請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27220完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃良雄 | |
| dc.contributor.author | Meng-Yu Lin | en |
| dc.contributor.author | 林孟郁 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:58:19Z | - |
| dc.date.available | 2009-02-18 | |
| dc.date.copyright | 2008-02-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-29 | |
| dc.identifier.citation | J. S. Antunes-Do-Carmo, F. J. Seabra-Santos, and E. Barthelemy. Surface aves
propagation in shallow water: a finite element model. Int. J. Numer. Methods Fluids, 16:447–459, 1993. G. R. Baker. A test of the method of fink and soh for following vortex-sheet motion. J. Fluid Mech., 100:209, 1980. G. R. Baker, D. I. Meiron, and S. A. Orszag. Generalized vortex methods for freesurface flow problems. J. Fluid Mech., 123:477–501, 1982. G. R. Baker, D. I. Meiron, and S. A. Orszag. Generalized vortex methods for free surface flow problems II: radiating waves. J. Sci. Comp., 4(3):237–259, 1989. J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Nature, 324:446–449, 1986. G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press, 1967. J. T. Beale. A convergent 3-D vortex method with grid-free stretching. Math. Comput., 46:401–424, 1986. J. T. Beale and A. Majda. Rates of convergence for viscous splitting of the navierstokes equations. Math. Comput., 37:243–259, 1981. J. T. Beale and A. Majda. Vortex methods I: Convergence in three dimensions. Math. Comput., 39:1–27, 1982a. J. T. Beale and A. Majda. Vortex methods II: High-order accuracy in two and three dimensions. Math. Comput., 39:29–52, 1982b. J. T. Beale and A. Majda. High-order accurate vortex methods with explicit velocity kernels. J. Comp. Phys., 58:188–208, 1985. P. S. Bernard. A deterministic vortex sheet method for boundary layer flow. J. Comp. Phys., 117:132–145, 1995. I. C. Chan, L. H. Huang, and P. C. Hsieh. Analysis of water waves passing over a submerged rectangular dike. J. Engrg. Mech., ASCE, 129(6):613–626, 2003. C. C. Chang and R. L. Chern. A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method. J. Fluid Mech., 233: 243–263, 1991. K. A. Chang, T. J. Hsu, and P. L. F. Liu. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle part ii: Conidal waves. Coastal Eng., 52:257–283, 2005. A. J. Chorin. Vortex sheet approximation of boundary layers. J. Comp. Phys., 27 (3):428–442, 1978. A. J. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57:785–796, 1973. A. J. Chorin and P. S. Bernard. Discretization of a vortex sheet, with an example of roll-up. J. Comp. Phys., 13(3):423–429, 1973. J. P. Christiansen. Vortex methods for flow simulation. J. Comput. Phys., 13:363, 1973. N. R. Clarke and O. R. Tutty. Construction and validation of a discrete vortex method for two-dimensional incompressible navier-stokes equations. Computers and Fluids, 23(6):751–783, 1994. M. J. Cooker, D. H. Peregrine, C. Vidal, and J. W. Dold. The interaction between a solitary wave and a submerged semicircular cylinder. J. Fluid Mech., 215:1–22, 1990. G. H. Cottet. Large time behavior of deterministic particle approximations to the Navier-Stokes equations. Math. Comput., 56:45–59, 1991. G. H. Cottet and P. Koumoutsakos. Vortex Methods: Theory and Applications. Cambridge Univ. Press, Cambridge, UK, 2000. G. H. Cottet, P. Koumoutsakos, and M. L. Ould Salihi. Vortex methods with spatially varying cores. J. Comp. Phys., 162:164–185, 2000. W. Craig, P. Guyenne, J. Hammack, and D. Henderson. Solitary water wave interactions. Phys. Fluids, 18(057106), 2006. R. G. Dean and R. A. Dalrymple. Water Wave Mechanics for Engineers and Scientists. World Scientific, River Edge, NJ., 1991. P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. I. The case of isotropic viscosity; II. The anisotropic case. Math. Comput., 53:485, 1989. A. Friedmann. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, NJ, 1964. M. F. Gobbi and J. T. Kirby. Wave evolution over submerged sills: tests of high-order boussinesq model. Coastal Eng., 37:57–96, 1999. L. Greengard and V. Rohklin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325, 1987. S. T. Grilli, M. A. Losada, and F. Martin. Characteristics of solitary wave breaking induced by breakwaters. J. Waterw., Port, Coastal, Ocean Eng., 120:609–628, 1994. J. Grue. Nonlinear water wave at a submerged obstacle. J. Fluid Mech., 244:455–476, 1992. P. Guyenne and D. P. Nicholls. Numerical simulation of solitary waves on plane slopes. Mathematics and Computers in Simulation, 69:269–281, 2005. O. Hald. Convergence of vortex methods for Euler’s equations II. SIAM J. Num. Anal., 16:726–755, 1979. O. Hald and V. Mauceri Del Prete. Convergence of vortex methods for Euler’s equations. Math. Comp., 32:791–801, 1978. B. T. Helenbrook, L. Martinelli, and C. K. Law. A numerical method for solving incompressible flow problems with a surface of discontinuity. J. Comput. Phys., 148:366–396, 1999. T. W. Hsu. FLDV measurements on the vortex behavior for waves passing over the submerged breaker. Research Report. National Cheng Kung University, Tainan, Taiwan, 1995. T.W. Hsu, C. M. Hsieh, and R. R. Hwang. Using RANS to simulate vortex generation and dissipation around impremeable submerged double breakwaters. Coastal Eng., 51:557–579, 2004. S. A. Huyer and J. R. Grant. Computation of unsteady separated flow fields using anisotropic vorticity elements. Journal of Fluids Engineering, 118:839–849, 1996. S. R. Idelsohn, E. Onate, and C. Sacco. Finite element solution of free-surface shipwave problems. Int. J. Numer. Meth. Eng., 45:503–528, 1999. H. Jeffreys and B. S. Jeffreys. Methods of Mathematical Physics. Cambridge University Press, 3rd edition, 1956. R. B. Kinney and Z. M. Cielak. Analysis of unsteady viscous flow past an airfoil: Part I - theoretical development. AIAA J., 15:1712–1717, 1977. R. B. Kinney and M. A. Paolino. Flow transient near the leading edge of a flat plate moving through a viscous fluid. ASME J. Appl. Mech., 41:919–924, 1974. P. Koumoutsakos and A. Leonard. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech., 296:1–38, 1995. P. Koumoutsakos and D. Shiels. Siumlations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. J. Fluid Mech., 328:177–227, 1996. P. Koumoutsakos, A. Leonard, and F. Pepin. Boundary conditions for viscous vortex methods. J. Comput. Phys., 113:52–61, 1994. K. Kuwahara and H. Takami. Numerical studies of two-dimensional vortex motion by a system of point vortices. J. Physical Society of Japan, 34(1):247–253, 1973. H. Lamb. Hydrodynamics. Cambridge Univ. Press, Cambridge, UK, 1932. A. Leonard. Vortex methods for flow simulation. J. Comput. Phys., 37:289–335, 1980. A. Leonard, D. Shiels, J. K. Salmon, G. S. Winckelmans, and P. Ploumhans. Recent advances in high resolution vortex methods for incompressible flows. In Proc. 13th AIAA Computational Fluid Dynamics Conf., Snowmass Village, CO, June 1997. M. J. Lighthill. Boundary Layer Theory, chapter Introduction, page 54. Oxford Univ. Press, New York, 1963. C. Lin, S. C. Chang, T. C. Ho, and K. A. Chang. Laboratory observation of solitary wave propagating over a submerged rectangular dike. J. Engrg. Mech., ASCE, 132(5), 2006. P. Lin and P. L. F. Liu. Internal wave-maker for Navier-Stokes equations models. J. Wtrwy., Port, Coast., and Oc. Engrg., 125(4):207–215, 1999. D. C. Lo and D. L. Young. Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow using a velocity-vorticity formulation. J. Comput. Phys., 195: 175–201, 2004. M. S. Longuet-Higgins and E. D. Cokelet. The deformation of steep surface waves on water. I. a numerical method of computation. Proc. R. Soc. Lond. A., 350:1–26, 1976. T. Lundgren and P. Koumoutsakos. On the generation of vorticity at a free surface. J. Fluid Mech., 382:351–366, 1999. J. R. Mansfield, O. M. Knio, and C. Meneveau. A dynamic LES scheme for the vorticity transport equation: Formulation and a priori tests. J. Comput. Phys., 145:693–730, 1998. S. R. Massel. Harmonic generation by waves propagating over a submerged step. Coastal Engineering, 7:357–380, 1983. A. Masud and T. J. R. Hughes. A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. Comput. Meth. Appl. Mech. Eng., 146:91–126, 1997. P. D. McCormack and L. Crane. Physical Fluid Dynamics. Academic Press, New York, 1973. C. C. Mei and J. L. Black. Scattering of surface waves by rectangular obstacles in waters of finite depth. J. Fluid Mech., 38:499–511, 1969. J. W. Miles. Surface-wave scattering matrix for shelf. J, Fluid Mech., 28:755–767, 1967. J. J. Monaghan. Extrapolating b-splines for interpolation. J. Comp. Phys., 60:253–262, 1985. L. Morino. Helmholtz and Poincare potential-vorticity decompositions for the analysis of unsteady compressible viscous flows. In P. K. Banerjee and L. Morino, editors, Boundary Element Methods in Nonlinear Fluid Dynamics. Elsevier, 1990. A. M. Muir Wood. Coastal Hydraulics. Mac Millon, London, 1969. J. N. Newman. Reflection and transmission of water waves past long obstacles. J. Fluid Mech., 23:399–415, 1965. S. Pfalzner and P. Gibbon. Many-Body Tree Methods in Physics. Cambridge Univ. Press, 1996. P. Ploumhans and G. S.Winckelmans. Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. J. Comp. Phys., 165:354–406, 2000. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge University Press, Cambridge, England, 2nd edition, 1992. V. Rey, M. Belzons, and E. Guazzelli. Propagation of surface gravity waves over a rectangular submerged bar. J. Fluid Mech., 235:453–479, 1992. L. Rosenhead. The formation of vorticies from a surface of discontinuity. Proc. Roy. Soc. London Ser. A, 134:170–192, 1931. N. Salvesen. On higher-order wave theory for submerged two-dimensional bodies. J. Fluid Mech., 38:415–432, 1969. J. Smagorinsky. General circulation experiments with the primitive equations, Part I: the basic experiment. Mon. Weather Rev., 91:99–164, 1963. Y. C. Sue, M. J. Chern, and R. R. Hwang. Interaction of nonlinear progressive viscous waves with a submerged obstacle. Ocean Eng., 32:893–923, 2005. M. Tanaka. The stability of solitary waves. Phys. Fluids, 29:650, 1986. C. J. Tang and J. H. Chang. Application of local grid refinement to vortex motion due to a solitary wave passing over a submerged body. Int. J. Numer. Meth. Fluids, 38:609–624, 2002. Z. H. Teng. Elliptic-vortex method for incompressible flow at high reynolds number. J. Comp. Phys., 46:54–68, 1982. F. C. K. Ting and Y. K. Kim. Vortex generation in water waves propagating over a submerged obstacle. Coastal Engineering, 24:23–49, 1994. J. S. Uhlman. An integral equation formulation of the equations of motion of an incompressible fluid. In Naval Undersea Warfare Center Technical Report, 10-086. July 1992. L. C. Woods. The Theory of Subsonic Plane Flow. Cambridge University Press, Cambridge, UK., 1961. R. W. Yenug and M. Vaidhyanathan. Non-linear interaction of water waves with submerged obstacles. Int. J. Numer. Methods Fluids, 14:1111–1130, 1992. D. H. Zhang and A. T. Chwang. Numerical study of nonlinear shallow water waves prodiced by a submerged moving disturbance in viscous flow. Phys. Fluids, 8:147, 1996. D. H. Zhang and A. T. Chwang. On solitary waves forced by underwaer moving objects. J. Fluid Mech., 389:119–135, 1999. P. J. Zwart, G. D. Raithby, and M. J. Raw. The integrated space-time finite volume method and its application to moving boundary problems. J. Comput. Phys., 154: 497–519, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27220 | - |
| dc.description.abstract | 本研究的主旨是建立一數值模式,以研究重力水波通過潛沒物體引致渦流現象之二維流場問題。此數值模式的特色在於同時應用了邊界積分法(boundary integral method) 與渦旋法 (vortex method) 的優點。邊界積分法由於無須在計算域內架構網格,因此可免除網格建立的時間耗費以及處理自由水面邊界的困難。另一方面,由於渦旋法中帶有渦度的質點能集中在具有旋性的區域內,因此在處理尺度不同、大大小小的渦旋現象上具有計算上的優勢。此方法能突破一般求解 Navier-Stokes 方程式之數值方法需在網格系統上求解的限制,因而能更有效地將計算資源集中於自由水面波動及渦流運動的
模擬。 數學模式的建立係應用了 Helmholtz decomposition 將速度場分解為非旋性與旋性兩部份,並建立新的待解變數組。自由水面上的渦流或偶極流奇異點分布 (vortex or dipole distribution) 決定速度場的非旋性部份,而物體邊界上的渦流奇異點分布則決定了進入流體的渦度通量 (vorticity flux)。自由水面上的黏滯性效應及渦度的產生予以忽略。統御邊界奇異點強度的邊界積分式屬於第二類 Fredholm 積分式,故可用疊代法求解,以大幅提高計算效率。速度場的旋性部份是由渦度場控制,並運用渦旋法求解。渦旋法將渦度以離散的Lagrangian 質點來表示:質點跟隨流體而運動,其強度則因黏滯性擴散而改變,並由 PSE (particle strength exchange) 法解之。而紊流的效應則採用在大尺度渦流模擬 (large eddy simulation) 中常用的 SGS 模型 (sub-grid scale model)之渦旋黏度 (eddy viscosity) 來處理。 為了驗證模式在自由水面計算上的準確性,本研究選擇了兩個問題來進行測試。其一是孤立波在等水深的水道中之傳遞,此測試之目的在於檢驗本模式計算非線性水波的能力。另一是水中移動之線渦 (line vortex) 引致水面波動的現象,其目的是測試模式中計算渦流對於水面影響的能力。兩項測試均呈現了計算的準確性。而模式在模擬水波通過矩形潛沒物體產生渦流現象之準確性,則是與他人的實驗結果比較並驗證,而計算的收斂性亦同時檢測。結果顯示本模式的計算成果足以呈現與實驗觀測接近的水面波動與渦流生成及消散等流場現象。 在模式的應用部份,本文中呈現了一系列的水波通過矩形潛沒物體的研究,水波形態包含了週期波與孤立波。在週期性水波通過矩形潛沒物體之流場分析中,文中討論了水波之波長、水深及物體長度對於渦流生成的影響。研究結果發現 Keulegan-Carpenter 數對於評估生成渦流之強度及其影響是關鍵的參數。而在孤立波通過矩形潛沒物體之流場分析中,則著重在探討不同波高生成的渦流尺度,以及此渦流對於孤立波的影響。研究發現由於孤立波並不會產生往返的水流,因此與週期波相比渦流將存在較長的時間。而渦流的強度及其影響,則與入射波之波幅呈正比的關係。 | zh_TW |
| dc.description.abstract | The present work develops a 2-D numerical scheme which combines vortex
method and boundary integral method to investigate the interaction of water waves with submerged obstacles. The major advantages of this method are the efficiency on solving the free surface motion and the irrotational flow field by using the boundary integral formulations, and the essentially grid-free nature of the vortex particle method for solving the vorticity field. Using this method we may concentrate the computational resources on the simulation of surface waves and on the evaluation of vorticity which is predominantly confined in compact regions. The numerical method is accomplished by using a Helmholtz decomposition which decomposes velocity field into its irrotational and rotational components. The distribution of dipole (vortex) along the free surface determines the irrotational component of flow field, and the distribution of vortex along the solid surface determines the vorticity flux into the fluid. Viscous effects and generation of vorticity on the free surface are neglected. For evaluating the strengths of singularities a boundary integral method is used in which the resulting Fredholm integral equations of the second kind are solved efficiently in both storage and work by iteration. Vorticity generated from the submerged obstacle is convected and diffused in the fluid via a Lagrangian vortex (blob) method, using the particle strength exchange (PSE) method for diffusion, with particle redistribution. A sub-grid eddy viscosity model is used to simulate the turbulent effects. The inviscid part of the numerical method and the performance in the computation of nonlinear waves are tested using a calculation of solitary wave propagation in a uniform channel. A further test for the simulation of the free surface deformation induced by a moving line vortex in the fluid is performed. In these tests good agreements between numerical and theoretical results are obtained. The full model is verified by simulating periodic and solitary waves travelling over a submerged rectangular obstacle, and the results are compared with laboratory measurements. All comparisons exhibit reasonably well agreement. Applications to periodic and solitary water waves over a submerged rectangular obstacle are given. For periodic waves, the effects of the incident wave length, still water depth and the length of the obstacle on the vortex generation and evolution are presented. The results lead us to the conclusion that for periodic water waves the Keulegan-Carpenter number is the key parameter in determining the formation and development of the vortices generated from submerged obstacles. For solitary waves, the effects of the incident wave height are discussed. In contrast with periodic waves, the vortices generated from the submerged obstacle in a solitary wave are preserved in a long period because there is no reversed flow. The strength of vortices and their effects are positively correlated with the incident wave height. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:58:19Z (GMT). No. of bitstreams: 1 ntu-97-D89521013-1.pdf: 70188520 bytes, checksum: 57ba08a6fd51fcb7c02c72f52d888061 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Abstract iii
Nomenclature v List of Figures xv List of Tables xxv 1 Introduction 1 1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Mathematical Formulations 7 2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Solid surface boundary condition . . . . . . . . . . . . . . . . . 8 2.2.2 Free surface boundary conditions . . . . . . . . . . . . . . . . . 9 2.2.2.1 KFSBC . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2.2 DFSBC . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Lateral boundary condition . . . . . . . . . . . . . . . . . . . . 10 2.3 Helmholtz decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Viscous splitting algorithm for the vorticity boundary condition . . . . 14 2.5 Evolution equation for F . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Evolution equation for B . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Basic Formulation of Vortex Methods 25 3.1 Introduction of Vortex Methods . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Vortex method with PSE scheme and vorticity flux . . . . . . . . . . . 28 3.3 Fast summation techniques . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Particle redistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Vortex methods with spatially varying cores . . . . . . . . . . . . . . . 35 3.6 Sub-grid modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Numerical Implementation 37 4.1 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Wave Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 Periodic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1.1 Sinusoidal wave . . . . . . . . . . . . . . . . . . . . . 42 4.2.1.2 Second-order Stokes wave . . . . . . . . . . . . . . . . 43 4.2.2 Solitary Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Wave absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Method of image for the boundary condition on the flat bottom . . . . 46 4.5 Stability criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.6 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Model Verifications 49 5.1 Solitary wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Moving submerged line vortex . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 Periodic waves over a submerged obstacle . . . . . . . . . . . . . . . . 57 5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 Description of computational setup . . . . . . . . . . . . . . . . 59 5.3.3 Convergence Study . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.4 Results and Verifications . . . . . . . . . . . . . . . . . . . . . . 63 6 Applications and Discussions 85 6.1 Periodic wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1.1 Effect of relative depth (kh) . . . . . . . . . . . . . . . . . . . . 85 6.1.1.1 Experimental and numerical setups . . . . . . . . . . 86 6.1.1.2 Intermediate-water waves . . . . . . . . . . . . . . . . 87 6.1.1.3 Deep-water waves . . . . . . . . . . . . . . . . . . . . 90 6.1.1.4 Shallow-water waves . . . . . . . . . . . . . . . . . . . 90 6.1.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.1.2 Effect of water depth . . . . . . . . . . . . . . . . . . . . . . . . 114 6.1.3 Effect of obstacle length . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Solitary wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.1 Description of numerical setup . . . . . . . . . . . . . . . . . . 146 6.2.2 H/h = 0.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.3 Effect of wave height . . . . . . . . . . . . . . . . . . . . . . . . 150 7 Summary and Conclusions 189 7.1 Summary and major contribution . . . . . . . . . . . . . . . . . . . . . 189 7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.3 Recommendations for future investigations . . . . . . . . . . . . . . . . 192 A Computation of Drag Force 195 References 199 | |
| dc.language.iso | en | |
| dc.subject | 渦流生成與消散 | zh_TW |
| dc.subject | 自由液面流 | zh_TW |
| dc.subject | 潛沒物體 | zh_TW |
| dc.subject | 渦旋法 | zh_TW |
| dc.subject | 邊界積分法 | zh_TW |
| dc.subject | Free surface flow | en |
| dc.subject | Boundary integral methods | en |
| dc.subject | Vortex methods | en |
| dc.subject | Submerged obstacle | en |
| dc.subject | Vortex generation and dissipation | en |
| dc.title | 含渦流作用之重力水波研究 | zh_TW |
| dc.title | Study of Gravitational Water Wave with Vortex Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊錦釧,許泰文,張建成,黃維信 | |
| dc.subject.keyword | 自由液面流,渦流生成與消散,潛沒物體,渦旋法,邊界積分法, | zh_TW |
| dc.subject.keyword | Free surface flow,Vortex generation and dissipation,Submerged obstacle,Vortex methods,Boundary integral methods, | en |
| dc.relation.page | 207 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 68.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
