U.S. EPA, Athens, Georgia.
Beam, R. M., and Warming, R. F., (1976), 'An implicit finite-difference algorithm for hyperbolic systems in conservation law form', Journal of Computational Physics, vol. 22, pp. 87-110. Bertolazzi, E., and Casulli, V., (1993), 'Fast, Positive and Conservative Scheme for Chemically Reactive Hypersonic Flow', International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3, no. 5, pp. 379-398. Bleck, R., (1998), 'Ocean modeling in isopycnic coordinates', Ocean Modeling and Parameterization, In: E. P. Chassignet, and J. Verron, (Eds.), NATO Sciences Series C, vol. 516, pp. 423-448. Blumberg, A. F., and Mellor, G. L., (1987), 'A description of a three-dimensional coastal ocean circulation model', In: N. Heaps, (Ed.), Three-Dimensional Coastal Ocean Models, American Geophysical Union, Washington, D.C. Blumberg, A. F., and Mellor, G. L., (1987), 'A description of a three-dimensional coastal ocean circulation model', In: N. Heaps, (Ed.), Three-Dimensional Coastal Ocean Models, vol. 4, American Geophysical Union, Washington, D.C. Bricker, J. D., Inagaki, S., and Monismith, S. G., (2003), 'Modeling the Effects of Bed Drag Coefficient Variability under Wind Waves in South San Francisco Bay', Estuarine and Coastal Modeling 2003, pp. 89-107. Briley, W. R., and McDonald, H., (1974), 'Solution of the three-dimensional compressible Navier-Stokes equations by an implicit technique', Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics, Boulder Colorado, Lecture Notes Physics, vol. 35, Springer-Verlag, New York, pp. 105-110. Buchak, E. M., and Edinger, J. E., (1982), 'User Guide for LARM2', U.S. Army Engineer Waterways Experiment Station, Hydraulics Laboratory, Instruction Report E-82-3. Carlson, R. E., (1977), 'Trophic state index for lake', Limnology and Oceanography, vol. 22, no. 2, pp. 361-369. Casulli, V., (1990), 'Semi-implicit finite difference methods for the two-dimensional shallow water equations', Journal of Computational Physics, vol. 86, no. 1, pp. 56-74. Casulli, V., and Cheng, R. T., (1992), 'Semi-implicit finite difference methods for the three-dimensional shallow water flow', International Journal for Numerical Methods in Fluids, vol. 15, pp. 629-648. Casulli, V., Cheng, R., and Smith, P., (1993), 'Recent Developments in Three-Dimensional Numerical Estuarine Models', Journal of Hydraulic Engineering, vol. 2, pp. 1982-1987. Cerco, C., and Cole, T., (1993), 'Three-dimensional eutrophication model of Chesapeake Bay eutrophication', Journal of Environmental Engineering, ASCE, vol. 119, no. 6, pp. 1006-1025. Cerco, C., and Meyer, M., (2000), 'Tributary refinement to the Chesapeake Bay model', Journal of Environmental Engineering, ASCE, vol. 126, pp.164-174. Cerco, C. F., and Cole, T. M., (1993), 'Three-dimensional eutrophication model of Chesapeake Bay', Journal of Environment Engineering, ASCE, vol. 119, pp. 1006-1025. Chapra, S. C., and Reckhow, K. H., (1983), 'Engineering Approaches for Lake Management, Vol.2 : Mechanistic Modeling', Butterworth Publishers, Woburn, MA. Chapra, S. C., (1977), 'Total Phosphorous Model for Great Lakes', Journal of the Environmental Engineering Division, ASCE, vol. 103. Chapra, S. C., (1997), 'Surface Water-Quality Modeling', McGraw-Hill, New York. Chen, C. W., (1970), 'Concepts and Utilities of Ecologic Model', Journal of the Sanitary Engineering Division, ASCE, pp.1085-1097. Cheng, R. T., and Casulli, V., Gartner, J., (1993), 'Tidal, Residual, Inter-tidal Mud-flat (TRIM) Model and Its Applications to San Francisco Bay, California', Estuarine, Coastal Shelf Science, vol. 36, pp. 235-280. Cole, T. M., and Buchak, E. M., (1993), 'CE-QUAL-W2: A Two-dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, User Manual', Waterways Experiment Station, U.S. Army Corps of Engineers. Di Toro, D. M., (1980a), 'Applicability of cellular equilibrium and Monod theory to phytoplankton growth kinetics', Ecological Modelling, vol. 8, pp. 201-218. Di Toro, D. M., (1980b), 'The effect of phosphorus loadings on dissolved oxygen in Lake Erie', In: R. C. Loehr, C. S. Martin, and W. Rast, (Eds.), Phosphorus Management Strategies for Lakes, Ann Arbor Science, Ann Arbor, MI, pp. 191-205. Di Toro, D. M., O'Connor, D. J., and Thomann, R. V., (1971), 'A Dynamic Model of the Phytoplankton Population in the Sacramento-San Joaquin Delta,' Advances in Chemistry, no. 116, American Chemical Society, pp. 131-180. Douglas, J., and Rachford, H. H., (1956), 'On the numerical solution of heat conduction problems in two and three space variables', Transactions of the American Mathematical Society, vol. 82, pp. 421-439. Ezer, T., and Mellor, G. L., (1997), 'Simulations of the Atlantic Ocean with a free surface sigma coordinate ocean model', Journal of Geophysical Research, vol. 102, no. 15, pp. 647-657. Ezer, T., and Mellor, G. L., (2000), 'Sensitivity studies with the North Atlantic sigma coordinate Princeton Ocean Model', Dynamics of Atmospheres and Oceans, vol. 32, pp. 185-208. Frankel, S. P., (1950), 'Convergence rate of iterative treatment of partial differential equations', Mathematical Tables and Aids to Computation, vol. 4, pp. 65-75. Gill, A. E., (1982) “Appendix 3, Properties of seawater”, Atmosphere-Ocean Daynamics, Academic Press, New York, NY, pp. 599-600. Hamrick, J. M., (1992), 'A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects', Special Report, Marine Science and Ocean Engineering, Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia. Hamrick, J. M., (1992), 'Estuarine environmental impact assessment using a three-dimensional circulation and transport model', Estuarine and Coastal Modeling, Proceedings of the 3rd International Conference, M. L. Spaulding et al., (Eds.), ASCE, New York, pp. 292-303. Hamrick, J. M., (1992), 'Preliminary analysis of mixing and dilution of discharges into the York River, a Report to the Amoco Oil Co.', The College of William and Mary, Virginia Institute of Marine Science. Hamrick, J. M., (1994), 'Linking hydrodynamic and biogeochemical transport models for estuarine and coastal waters', Estuarine and Coastal Modeling, Proceedings of the 3rd International Conference, M. L. Spaulding et al., (Eds.), ASCE, New York, pp. 591-608. Hamrick, J. M., (1995), 'Calibration and verification of the VIMS EFDC model of the James River, Virginia', Special Report, The College of William and Mary, Virginia Institute of Marine Science. Hamrick, J. M., (1995), 'Evaluation of the environmental impacts of channel deepening and dredge spoil disposal site expansion in the lower James River, Virginia', Special Report, The College of William and Mary, Virginia Institute of Marine Science. Hamrick, J. M., (1991), 'Analysis of mixing and dilution of process water discharged into the Pamunkey River, a Report to the Chesapeake Corp.', The College of William and Mary, Virginia Institute of Marine Science. Hess, J. L., and Smith, A. M. O., (1966), 'Calculation of potential flow about arbitrary bodies', Progress in Aeronautical Science, pp. 1-138. Kuo, J. T., and Thomann, R. V., (1983), 'Phytoplankton Modeling in the Embayment of Lakes', Journal of Environmental Engineering, ASCE, vol. 109, no. 6, pp. 1311-1332. Kuo, J. T., Hsieh, M. H., Liu, W. C., Lung, W. S., and Chen, H. C., (2006a), 'Linking watershed and receiving water models for eutrophication analysis of Tseng-Wen Reservoir, Taiwan', International Journal of River Basin Management, vol. 4, no. 1, pp. 1-9. Kuo, J. T., Lung, W. S., Yang, C. P., Liu, W. C., Yang, M. D., and Tang, T. S., (2006b), 'Eutrophication modeling of reservoirs in Taiwan', Environment Modeling & Software, vol. 22, pp. 829-844. Larsen, D. P., Sickle, J. V., Malueng, K. W., and Smith, P. D., (1979), 'The Effect of Wastewater Phosphorous Removal on Shagawa Lake, Minnesota : Phosphorous Supplies, Lake Phosphrous and Chlorophyll-a', Water Research, vol. 13. Linker, L. C., Shenk, G. W., Wang, P., Hopkins, K. J., and Pokharel, S., (2001), 'A short history of Chesapeake Bay modeling and the next generation of watershed and estuarine models', Publication Article, Chesapeake Bay Program, http://www.chesapeakebay.net/ Lung, W. S., (1975), 'Modeling of phosphorus sediment-water interactions in White Lake', Doctoral Dissertation, Department of Civil Engineering, University of Michigan. Lung, W. S., (2001), 'Water quality modeling for wasteload allocations and TMDLs', John Wiley & Sons, Inc. Lung, W. S., Canale, R. P., and Freedman, P. L., (1976), 'Phosphorus models for eutrophic lakes', Water Resources, vol. 10, pp. 1101-1114. MacCormack, R. W., (1969), 'The effect of viscosity in hypervelocity impact cratering', AIAA Paper, pp. 69-354. Markofsky, M., and Harlemn, D. R. P., (1973), 'Prediction of Water Quality in a Stratified Reservoir', Journal of Hydraulic Engineering, ASCE. Moustafa, M. Z., and Hamrick, J. M., (1994), 'Modeling circulation and salinity transport in the Indian River Lagoon', Estuarine and Coastal Modeling, Proceedings of the 3rd International Conference, M. L. Spaulding et al., (Eds.), ASCE, New York, pp. 381-395. Moustafa, M. Z., and Hamrick, J. M., (1995), 'Development of the Everglades wetlands hydrodynamic model, Part 3: Model application to South Florida water conservation area”, Water Resources Research. Orlob, G. T., (1981), ' Chapter 8 - Model for Stratified Impoundment”, In: A. K. Biswas, (Ed.), Models for Water Quality Management, McGraw-Hill Book Company, Inc., New York. Orlob, G.T., (1975), 'Present problems and future prospects of ecological modeling”, In: C. S. Russell, (Ed.), Ecological Modeling in a Resource Management Framework, Resources for the Future, Washington, D.C., pp. 283-312. Park, K., Kuo, A. Y., Shen, J., and Hamrick, J. M., (1995), 'A three-dimensional hydrodynamic-eutrophication model (HEM-3D): Description of water quality and sediment process submodels', Special Report in Applied Marine Science and Ocean Engineering No. 327, Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia. Peaceman, D. W., and Richford, H. H., (1955), 'The numerical solution of parabolic and elliptic differential equations', Journal of the Society for Industrial and Applied Mathematics, vol. 3, pp. 28-41. Reckhow, K. H., and Chapra, S. C., (1983), 'Engineering Approaches for Lake Management, Vol.1: Data Analysis and Empirical Modeling', Butterworth Publishers, Woburn, MA. Renolds, C., (2006), 'Ecology of Phytoplankton', Cambridge University Press, Cambridge, UK. Schladow, S.G., and Hamilton, D.P., (1997), 'Prediction of water quality in lakes and reservoirs: Part II. Model calibration, sensitivity analysis, and application', Ecological Modeling, vol. 96, no. 1-3, pp. 111-123. Song, Y., and Haidvogel, D. B., (1994), 'A semi-implicit ocean circulation model using a generalized topography-following coordinate system', Journal of Computational Physics, vol. 115, pp. 228-244. Soyupak, S., Mukhallalati, L., Yemisen, D., Bayar, A., and Yurteri, C., (1997), 'Evaluation of eutrophication control strategies for the Keban Dam reservoir', Ecological Modelling, vol. 97, pp. 99-110. Steele, J. H., (1962). “Environment control of photosynthesis in the sea”, Limnology and Oceanography, vol. 7, pp. 137-150. Steger, J. L., and Warming, R. F., (1981), 'Flux vector splitting of the invisicid gas dynamics equations with application to finite difference methods', Journal of Computational Physics, vol. 40, pp. 263-293. Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., (1997), 'Computational Fluid Mechanics and Heat Transfer', Second Edition, Taylor & Francis. Thomann, R. V., and Muller, J. A., (1987), 'Principles of surface water quality modeling and control', Harper & Row Publishers, New York. Thomann, R. V., Di Toro, D. M., Winfield, R. P., and O'Connor, D. J., (1975), 'Mathematical modeling of phytoplankton in Lake Ontario, Part 1: model development and verification', USEPA Research Report, EPA-600/-75-005. Tufford, D.L., and McKellar, H.N., (1999), 'Spatial and temporal hydrodynamic and water quality models of a large reservoir on the South Carolina (USA) coastal plain', Ecological Modelling, vol. 114, pp. 137-173. Van Leer, B., (1982), 'Flux Vector splitting for the euler equations', Proceedings of the 8th International conference on Numerical Methods in Fluid Dynamics, Lecture Notes Physics, Spring-Verlag, New York, vol. 170, pp. 507-512. Van Rijn, L. C., Rossum, H. V., Termes, P., (1990), 'Field verification of 2D and 3D suspended-sediment models', Journal of Hydraulic Engineering, ASCE, vol. 116, pp. 1270-1288. Vollenweider, R. A., (1983), 'The Scientific Basis of Lake and Stream Eutrophication with Particular Reference to Phosphorus and Nitrogen as Eutrophication Factors', Technical Report, OECD, DAS/CSI/68.27. Von Neumann, J., and Richtmyer, R. D., (1950), 'A method for the numerical calculations of hydrodynamic shocks', Journal of Applied Physics, vol. 21, pp. 232-237. Wool, T. A., Davie, S. R., and Rodriguez, H. N., (2003), 'Development of three-dimensional hydrodynamic and water quality models to support TMDL decision process for the Neuse River estuary, North Carolina', Journal of Water Resources Planning and Management, vol. 129, pp. 295-306. Wu, T. S., and Jones, W. K., (1992), 'Preliminary circulation simulations in Apalachicola Bay. Estuarine and Coastal Modeling', Proceedings of the 2nd International Conference, M. L. Spaulding et al., (Eds.), ASCE, New York, pp. 344-356. Yang, Z., and Hamrick, J. M., (2003), 'Variational inverse parameter estimation in a cohesive sediment transport model: an adjoint approach', Journal of Geophysical Research, vol. 108, pp. 30-55. 吳先琪,2001,「翡翠水庫底泥性質及對水質影響潛勢研究計畫(三)」,臺北翡翠水庫管理局委託,台大環境工程研究所執行。 吳俊宗,2000,「翡翠水庫浮游藻與水質關係研究(V)」,臺北翡翠水庫管理局委託,中研院植物所執行。 郭振泰、龍梧生等,1998,「翡翠水庫水質模擬與應用(一)」,台北翡翠管理局委託,台大土木工程研究所執行。 郭振泰、龍梧生等,1999,「翡翠水庫水質模擬與應用(二)」,台北翡翠管理局委託,台大土木工程研究所執行。 郭振泰、龍梧生等,2000,「翡翠水庫水質模擬與應用(三)」,台北翡翠管理局委託,台大土木工程研究所執行。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27226 | - |
| dc.description.abstract | 豐枯季節分明的特性,使得台灣地區大部分的水庫水面高程變化劇烈;再加上地形坡度大,使得水庫水面在昇降的過程中,水庫邊界也跟著劇烈的改變。本研究以翡翠水庫為研究對象,發展一個能處理邊界急遽變化下的三維水理水質模式,同時並模擬不同藻類在水庫中不同季節中的變化。
模式以台北翡翠水庫管理局於1999年與2000年的水理、水質與藻類資料,進行模式的檢定與驗證。根據實測資料顯示,這兩年中,水庫的最高與最低的水位差,約為20公尺,變化十分劇烈。於水庫中,夏季水庫中有分層效應,冬季則有翻轉現象。由於上游區域的人為活動,造成翡翠水庫的水質在某些季節有優養化的情形產生。在不同環境因子下,主要生長的藻類種類也隨之改變。 模擬結果顯示,本模式對於劇烈變化的地形模擬程度良好,計算網格隨著水位的不同而變化,入流的位置也隨著調整。於1999年與2000年分別為枯水與豐水期的情形下,本模式依然能夠完整的描述模擬區域的水位變化。與大壩附近的溫度剖面線相比,可以再現水庫中的分層效應。為了模擬水位變化,網格必須能在乾濕兩種狀態進行切換,同時為了符合地形的幾何形狀,網格必須精細,再加上因為網格乾濕狀態的切換,水理與水質的計算時距必須相等,造成整個模式需要的運算時間大幅增加。 本研究所發展的水質模式,除了模擬有機磷、正磷酸鹽、氨氮、硝酸氮、有機氮、生化需氧量與溶氧之外,尚包含可模擬不同藻種的變數。在藻類的模擬中,溫度限制因子的計算方式,與一般模擬單一藻類的模式不同,以鐘型分佈來計算溫度限制因子。模擬結果與實測資料皆顯示水庫中的水質隨著時間改變而有不同的變化。而水庫的主要藻類中,綠藻主要約在夏秋兩季生長,藍綠藻則為春夏,而矽藻的主要生長期間為冬季至春初。本研究同時也發現,於翡翠水庫中,除了矽藻之外,其餘藻類主要營養鹽限制因子為磷系統;矽藻則是氮系統與磷系統交互限制生長。將不同藻類換算回葉綠素a的結果顯示,模擬時距中,水庫於夏末秋初呈現優養化的情形,其餘大部分時間處於中養階段,與實測資料相符。 | zh_TW |
| dc.description.abstract | In this study, a three-dimensional hydrodynamic and water quality model was developed to simulate the circulation pattern and the trophic level of reservoirs with highly variable bathymetry in Taiwan. As reservoirs in Taiwan are characterized by the rapid changes in bathymetry and the transient variations of the storage volumes (i.e. surface elevations), this presents various challenges for the modelers.
Preliminary model results obtained for the Feitsui Reservoir show that the transient variation of the storage volume can be reproduced by the model, whereby the dynamic fluctuation of the surface elevation at the dam site is replicated by the model for a two-year period (from 1999 to 2000). Subsequent tests conducted using the model include hydrothermal simulations to ensure the accurate predictions of the spatial and temporal variations of temperature in the reservoir, with particular focus on matching the thermocline structure during the summer stratification period. Results of the temperature simulation reveal that a stratification phenomenon occurred during summer and early autumn in 1999 and 2000, and subsequently led to an overturn phenomenon. The hydrodynamic results derived were then used to run the water quality modeling subprogram. An eutrophication model that can simulate eight water quality variables was also developed in this study. Biological variables were incorporated, including four groups of phytoplankton such as cyanobacteria, green algae, diatom, and all the others. The hydrodynamic and water quality simulation uses the same grids and time steps in order to handle the complexity of the geometry of Feitsui reservoir. Simulation results indicate that the temperature, light, and nutrient are the growth limiting factors for phytoplankton. A new temperature function used in CE-QUAL-ICM was applied in this model. The results shown that this function is suitable for temperature-limiting phytoplankton simulation in Feitsui Reservoir. Both the field data and model simulation results also show that each algae has its own growing period. It was found that phosphorus is the nutrient limiting factor for most phytoplankton, except for diatom, which is controlled by both phosphorus and nitrogen. Lastly, the carbon-phosphorus-nitrogen ratio for the four groups of phytoplankton was made distinct so that the interaction of nutrients could be emphasized. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:58:28Z (GMT). No. of bitstreams: 1 ntu-97-D91521013-1.pdf: 1602352 bytes, checksum: c6d577267cedb6f145be04bd0db3eb60 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv TABLE OF CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives and scope of the study 3 1.3 Study site 5 1.4 Thesis outline 7 CHAPTER 2 LITERATURE REVIEW 11 CHAPTER 3 MODEL DEVELOPMENT 17 3.1 Hydrodynamics 19 3.2 Dispersion coefficient 27 3.3 Heat budget 28 3.4 Water quality 35 3.4.1 Phytoplankton kinetics 36 3.4.2 Phosphorus cycle 42 3.4.3 Nitrogen cycle 43 3.4.4 Dissolved oxygen 44 CHAPTER 4 RESULTS OF MODEL SIMULATION 46 4.1 Grids 46 4.2 Water surface level 50 4.3 Water temperature 54 4.4 Water quality simulation 65 CHAPTER 5 SUMMARY AND CONCLUSIONS 85 5.1 Summary and conclusions 85 5.2 Suggestions for future research 89 References 92 | |
| dc.language.iso | en | |
| dc.subject | 三維模式 | zh_TW |
| dc.subject | 翡翠水庫 | zh_TW |
| dc.subject | 優養化 | zh_TW |
| dc.subject | 水理 | zh_TW |
| dc.subject | 水質 | zh_TW |
| dc.subject | 藻類 | zh_TW |
| dc.subject | Feitsui Reservoir | en |
| dc.subject | algae kinetic | en |
| dc.subject | water quality | en |
| dc.subject | hydrodynamic | en |
| dc.subject | three-dimensional numerical model | en |
| dc.subject | eutrophication | en |
| dc.title | 三維水庫水理與優養模式之發展與應用 | zh_TW |
| dc.title | Three dimensional hydrodynamic and eutrophication modeling of reservoirs in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 龍梧生 | |
| dc.contributor.oralexamcommittee | 吳俊宗,吳先琪,柳文成,徐年盛 | |
| dc.subject.keyword | 翡翠水庫,優養化,三維模式,水理,水質,藻類, | zh_TW |
| dc.subject.keyword | Feitsui Reservoir,eutrophication,three-dimensional numerical model,hydrodynamic,water quality,algae kinetic, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
