Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27182
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚義績
dc.contributor.authorKuo-Chen Maen
dc.contributor.author馬國宸zh_TW
dc.date.accessioned2021-06-12T17:57:20Z-
dc.date.available2008-02-18
dc.date.copyright2008-02-18
dc.date.issued2008
dc.date.submitted2008-01-30
dc.identifier.citation1. Alonso E.E., F. Battle, A. Gens, & A. Lloret (1988), Consolidation Analysis of Partially Saturated Soils-Application to Earth Dam Construction, Proc. of the Int. Conf. On Num. Meth. Geomechnics, pp. 1303-1308.
2. Alonso E.E., A. Lloret, , A. Gens, & D.Q. Yang (1995), Experimental Behavior of Highly Expansive Double-Structure Clay, Proc. 1st Int. Conf. Unsaturated Soils, Paris 1, pp. 11-16.
3. Anderson, M.G. & K.S. Richards, Slope Stability -Geotechnical Engineering and Geomorphology,1987,John Willey & Sons:187-231.
4. Bao, C.G., B.W. Gong & L.T. Zhan (1998), Properties of Unsaturated Soils and Slope Stability of Expansive Soil, USAT’98 Keynote Lecture, pp. 1-19.
5. Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
6. Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
7. Beese, F., and R. R. van der Ploeg (1976), Influences of Hysteresis on Moisture Flow in An Unsaturated Soil Monolith, Soil Sci. Am. J, Vol. 40, pp. 480-484.
8. Biot M. A. (1941), General Theory of Three-Dimensional Consolidation, J. Appl. Phys., Vol. 12, pp. 155-164.
9. Bishop, A.W., The Use of the Slip Circle in the Stability Analysis of Earth Slope,Geotechnique,1955,5:7-17.
10. Brooks, R. H., and A. T. Corey (1964), Hydraulic Properties of Porous Media, Colo. State Univ. Hydrology Paper No.3.
11. Brook, R. H. and A.T. Corey (1966), Properties of Porous Media Affecting Fluid Flow, J. Irrig. Drain. Div. Am., Soc. Civ. Eng., 92(IR2), pp. 61-88.
12. Celia, M. A., E. T. Bouloutas, and R. L. Zarba (1990), A General Mass-Conservation Numerical Solution for Unsaturated Flow Equation, Water Resource Res., 26, pp. 1483- 1496.
13. Ng C.W.W. & Q.Shi (1998), A Numerical Investigation of the Stability of Unsaturated Soil Slope Subjected Transient Seepage, Computer and Geotechnics, 22, pp. 1-28.
14. Cai, F., K. Ugai, A. & Wakai (1998), Effects ofHorizontal Drains on Slope Stability under Rainfall by Three-Dimensional Finite Element Analysis, Computer and Geotechnics, 23, pp. 255-275.
15. Fredlund, D.G., Anqing Xing, M.D. Fredlund, & S.L. Barbour (1995), The Relationship of the Unsaturated Soil Shear Strength to the Soil-Water Characteristic Curve, Canadian Geotechnical Journal, Vol. 32, pp. 440-448.
16. Fredlund D.G., N.R. Morgenstern & R.A.Widger (1978), The Shear Strength of Unsaturated Soil, Canadian Geotechnical Journal, Vol. 15, pp. 313-321.
17. Fredlund D.G., N.A. Morgenstern (1977), Stress State Variables for Unsaturated Soil, Journal of Geotechnical Engineering, ASCE, GT5, Vol. 103, pp. 441-446.
18. Fredlund D. G. (1993), Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Inc..
19. Gallipoli, D. (2000), Constitutive and Numerical Modeling of Unsaturated Soils, PhD thesis, University of Glasgow, UK.
20. Gillham, R. W., A. Klute, and D. F. Heermann (1976), Hydraulic Properties of a Porous Medium: Measurement and empirical representation, Soil Sci. Soc. Am. J, Vol. 40, pp. 203-207.
21. Gray, D.H. & A.T. Leiser, Biotechnical Slope Protection and Erosion Control, Van Nostrand Reinhold C.1982. PP.37-82.
22. Gray, D.H. & O.Harukazu, Mechnics of fiber Reinforcement in Sand, J. of Geot. Eng., 1983,109(3): 335-353.
23. Gray D.H., Robbin B.Sotir (1996), Biotechnical and soil bioengineering slope stabilization: A practical guide for erosion control, New York: John Wiley & Sons.
24. Gray, D.H. & W.F. Megaham, Forest Vegetation Removal and Slope Stability in the Idaho Batholith, Intermountain Forest and Range Experiment Station Research Paper Int-271,Forest Service U.S. 1981.
25. Ho, D.Y.F., D.G. Fredlund (1982), Increase in Strength due to Suction for Two Hong Kong Soils, Proceeding of ASCE Speciality Conference on Engineering and Construction in Tropical and Residual Soils, Hawaii, pp. 263-296.
26. Ibrahim, H. L., and W. Brutsaert (1968), Intermittent Infiltration into Soils with Hysteresis, J. Hydraul. Div. ASCE. Vol.94, pp. 265-271.
27. Iverson, R.M. & J.J. Major (1986), Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilization, Water Resources Research, Vol. 22, pp. 1543-1548.
28. Janbu, N., Application of Composite Slip Surfaces for Stability Analysis, Proc. European Conf. on Stability of Earth Slopes, Sweden, 1954,Vol.3, pp.43-49.
29. Jaynes, D. B. (1984), Comparison of Soil Water Hysteresis Models, J. Hydra, Vol. 75, pp. 287-299.
30. Jennifer, J.R. & R. Ray (1985), The Development of Multiple Seepage Faces on Layered Slopes, Water Resources Research, Vol. 21, pp. 1625-1636.
31. King, L.G. (1965), Description of Soil Characteristics for Partially Saturated Flow, Soil Sci. Soc. Am. Proc, Vol. 29, pp. 359-362.
32. Kool, J. B., and J. C. Parker (1987), Development and Evaluation of Close-Form Expressions for Hysteresis Soil Hydraulic Properties, Water Resources Research, Vol. 23, pp. 105-114.
33. Lambe, T.W. (1958), The Engineering Behavior of Compacted Clay, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 84, SM 2, Paper no. 1655, pp. 1-35.
34. Ma K.C., Y.C. Tan, and C.H. Chen (2008), Effect of Hysteresis and Rainfall Intensity on Finger Dynamics, Irrigation and Drainage (In Press).
35. Mark E.R. (1997), Slope Instability Caused by Small Variations in Hydraulic Conductivity, Journal of Geotechnical and Geoenviponmental Engineering, Vol. 123, pp. 717-725.
36. Mark E.R. & R.M. Iverson (1992), Gravity-Driven Groundwater Flow and Slope Failure Potential 2. Effect of Slope Morphology, Material Properties and Hydraulic Heterogeneity, Water Resources Research, Vol.28, pp. 939-950.
37. Mualem, Y. (1974), A Conceptual Model of Hysteresis, Water Resources Research, Vol.10, pp. 514-520.
38. Mualem, Y., and G. Dagan (1975), A Dependent Domain of Capillary Hysteresis, Water Resources Research, Vol.11, pp. 452-460.
39. Parlange, J. Y. (1976), Capillary Hysteresis and the Relationship Between Drying and Wetting Curves, Water Resources Research, Vol.12, pp. 224-248.
40. Parlange, J. Y. (1980), Water Transport in Soils, Ann. Rev. Fluid Mech., Vol.12, pp. 224-228.
41. Pickens, J. P., and R. W. Gillham (1980), Finite Element Analysis of Solute Transport under hysteresis Unsaturated Flow Condition, Water Resources Research, Vol.16, pp. 1071-1078.
42. Richards, L. A. (1931), Capillary Conduction of Liquids in Porous Mediums, Physics 1: pp. 318 –333.
43. Ross, P.J (1990), Efficient Numerical Method for Infiltration Using Richard’s Equation, Water Resources Research, Vol.26, pp. 279-290.
44. Scott, P. S., G. J. Farquhar, and N. Kouwen (1983), Hysteresis Effects on Net Infiltration, Advances in Infiltration, ASAE Publ.11-83, 163- 170, Am. Soc. Agric. Eng., St. Joseph, Mich.
45. Cho S.E. & S.R. Lee (2001), Instability of Unsaturated Soil Slopes due to Infiltration, Computer and Geotechnics, 28, pp. 185-208.
46. Vanapalli S.K., D.G. Fredlund, D.E. Pufahl, & A.W. Clifton (1996), Model for the Prediction of Shear Strength with Respect to Soil Suction, Canadian Geotechnical Journal, Vol. 33, pp. 379-392.
47. Spierenburg S.E.J. & van Esch JM. (1995), Slope Stability During Infiltration, Proc. of Int. Conf. on Unsaturated Soils, Paris, pp. 309-314.
48. Tan Y.C., K.C. Ma, C.H. Chen, K.Y. Ke, and M.T. Wang (2008), A Numerical Model of Infiltration Processes for Hysteretic Flow Couple with Mass Conservation, Irrigation and Drainage (In Press).
49. Thomas H.R. & Y. He (1997), A Coupled Heat-Moisture Transfer Theory for Deformable Unsaturated Soil and Its Algorithmic Implementation, Int. J. for Num. Meth. In Eng., Vol. 40, pp. 3421-3441.
50. Topp, G. C. (1969), Soil Water Hysteresis Measured in a Sandy Loam Compared with the Domain Model, Soil Sci. Amer. Proc, Vol.33, pp. 645-651.
51. van Genuchten, M. Th. (1980), A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci.Am.J, 44, pp. 892-898.
52. Waldron, L.J., The Shear Resistance of Root-Permeated Homogeneous and Stratified Soil,Soil Sci. SOC. AM. , 1977,41:843-849.
53. Wu, T.H., Investigation of Landslides on Prince of Wales Island Alaska, Geotech.Eng.Rep. No.5, Dep. Civil Eng, Ohio State Universal, Columbus,1976,PP.94.
54. Wu, T.H., W.P. Mckinnell, & D.N. Swanston, Strength of Tree Root and Landslides on Prince of Wales Island Alaska,Canadian Geotech, 1979, J.16(1):19-33.
55. Wu, T.H. & D.N. Swanston, Risk of Landslides in Shallow Soil and It Relation to Clearcutting in Southeastern Alaska, Forest Science, 1980, 26(3):495-510.
56. Yao Sun (1995), A Study on Stability Analysis of Shallow Layer Slope due to Raining Permeation, Proc. of Int. Conf. on Unsaturated Soils, Paris, pp. 315-320.
57. 王銘燦(2002),遲滯土壤水分傳輸數值模式之研究,國立台灣大學生物環境系統工程研究所碩士論文。
58. 黃漢誠、陳主惠、譚義績(2000),未飽和土壤水分遲滯效應之研究,中國農業工程學報,第46卷,第四期,第33∼47頁。
59. 吳正雄,樹根力與坡面穩定關係之研究,中華水土保持學報,1993年,24(2):第23-37頁。
60. 吳正雄,崩塌地草本植物根力特性之研究,中華水土保持學報,1990年,21(1),第47-54頁。
61. 吳正雄,台灣杉根力與坡面穩定關係之研究,中華林學季刊,1991年,24(1),第27-39頁。
62. 吳正雄,樹根力與坡面穩定關係之研究,中華水土保持學報,1993年,24(2):第23-37頁。
63. 吳正雄、陳信雄,森林植生根力應用在崩塌地處理上之研究,中華林學季刊,1989年,22(4),第3-19頁。
64. 吳正雄,植生根力與坡面穩定關係之研究,博士論文,國立台灣大學森林學研究所,台北,1990年。
65. 莊作權、簡宣裕,百喜草覆蓋與敷蓋對坡地土壤肥力之影響,中華水土保持學報,1978年,9(1),第57-64頁。
66. 張俊斌、林信輝,中橫崩坍地優勢植物根力特性之研究,中華水土保持學報,1995年,26(4),第235-243頁。
67. 張曾讜,台灣重要水土保持草類根部抗張力之研究,中華水土保持學報,1972年,3(1),第58-69頁。
68. 張賢明、萬鑫森,覆蓋及敷蓋坡面土壤水文之影響,水土保持學報,1999年,31(1),第1-9頁。
69. 郭俊傑、顏正平,環境因子對百喜草生長之影響,水土保持學報,1988年,20,第39-58頁。
70. 林信輝,台灣生態工法應用現況與發展,2001近自然工法研討會,2001年。
71. 邱彬晟、蔡東霖、楊錦釧,坡地破壞潛能模式之建立與探討,第十四屆水利工程研討會,2005年。
72. 張德鑫、鄭正隆、林繼立,甚流現象對坡地穩定之影響,第十四屆水利工程研討會,2005年。
73. 顏正平,水土保持木本植物根系分佈類型研究,教授升等論文,國立中興大學水土保持學系,台中,1974年。
74. 吳正雄,植生根力與坡面穩定關係之研究,博士論文,國立台灣大學森林學研究所,台北,1990年。
75. 鄭泰山,水土保持草類根系之研究,碩士論文,國立中興大學水土保持學系,台中,1989年。
76. 黃俊仁,苦藍盤與冬青菊在泥岩地區之根系特性與水份生理之研究,碩士論文,國立中興大學水土保持學系,台中,2001年。
77. 黃信元(1999),部分飽和土壤坡地穩定動態數值分析,國立台灣大學土木工程研究所碩士論文。
78. 楊宏達,九芎植生木樁之生長與根系力學之研究,國立中興大學水土保持研究所碩士論文,2004.1
79. 李伯亨,入滲效應與土石流發生臨界雨量線之探討及應用,碩士論文,國立台北科技大學環境規劃與管理研究所,台北,2003年。
80. 陳杰宏,棲蘭林區檜木天然林根倒木根系之觀察及根倒之發生與根倒木特徵值之相關性,國立台灣大學森林學研究所碩士論文,台北,1996。
81. 鄭賢德,柳杉林各樹冠級之根系研究,碩士論文,國立台灣大學森林學研究所,台北。
82. 陳漢平(2003),降雨入滲引致邊坡破壞機制之探討-以土石流源頭為對象,國立台灣大學土木工程研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27182-
dc.description.abstract本文乃利用相關理論與模式分析去探討在不同自然環境條件下,植生的存在對於邊坡穩定上實際的效益,並建構了一套部分飽和植生邊坡穩定分析模式,不僅將未飽和層之土壤水分傳輸對土壤邊坡安全係數的影響納入傳統分析法中,而且將植生根系調查資料量化成根力模式,適當地整合生物、自然環境與工程設計相互作用之機制。在邊坡穩定分析方法中,使用無限邊坡切片法、Bishop修正法及Janbu簡化法;在土壤水分傳輸方面則加入遲滯效應之影響;在根力模式中,我們利用吳正雄(1990)對台灣杉及山黃麻的根系分析結果作為基礎。進而評估不同濕鋒入滲型態與植生條件下,通過不同特性之破壞面的安全係數變化。
分析結果發現,不論邊坡坡度或破壞面的形狀特性,不同的濕鋒入滲型態或植生條件會明顯地影響安全係數的改變,故在使用傳統之邊坡穩定分析法時,應考量土壤水分傳輸與植生所產生的效應。由植生效益與破壞面深度之分析得知,台灣杉及山黃麻的根系對於較深之破壞面並無顯著的正面效益,只對淺層破壞有所助益,而山黃麻又較台灣杉能提供更多的穩定性,深破壞面反而會因為植生地上部之荷重增加導致安全係數降低。由植生設計間隔與位置之分析結果來說,植生種植密度越低,其根系對於邊坡穩定之正面效益越不明顯,而種植密度過於密集又會增加邊坡荷重與影響作物正常生長等問題。此外,增加或減少植生種植間距對於深層不穩定來說並無法有效地提升安全係數,只能藉由降低土壤含水量(地表水與地下水排水工程)或坡度來增加其穩定性;而淺層破壞則可利用適當間距的植生,提升單位面積的根系數量,有效地達到增加邊坡的穩定性。由本研究模擬結果可知,並非每種植生都適用於每個邊坡的生態工法設計上,必須經由更細密的研究分析,才能夠找出真正適用於特定邊坡上的生態工法。
zh_TW
dc.description.abstractThis research established a partially saturated vegetated slope stability model combined the transportation of soil water content and root model. The paper discussed the actual benefits of the root element of the vegetation offered to the slope stability under different environment and integrated the mechanism of biomechanics, environmental, and engineering properly. In the methods of slope stability, we modified the slice method of infinite slope, Bishop’s modified method and Janbu’s simplified method. In the transportation of soil water content, the hysteresis effect is considered in the simulator. Besides, the root system of the vegetated element in this study is based on “Relations of Root System Mechanics and Slope Stability” (Wu, 1990) in which investigated root system mechanics of Taiwania cryptomerio ides and Trema orientalis (L.) Blume. Finally, the present model in this research calculated the safety coefficients of the different destruction surface in accordance with different soil water content conditions and the kinds of vegetation.
The results indicated that different distributions of soil water content and the kinds of vegetation would change the safety coefficient apparently regardless of the slope gradient and the patterns of destruction surface. Therefore, the engineers should consider the transportation of soil water content and the vegetated elements when using the traditional analysis methods of slope stability. The root model of Taiwania cryptomerio ides and Trema orientalis (L.) Blume had no remarkable benefits to deeper destruction surface, but raised the safety coefficient of shallow destruction surface obviously. On the contrary, the weight of vegetative body reduced the safety coefficient of deeper destruction surface. The root system of Trema orientalis (L.) Blume is better than Taiwania cryptomerio ides in the shallow slope stabilization. The simulative results of different vegetative arrangements also showed that the planting intervals are sparser and the benefits offered to the slope stabilization are more unapparent. On the other way, the planting intervals are too close to grow normally, and the vegetation increases the loading of the slope. Besides, decreasing the soil water content of the slope or cutting down the slope gradient are effective strategy to raise the stabilization of the deeper destruction surface. Utilizing the suitable planting intervals to increase the root amount of the unit area can enhance the slope stability effectively. In conclusion, not all kinds of vegetation are suitable for some particular slopes in the design of the ecological engineering. Detailed researches and analysis are required to identify the suitable ecological engineering for a particular slope.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:57:20Z (GMT). No. of bitstreams: 1
ntu-97-D90622007-1.pdf: 4240603 bytes, checksum: 31aecf1b619782f062c68e2e82e46e38 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書
謝辭
摘要………………………………………………………………….I
英文摘要…………………………………………………………….III
目錄………………………………………………………………….V
圖錄………………………………………………………………….VIII
表錄………………………………………………………………….XII
第一章 前言............................................1
1.1 研究動機………………………………………… 1
1.2 研究目的………………………………………… 2
1.3 研究方法………………………………………… 3
1.4 研究步驟………………………………………… 3
1.5 本文架構………………………………………… 5
第二章 相關理論與文獻回顧..............................7
2.1 土壤水力特性曲線與遲滯現象………………… 7
2.1.1 土壤水力特性曲線與相關文獻……………... 7
2.1.2 土壤水分遲滯現象與相關文獻……………… 11
2.2 土壤水分傳輸及相關文獻……………………… 14
2.2.1 Darcy-Buckingham方程式…………………. 14
2.2.2 控制方程式(Richards equation)………. 15
2.3 未飽和土壤抗剪強度及相關文獻…………… 18
2.4 根力理論及相關文獻………………………… 20
第三章 遲滯土壤水分傳輸數值模式........................25
3.1 土壤水分遲滯模式……………………………… 25
3.2 土壤水分傳輸數值模式………………………… 30
3.2.1 有限差分法………………………………… 30
3.2.2 有限元素法………………………………… 34
3.2.3 迭代求解及模式流程……………………… 38
3.3 土壤水分遲滯模式之解析與傳輸數值模式之質量平衡…… 42
3.3.1 土壤水分遲滯模式之解析…………………… 42
3.3.2 土壤水分傳輸數值模式之質量平衡………… 44
第四章 根力模式........................................45
4.1 根系力學方程式………………………………… 45
4.2 根力模式之建立………………………………… 50
第五章 未飽和植生邊坡穩定分析..........................63
5.1 無限邊坡安定分析之未飽和植生模式………… 63
5.1.1 未飽和土壤抗剪強度模式結合遲滯理論之建立 63
5.1.2 極限平衡之切片法....................... 69
5.2 Bishop修正法之未飽和植生模式............. 72
5.3 Janbu簡化法之未飽和植生模式.............. 90
第六章 模式分析之結果與討論............................97
6.1 無限邊坡之未飽和植生穩定分析……………… 97
6.1.1 破壞面之設計………………………………… 97
6.1.2 分析結果……………………………………… 97
6.2 Bishop修正法之未飽和植生邊坡穩定分析…… 102
6.2.1 弧形破壞面之設計…………………………… 103
6.2.2 濕鋒入滲型態於不同坡度及植生之分析結果 114
6.2.3 植生自重於不同坡度及植生之分析結果…… 119
6.2.4 地下水位於不同坡度及植生之分析結果…… 121
6.2.5 破壞面於不同深度及植生之分析結果……… 123
6.2.6 植生間距於不同深度及植生之分析結果…… 126
6.2.7 植生設計位置於不同植生之分析結果……… 130
6.3 Janbu簡化法之未飽和植生邊坡穩定分析……… 132
6.3.1 不規則破壞面之設計………………………… 132
6.3.2 濕鋒入滲型態於不規則破壞面之分析結果… 132
6.3.3 植生間距與設計位置於不規則破壞面之分析結果… 136
第七章 結論與建議......................................140
7.1 結論……………………………………………… 140
7.2 建議……………………………………………… 141
參考文獻...............................................142
dc.language.isozh-TW
dc.title土壤水分移動與植生根系對邊坡穩定之研究zh_TW
dc.titleA Study of Soil Water Movement and Root System for Unsaturated Slope Stabilityen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳主惠,李振誥,徐國錦,劉振宇
dc.subject.keyword邊坡穩定,土壤水分,安全係數,生態工法,zh_TW
dc.subject.keywordSlope stability,Soil water content,Safety coefficient,Ecological engineering,en
dc.relation.page148
dc.rights.note有償授權
dc.date.accepted2008-01-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved