Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡淑華(Shu-Hua Chien)
dc.contributor.authorGuang-Hung Shiauen
dc.contributor.author蕭光宏zh_TW
dc.date.accessioned2021-06-12T17:57:21Z-
dc.date.available2009-02-01
dc.date.copyright2008-02-01
dc.date.issued2008
dc.date.submitted2008-01-30
dc.identifier.citation1. M. Grätzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
2. 黃建昇, 結晶矽太陽電池發展近況, 工業材料雜誌 2003, 203期, 150.
3. http://cdnet.stpi.org.tw/techroom/market/energy/energy022.htm, 國家實驗研究院科技政策研究與資訊中心(Science & Technology Policy Research and Information Center,STPI).
4. M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A 365 (2007) 993-1005.
5. B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.
6. X. Chen, S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev. 107 (2007) 2891-2959.
7. M. Grätzel, “Dye-sensitized solar cells”, J. Photochem. Photobiol. C 4 (2003) 145-153.
8. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature 261 (1976) 402-403.
9. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl. Phys. 25 (2006) 638-640.
10. M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”,
Inorg. Chem. 44 (2005) 6841-6851.
11. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A 164 (2004) 3-14.
12. A. Hagfeldt, M. Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chem. Rev. 95 (1995) 49-68.
13. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel﹐“Investigation of sensitizer adsorption and the influence of protons on current and voltagen of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107 (2003) 8981-8987.
14. Md. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc. 123 (2001) 1613-1624.
15. N. G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, J. Phys. Chem. B 104 (2000) 8989-8994.
16. S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai, “Application of titania nanotubes to a dye-sensitized solar cell”, Electrochem. 70 (2002) 418-420.
17. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism”, J. Am. Chem. Soc. 126 (2004) 14943-14949.
18. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim, “Electrospun TiO2 electrodes for dye-sensitized solar cells”, Nanotechnology 15 (2004) 1861-1865.
19. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization”, Phys. Chem. Chem. Phys. 7 (2005) 4157-4163.
20. M. Wei, Y. Konishi, H. Zhou, H.Sugihara, H. Arakawa, “Utilization of titanate nanotubes as an electrode material in dye-sensitized solar cells”, J. Electrochem. Soc. 153 (2006) A1232-A1236.
21. G. S. Kim, H. K. Seo, V.P. Godble, Y. S. Kim, O. B. Yang, H. S. Shin, “Electrophoretic deposition of titania nanotubes from commercial titania nanoparticles:Application to dye-sensitized solar cells”, Electrochem. Commun. 8 (2006) 961-966.
22. J. Jiu, S. Isoda, F. Wang, M. Adachi, “Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film”, J. Phys. Chem. B 110 (2006) 2087-2092.
23. Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, S. Yoshikawa, “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells”, Cent. Eur. J. Chem. 4 (2006) 476-488.
24. N. M. Lawandy, R. M. Balachandran, A.S.L. Gomes, E. Sauvain, “Laser action in strongly scattering media”, Nature 368 (1994) 436-438.
25. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc. 80 (1997) 3157-3171.
26. S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, S. Yoshikawa, “Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure”, J. Photochem. Photobiol. A 164 (2004) 145-151.
27. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, J. Photochem. Photobiol. A. 180 (2006) 184-188.
28. B. Tan, Y. Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites”, J. Phys. Chem. B 110 (2006) 15932-15938.
29. C. J. Lin, W. Y. Yu, S. H. Chien, “Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells”, Appl. Phys. Lett. 91 (2007) 233120.
30. Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell”, Coord. Chem. Rev. 248 (2004) 1381-1389.
31. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa, “Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell”, Sol. Energy Mater. Sol. Cells 86 (2005) 269-282.
32. A. G. Agrios, I. Cesar, P. Comte, M. K. Nazeeruddin, M. Grätzel, “Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition”, Chem. Mater. 18 (2006) 5395-5397.
33. L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, K. J. Wang, “ Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules”, J. Phys. Chem. B 111 (2007) 358-362.
34. N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4”, J. Phys. Chem. B 103 (1999) 3308-3314.
35. Y. Lin, Y. T. Ma, L. Yang, X. R. Xiao, X. W. Zhou, X. P. Li, “Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells”, J. Electroanal. Chem. 588 (2006) 51-58.
36. Y. Zhao, S. Miyajima, Y. IDE, A. Yamada, M. Konagai, “Microcrystalline silicon films and solar cells prepared by photochemical vapor deposition on textured SnO2 with high haze factors”, Jpn. J. Appl. Phys. 41 (2002) 6417-6420.
37. J. Krč , M. Zeman, F. Smole, M. Topič, “Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates”, J. Appl. Phys. 92 (2002) 749-755
38. J. Krč , M. Zeman, F. Smole, M. Topič, “Optical modelling of thin-film silicon solar cells deposited on textured substrates”, Thin Solid Films 451-452 (2004) 298-302.
39. J. Krč , F. Smole, M. Topič, “Study of enhanced light scattering in microcrystalline silicon solar cells”, J. Non-Cryst. Solids 338-340 (2004) 673-676.
40. Y. Nasuno, N. Kohama, K. Nishimura, T. Hayakawa, H. Taniguchi, M. Shimizu, “Effect of perforated transparent electrodes on light transmittance and light scattering in substrates used for microcrystalline silicon thin-film solar cells”, Appl. Phys. Lett. 88 (2006) 071909.
41. Y. Chiba, A. Islam, R. Komiya, N. Koide, L. Y. Han, “Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze”, Appl. Phys. Lett. 88 (2006) 223505.
42. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanatube”, Langmuir 14 (1998) 3160-3163.
43. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity”, Pure & Appl. Chem. 57 (1985) 603-619.
44. Q. Chen, W. Z. Zhou, G. H. Du, L. M. Peng, “Trititanate nanotubes made via single alkali treatment”, Adv. Mater. 14 (2002) 1208-1211.
45. A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements”, ChemPhysChem 4 (2003) 859-864.
46. J. Bisquert, V. Vyacheslav, S. Vikhrenko, “Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells”, J. Phys. Chem. B 108 (2004) 2313-2322.
47. J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero, “Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method”, J. Am. Chem. Soc. 126 (2004) 13550-13559.
48. F. Fabregat-Santiago, J. García-Cañadas, E. Palomares, J. N. Clifford, S. A. Haque, J. R. Durrant, G. Garcia-Belmonte, J. Bisquert, “The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings”, J. Appl. Phys. 96 (2004) 6903-6907.
49. P. M. S. Monk. 『Fundamentals of Electroanalytical Chemistry』 8.2 『Electroanalytical Measurements Involving Impedance』 John Wiley & Sons Ltd. (2001)
50. 吳浩青,李永舫。『電化學動力學』第七章『電極交流阻抗』。科技圖書公司(2001年)。
51. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B 110 (2006) 13872-13880.
52. J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku, J. Y. Lai, “Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells”, Appl. Phys. Lett. 90 (2007) 213109.
53. L. Y. Han, N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett. 84 (2004) 2433-2435.
54. L. Y. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, R. Yamanaka, “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance”, Appl. Phys. Lett. 86 (2005) 213501.
55. M. Grätzel, “Mesoscopic solar cells for electricity and hydrogen production from sunlight”, Chem. Lett. 34 (2005) 8-13.
56. N. Vlachopoulos, P. Liska, J. Augustynski, M. Grätzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. 110 (1988) 1216-1220.
57. M. Grätzel﹐“Molecular photovoltaics that mimic photosynthesis”, Pure Appl.
Chem., 73 (2001) 459-467.
58. 陳柏林。『氧化鈦奈米管及奈米棒於染料敏化太陽能電池光陽極之應用』。碩士論文,國立中正大學化學暨生物化學學系。台北,2007。
59. R. A. Spurr, H. Myers, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer”, Anal. Chem. 29 (1957) 760-762.
60. U. Balachandran, N. G. Eror, “Raman-spectra of titanium-dioxide”, J. Solid .State Chem. 42 (1982) 276-282.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27183-
dc.description.abstract在染料敏化二氧化鈦太陽能電池系統中,二氧化鈦奈米顆粒扮演著吸附染料及傳遞電子的角色。近年來研究學者指出適當地摻入次微米二氧化鈦粒子可增加入射光的散射,進而提升光利用率。近期的報告顯示添加一維奈米結構二氧化鈦除了可改善電子傳遞效率外,亦可增加入射光散射及光利用率。
在本研究中我們將商用二氧化鈦粉體Merck Anatase (MA) 置於強鹼溶液中以水熱法製得氧化鈦奈米管(Tnt),並應用於染料敏化太陽能電池光陽極。結果顯示,以Tnt奈米管所製得的電極,在AM 1.5模擬太陽光照射下(100 mW/cm2),其光電轉換效率為4.27%。將Tnt在不同溫度(450、550及650 ℃)鍛燒後發現,550 ℃鍛燒處理之樣品其光電轉換效率為三者間最佳(7.34%)。開環電壓衰退(OCVD)及電化學阻抗分析(EIS)顯示這是因為550℃鍛燒處理樣品擁有最低的表面陷阱密度及不錯的電子傳輸速度所致。
本研究利用三種不同形貌的二氧化鈦材料,分別為溶膠凝膠法所製備的奈米顆粒(SG)、Tnt奈米管及次微米顆粒MA,進行二氧化鈦電極微結構設計,製備出具高效率的染料敏化太陽能電池。實驗結果顯示,將Tnt奈米管和SG奈米粒子以不同比例混合所製得的電極,由於入射光在被染料吸收前已被Tnt散射,電池表現反而降低。改以層狀設計,在SG層上方塗佈上一層Tnt。可以有效將光電轉換效率從7.44%提升至8.65%。於Tnt層上添加具高散射性的次微米顆粒MA層製得的SG/Tnt/MA電池其光電轉換效率可提升至9.04%。
將奈米顆粒SG和Tnt及MA分別以等比例混合作為第二層和第三層電極設計出層狀-混合複合式二氧化鈦電極 SG/SG-Tnt/SG-MA/MA。入射單色光子-電子轉化效率(IPCE)測量實驗顯示,藉著奈米管Tnt以及次微米顆粒MA添加所設計的層狀電極,可使電池光電轉換效率在全波長區域皆有明顯增加。其中短波長區域的增加主因為Tnt的高表面積提供了額外的染料吸附量,而長波長區域的增加則是來自於MA的高散射特性提高了光的使用率。另外,開環電壓衰退和電化學阻抗分析結果皆顯示電子在SG/SG/Tnt/SG-MA/MA中的壽命增長。由於高光使用率及良好的電子傳遞性質,SG/SG/Tnt/SG-MA/MA電池可達9.36%的最佳光電轉換效率。
關鍵字:染料敏化太陽能電池、二氧化鈦微結構設計、氧化鈦奈米管、散射、電子傳遞
zh_TW
dc.description.abstractIn dye-sensitized solar cell (DSSC) system, TiO2 nanoparticles function as dye adsorption and electron transport. Recently it has been reported that the appropriate addition of submicron TiO2 particles could increase the light-scattering and result in higher light-harvesting efficiency. Recent studies have also revealed that the addition of one-dimensional nanostructured TiO2 could not only improve the electron transport, but also enhance the light-scattering efficiency.
In this study, titania nanotube (Tnt), which was prepared from commercial Merck Anatase TiO2 powders (MA) by alkaline hydrothermal method, was applied to fabricate the DSSC photoanode. It was found that the Tnt-based DSSC exhibited a conversion efficiency of 4.27% under AM 1.5 simulated light irradiation (100 mW/cm2). When Tnt was calcined at different temperatures (450, 550 and 650 oC), the conversion efficiency of the sample calcined at 550 oC was the best (7.34%) among the tested samples. Open-circuit voltage decay (OCVD) and electrochemical impedance analysis (EIS) demonstrated that the better cell performance of 550 oC-calcined sample was attributed to its lower surface traps density and reasonable electron transport property.
TiO2 materials of three different morphologies, i.e., nanoparticle prepared by sol-gel method (SG), nanotube (Tnt) and submicron particle (MA), were utilized for microstructure design of TiO2 electrode to fabricate high-efficiency DSSC. The results showed that when SG was mixed with Tnt with various proportion, it resulted in poor cell performance. It was likely because the incident light was scattered by Tnt prior to the absorption by dye molecules. Layer-design was utilized instead of mix-design to coat a layer of Tnt onto SG layer. The conversion efficiency was elevated from 7.44% (SG-based DSSC) to 8.65% (SG/Tnt-based DSSC). After further coating of high-light-scattering MA layer onto Tnt layer, the conversion efficiency of the resulted SG/Tnt/MA-based DSSC was enhanced to 9.04%.
SG nanoparticles were mixed with Tnt and MA in equal proportion, and then used as the second and third layers, respectively, to fabricate hierarchical TiO2 composites electrode, SG/SG-Tnt/SG-MA/MA. Incident monochromatic photon-to-current efficiency (IPCE) measurements revealed that the utilization of the layered electrode designed by addition of Tnt and MA enabled the conversion efficiency substantially to increase in full wavelength spectrum. The enhancement of the short-wavelength region was mainly due to the supplementary dye adsorption provided by high-surface-area Tnt, and that of long-wavelength region was attributed to the higher light-harvesting efficiency enhanced by MA with high light-scattering property. Moreover, the analysis of OCVD and EIS also indicated that the electron lifetime in SG/SG-Tnt/SG-MA/MA was longer. Due to the enhancement of light-harvesting efficiency and improvement of electron transport property, the SG/SG-Tnt/SG-MA/MA-based DSSC has achieved optimum conversion efficiency of 9.36%.
Keywords: Dye-sensitized solar cell, Microstructure design of TiO2 electrode,
Titania nanotube, Light-scattering, Electron transport
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:57:21Z (GMT). No. of bitstreams: 1
ntu-97-R92223046-1.pdf: 6242990 bytes, checksum: c2ada14274e2d48d78b80f21b152e099 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要 Ⅰ
Abstract Ⅲ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 2
1.3 染料敏化太陽能電池 (dye-sensitized solar cell, DSSC) 5
1.3.1 染料敏化太陽能電池工作原理 6
1.3.2 影響染料敏化太陽能電池光電轉換效率之因素 8
1.4 研究動機 26
第二章 實驗方法 27
2.1 藥品及儀器 27
2.2 氧化鈦奈米管Tnt之製備 29
2.3 氧化鈦奈米管鍛燒相轉換處理 29
2.4 二氧化鈦奈米粒子之製備 31
2.5 材料特性分析 32
2.5.1 場發射掃描式電子顯微鏡 (FESEM) 32
2.5.2 高解析穿透式電子顯微鏡 (HRTEM) 32
2.5.3 X-射線繞射光譜 (XRD) 32
2.5.4 紫外光-可見光吸收光譜儀(UV-Visible spectrophotometer) 33
2.5.5 拉曼光譜 (Raman) 35
2.5.6 氮氣等溫吸附與脫附 35
2.6 染料敏化太陽能電池組裝與測試 37
2.6.1 二氧化鈦光陽極之製備 37
2.6.2 電池組裝及測試 39
2.6.3 染料吸附量測試 52
第三章 結果與討論 54
3.1 氧化鈦奈米管Tnt 54
3.2 鍛燒溫度對奈米管的影響 58
3.2.1 特性鑑定 58
3.2.2 染料敏化太陽能電池性能測試結果 65
3.2.3 染料敏化太陽能電池開環電壓衰退(OCVD)測試結果 68
3.2.4 染料敏化太陽能電池電化學阻抗(EIS)測試結果 70
3.2.5 電極表面狀況 72
3.2.6 霧度(Haze factor)測試結果 73
3.3 Sol-gel TiO2、Tnt、MA及Degussa P25二氧化鈦的比較 75
3.3.1 特性鑑定 75
3.3.2 染料敏化太陽能電池性能測試結果 80
3.3.3 染料敏化太陽能電池開環電壓衰退(OCVD)測試結果 82
3.3.4 染料敏化太陽能電池電化學阻抗(EIS)測試結果 83
3.3.5 霧度(Haze factor)測試結果 85
3.4 以物理混合的方式製備DSSC光陽極 87
3.4.1 霧度(Haze factor)測試結果 87
3.4.2 染料敏化太陽能電池性能測試結果 89
3.4.3 染料敏化太陽能電池電化學阻抗(EIS)測試結果 91
3.5 二氧化鈦微結構設計對染料敏化太陽能電池的影響 93
3.5.1 染料敏化太陽能電池之微結構設計 93
3.5.2 染料敏化太陽能電池性能測試結果 98
3.5.3 入射單色光子-電子轉化效率(Incident monochromatic photo-to-current conversion efficiency, IPCE)測試結果 101
3.5.4 染料敏化太陽能電池開環電壓衰退(OCVD)測試結果 104
3.5.5 染料敏化太陽能電池電化學阻抗(EIS)測試結果 106
3.5.6 微結構設計之電極吸附染料後的現象 108
第四章 結論 110
參考文獻 112
dc.language.isozh-TW
dc.title二氧化鈦微結構對染料敏化太陽能電池光電效能的影響zh_TW
dc.titleEffect of TiO2 microstructure on the photovoltaic performance of dye-sensitized solar cellsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee周必泰(Pi-Tai Chou),蘇昭瑾(Chaochin Su)
dc.subject.keyword染料敏化太陽能電池,二氧化鈦微結構設計,氧化鈦奈米管,散射,電子傳遞,zh_TW
dc.subject.keywordDye-sensitized solar cell,Microstructure design of TiO2 electrode,Titania nanotube,Light-scattering,Electron transport,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2008-01-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
6.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved