Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27170
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峰輝(Feng-Huei Lin)
dc.contributor.authorWen-Hsi Wangen
dc.contributor.author王文熙zh_TW
dc.date.accessioned2021-06-12T17:57:02Z-
dc.date.available2010-02-18
dc.date.copyright2008-02-18
dc.date.issued2008
dc.date.submitted2008-01-30
dc.identifier.citation1. Kim S. Endodontic Microsurgery. In: Cohen S, Burns R, editors. Pathways of the pulp. 8th ed: Mosby, 2002. p. 718-721.
2. Harty FJ, Parkins BJ, Wengraf AM. Success rate in root canal therapy. A retrospective study of conventional cases. British Dental Journal 1970;128(2):65-70.
3. Dovgan JS. Root Canal Surgery, Endodontic Surgery, Apicoectomy (Apico) and Retrofill (retro) or Surgical Endodontic Therapy. When is this procedure done?
. [cited; Available from: http://www.endodovgan.com/Endoinfo_SET.htm
4. Johnson BR. Considerations in the selection of a root-end filling material. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 1999;87(4):398-404.
5. Vasudev SK, Goel BR, Tyagi S. Root end filling materials -A Review. Endodontology 2003;15:12-18.
6. Jou YT, Pertl C. Is there a best retrograde filling material? Dent Clin North Am 1997;41:555-561.
7. Cohen S, Burns RC. Pathways of the Pulp. 8 ed. New Delhi, India: Harcourt(India) Private Limited, 2001.
8. Smee G, Bolanos OR, Morse DR, Furst ML, Yesilsoy C. A Comparative leakage study of P-30 resin bonded ceramic, Teflon, amalgam, and IRM as retrofilling seals. Journal of Endodontics 1987;13:117-121.
9. Pitt Ford TR, Anderson JO, Dorn SO, Kariyawasam SP. Effect of IRM root end fillings on healing after replantation. Journa lof Endodontics 1994;20:381-385.
10. Pitt Ford TR, Anderson JO, Dorn SO, Kariyawasam SP. Effect of various zinc oxide materials as root-end fillings on healing after replantation. International Endodontic Journal 1995;28:273-278.
11. Pitt Ford TR, Anderson JO, Dorn SO, Kariyawasam SP. Effects of super-EBA as a root end filling on healing after replantation. Journa lof Endodontics 1995;21:13-15.
12. Gartner A, Dorn SO. Advances in endodontic surgery. Dental Clinics of North America 1992;36:364-373.
13. Rud J, Rud V, Munksgaard EC. Long-term evaluation of root filling with dentin-bonded resin composite. Journa lof Endodontics 1996;22:90-93.
14. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. Journal of Endodontics 1993;19:541-544.
15. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. Journal of Endodontics 1999;25:197-205.
16. Adamo HL, Buruiana R, Schertzer L, Boylan RJ. A comparison of MTA, Super-EBA, composite and amalgam as root-end filling materials using a bacterial microleakage model. International Endodontic Journal 1999;32(3):197-203.
17. Torabinejad M, Higa RK, McKendry DJ, Pitt Ford TR. Dye leakage of four root end filling material: effects of blood contamination. Journal of Endodontics 1994;20:159-163.
18. Torabinejad M, Watson TF, Pitt Ford TR. Sealingabilityof mineral trioxide aggregate when used as a root end filling material. Journal of Endodontics 1993;19:591-595.
19. Fischer EJ, Arens DE, Miller CH. Bacterial leakage of mineral trioxide aggregatea s compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a root-end filling material. Journal of Endodontics 1998;24:176-179.
20. Koh ET, McDonald F, Pitt FTR, Torabinejad M. Cellular response to Mineral Trioxide Aggregate. Journal of Endodontics 1998; 24:543-547.
21. Osorio RM, Hefti A, F.J. V, Shawley AL. Cytotoxicity of endodontic materials. Journal of Endodontics 1998;24:91-96.
22. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. Journal of Endodontics 1995;21:603-608.
23. Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Antibacterial effects of some root-end-filling materials. Journal of Endodontics 1995;21:403-406.
24. Lee YL, Lee BS, Lin FH, Yun Lin A, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004;25:787-793.
25. Bye GC. Portland Cement-Composition, Production and Properties: Pergamon Press, 1983.
26. Macphee DE. Cement chemistry. 2005 [cited; Available from: http://www.abdn.ac.uk/chemistry/research/dem/cemhon.doc
27. Saidon J, He J, Zhu Q, Safavi K, Spangberg LSW, Conn F. Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics 2003;95:483-489.
28. Lin F-H, Wang W-H, Lin C-P. Transition element contained partial-stabilized cement (PSC) as a dental retrograde-filling material. Biomaterials 2003;24:219-233.
29. Allen MJ, Myer BJ, Millett PJ, Rushton N. The effects of particulate cobalt, chromium and cobalt-chromium alloy on human osteoblast-like cells in vitro. Journal of Bone and Joint Surgery - British Volume 1997 May;79-B(3):475-482.
30. Ishikawaa K, Miyamotob Y, Yuasab T, Itoc A, Nagayamab M, Suzuki K. Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomaterials 2002;23:423-428.
31. Ito A, Ojima K, Naito H, Ichinose N, Tateishi T. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. Journal of Biomedical Materials Research 2000 May;50(2):178-183.
32. Oki A, Parveen B, Hossain S, Adeniji S, Donahue H. Preparation and in vitro bioactivity of zinc containing sol-gel–derived bioglass materials. Journal of Biomedical Materials Research Part A 2004 Mar;69A(2):216-221.
33. Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: An in vitro study of proliferation, alkaline phosphatase activityand biomineralization. Biomaterials 2005;26:5492-5499.
34. Thomas J. Webster CERHDRB. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. Journal of Biomedical Materials Research 2002;59(2):312-317.
35. Foulkes E. Metal Toxicology: Academic Press Inc., 1995.
36. Hallab NJ, Vermes C, Messina C, Roebuck KA, Glant TT, Jacobs JJ. Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. Journal of Biomedical Materials Research 2002;60(3):420-433.
37. Lucas Anissian AS, Henrik Dahlstrand, Barbro Granberg, Victoria Good, Elisabet Bucht. Cobalt ions influence proliferation and function of human osteoblast-like cells. Acta Orthopaedica Scandinavica 2002;73(3):369-374.
38. NING J, GRANT MH. Chromium (VI)-induced Cytotoxicity to Osteoblast-derived Cells. Toxicology in Vitro 1999;13:879-887.
39. Zhi Lin Sun JCWCTH. Effects of metal ions on osteoblast-like cell metabolism and differentiation. Journal of Biomedical Materials Research 1997;34(1):29-37.
40. Wang JY, Wickhnd BH, Gustilo RB, Tsukayama DT. Prosthetic Metals Interfere With the Functions of Human Osteoblast Cells In Vitro. Clinical Orthopasedics and Related Research 1997;339:216-226.
41. Rose J, Benard A, Susini J, Borschneck D, Hazemann JL, Cheylan P, et al. First Insights of Cr Speciation in Leached Portland Cement Using X-ray Spectromicroscopy. Environmental Science and Technology 2003 November 1, 2003;37(21):4864-4870.
42. McKay GC, Macnair R, MacDonald C, Grant MH. Interactions of orthopaedic metal with an immortalized rat osteobla cell line Biomaterials 1996;17(13):1339-1344.
43. Popper HH, Grygar E, Ingolic E, Wawaschinek O. Cytotoxicity of chromium III and VI compounds. I. In vitro studies using different cell culture systems Inhalation Toxicology 1993;5:345-369.
44. Sugiyama M. Role of physiological antioxidants in chromium(VI)-induced cellular injury. Free Radical Biology and Medicine 1992;12:397-407.
45. Kortenkamp A, Casadevall M, Faux S, Jenner A, Shayer ROJ, Woodbridge N, et al. A role of molecular oxygen in the formation of DNA damage during reduction of the carcinogen chromium(VI) by glutathione. Archives of Biochemistry and Biophysics 1996;329:199-207.
46. Rodney PF, Robert JJ, Lay PA, Dixon NE, Raker RSU, Bonin AM. Chromium(V)-induced cleavage of DNA: are chromium(V) complexes the active carcinogen in chromium(VI)-induced cancer? Chemical Research in Toxicology 1989;2:227-229.
47. Sugiyama M, Tsuzuki K, Ogura R. Effect of ascorbic acid on DAN damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese hamster V-79 cells treated with sodium chromate(VI). Journal of Cell Biology 1991;266:3383-3386.
48. Wang W-H, Lin F-H, Lee Y-L, Lin C-P. Cytotoxicity of partial-stabilized cement. Journal of Biomedical Materials Research Part A 2007;81A(1):195-204.
49. Dovgan JS. Root Canal Surgery, Endodontic Surgery, Apicoectomy (Apico) and Retrofill (retro) or Surgical Endodontic Therapy. When is this procedure done?
. 2004 [cited; Available from: http://www.endodovgan.com/Endoinfo_SET.htm
50. Cotton FA, Wilkinson G. Advanced Inorganic Chemistry. New York: John Wiley and Sons, 1980.
51. Segal DL. Chemical synthesis of advanced ceramic materials: Cambridge University Press, 1989.
52. Pierre AC. Introduction to Sol-Gel Processing. Norwell: Kluwer Academic Publishers, 1998.
53. Wright JD, Sommerdijk NAJM. Sol-Gel Materials: Chemistry and Applications CRC, 2001.
54. Nachlas MM. The determination of lactic dehydrogenase with a tetrazolium salt. Analytical Biochemistry 1960;1:317-326.
55. Saotome K, Mortia H, Umeda M. Cytotoxicity with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicology in Vitro 1989;3:317-321.
56. Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicology in Vitro 1998;12(3):251-258.
57. Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Analytical Biochemistry 1986;159(1):109-113.
58. Peters K, Schmidt H, Unger RE, Kamp G, Pröls F, Berger BJ, et al. Paradoxical effects of hypoxia-mimicking divalent cobalt ions in human endothelial cells in vitro. Molecular and Cellular Biochemistry 2005;270(1):157-166.
59. Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of Cellular 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Reduction. Journal of Neurochemistry 1997;69(2):581-593.
60. Adams DJ. Introductory Core Operation Course , Lesson 6 - Cell Cycle 2005 [cited; Available from: http://www.med.umich.edu/flowcytometry/InitialTraining/lessons/lesson6/index.htm
61. Fried J, Perez AG, Clarkson BD. Flow cytofluorometric analysis of cell cycle distributions using propidium iodide. Properties of the method and mathematical analysis of the data. Journal of Cell Biology 1976 October 1, 1976;71(1):172-181.
62. Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. Journal of Cell Biology 1975 July 1, 1975;66(1):188-193.
63. Robert F. Kalejta TSAJB. Use of a membrane-localized green fluorescent protein allows simultaneous identification of transfected cells and cell cycle analysis by flow cytometry. Cytometry 1997;29(4):286-291.
64. Reutelingsperger CPM, Hornstra G, Hemker HC. Isolation and partial purification of a novel anticoagulant from arteries of human umbilical cord. European Journal of Biochemistry 1985;151(3):625-629.
65. Geisow MJ, Fritsche U, Hexham JM, Dash B, Johnson T. A consensus amino-acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane-binding proteins. Nature 1986;320:636-638.
66. Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes 1994;1197(1):63-93.
67. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. Journal of Biological Chemistry 1990 March 25, 1990;265(9):4923-4928.
68. Tait JF, Gibson D, Fujikawa K. Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. Journal of Biological Chemistry 1989 May 15, 1989;264(14):7944-7949.
69. Manon van Engeland LJWNFCSRBSCPMR. Annexin V-Affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998;31(1):1-9.
70. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of Immunological Methods 1995;184(1):39-51.
71. Sax K. Induction by X-rays of chromosome aberrations in Tradescantia microseopores. Genetics 1938;23:494-526.
72. Hsu TC. Mammalian chromsomes in vitro. I. The karyotype of man. Journal of Heredity 1952;43:167-172.
73. Bender MA, Gooch PC. Somatic chromosome aberrations induced by human radiation: the 'recuplex' irradiation accident. Radiation Research 1966;29:568-582.
74. Tucker JD, Preston RJ. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutation Research/Reviews in Genetic Toxicology 1996;365(1-3):147-159.
75. Savage JR. Classification and relationships of induced chromosomal structual changes. Journal of Medical Genetics 1976 April 1, 1976;13(2):103-122.
76. Wolff S, Perry P. Differential giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 1974;48(4):341-353.
77. Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. . Endodontics and Dental Traumatology 1996;12(4):179-184.
78. Eldeniz AU, Hadimli HH, Ataoglu H, Orstavik D. Antibacterial Effect of Selected Root-End Filling Materials. Journal of Endodontics 2006;32(4):345-349.
79. Hawkins P, Tennis PD, Detwiler R. The Use of Limestone in Portland Cement: A State-of-the-Art Report. Skokie, 2003.
80. Medevescek S, Gabrovsek R, Kaucic V, Meden A. Hydration Products in Water Suspension of Portland Cement Containing Carbonates of various Solubility. Acta Chimica Slovenica 2006;53:172-179.
81. Warren CJ, Reardon EJ. The solubility of ettringite at 25°C. Cement and Concrete Research 1994;24(8):1515-1524.
82. Mollah MYA, Lu F, Cocke DL. An X-ray diffraction(XRD) and Fourier transformation infrared spectroscopic(FT-IR) characterization of the speciation of arsenic(V) in Portland cement type-V. The science of the Total Environment 1998;224:57-68.
83. Estrela C, Bammann LL, Estrela CRA, Silva RS, Pecora JD. Antimicrobial and Chemical Study of MTA, Portland Cement, Calcium Hydroxide Paste, Sealapex and Dycal. Brazilian Dental Journal 2000;11(1):3-9.
84. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. Journal of Endodontics 1995;21(7):349-353.
85. Hjorth H, Skibsted J, Jakobsen HJ. 29Si MAS NMR studies of portland cement components and effects of microsilica on the hydration reaction. Cement and Concrete Research 1988;18:789-798.
86. Skibsted J, Jakobsen HJ, Hall C. Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy. Journal of the Chemical Society, Faraday Transactions 1995;91(24):4423 - 4430.
87. Le Saoût G, Lécolier E, Rivereau A, Zanni H. Study of oilwell cements by solid-state NMR. Comptes Rendus Chimie 2004;7(3-4):383-388.
88. Jean-Pierre Aubry ABSL-HPJNHGCVMJ-YB. Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 1999;37(3):197-204.
89. Lea FM. The chemistry of cement and concrete. London: Edward Arnold Publishers, 1976.
90. Stephan D, Wilhelm P. Synthesis of pure cementitious phases by sol-gel process as precursor. Zeitschrift für anorganische und allgemeine Chemie 2004;630:1477-1483.
91. Stephan D, Maleki H, Knofel D, Eber B, Hardtl R. Influence of Cr, Ni, and Zn on the properties of pure clinker phases - Part II. C3A and C4AF. Cement and Concrete Research 1999;29(5):651-657.
92. Stephan D, Maleki H, Knofel D, Eber B, Hardtl R. Influence of Cr, Ni, and Zn on the properties of pure clinker phases - Part I. C3S. Cement and Concrete Research 1999;29(4):545-552.
93. Brinker CJ, Scherer GW. Sol-Gel Science. San Diego: Academic Press, 1990.
94. Chai CS, Nissan BB. Bioactive nanocrystalline sol-gel hydroxyapatite coatings Journal of Materials Science: Materials in Medicine 1999;10(8):465-469.
95. Laudisio G, Branda F. Sol-gel synthesis and crystallisation of 3CaO.2SiO2 glassy powder. Thermochimica Acta 2001;370:119-124.
96. Silva MGFd, Valente MA. Crystallization and properties of sol-gel derived 10Fe2O3-10Al2O3-80SiO2 glass-ceramics. Journal of Non-Crystalline Solids 1998;232-234:409-415.
97. Tkalcec E, Sauer M, Nonninger R, Schmidt H. Sol-gel-derived hydroxyapatite powders and coatings. Journal of Materials Science 2001;36(21):5253-5263.
98. Yamaguchi G, Shirasuka K, Ota T. Highway research board. Symposium on structure of portland cement paste and concrete
1966; 1966. p. 263-268.
99. Dolado JS, Griebel M, Hamaekers J. A Molecular Dynamics Study of Cementitious Calcium Silicate Hydrate (C-S-H) Gels: Institute for Numerical Simulation; 2007.
100. Gartner EM. A proposed mechanism for the growth of C-S-H during the hydration of tricalcium silciate. Cement and Concrete Research 1997;27(5):665-672.
101. Schweikl H, Schmalz G. Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines European Journal of Oral Sciences 1996 august;104(4p1):292-299.
102. Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblast. Journal of Endodontics 2000 May;26(5):25-29.
103. Kaslow JE. Alkaline Phosphatase. 2006 [cited; Available from: http://www.drkaslow.com/html/alkaline_phosphatase.html
104. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26(23):4847-4855.
105. Rosa AL, Beloti MM. Development of the osteoblast phenotype of serial cell subcultures from human bone marrow Brazilian Dental Journal 2005;16(3):225-230.
106. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nature Reviews Molecular Cell Biology 2003;4(7):552-565.
107. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiological Reviews 1996 April 1, 1996;76(2):593-629.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27170-
dc.description.abstract傳統上而言,介穩水泥(鈣矽水泥)的製程是藉由一般的氧化物粉末經由適當的混合後,再以高溫爐加熱製備而成,並且所有的成分必需分別製備,然而這樣的製程不僅需要極高的溫度及相當長的時間,而且所製備出來產品其反應性也相當的低,因此也限制了介穩水泥作為牙科逆向封填材料的發展性。因此本研究希望能使用溶膠-凝膠法發展出一個較為簡單及經濟的製備方式。
本研究的第一部份著重於材料的製備及材料性質的分析。首先,因為在溶膠-凝膠法中使用的有機金屬化合物及金屬鹽類,其反應性差異相當的大,因此為了避免因反應性差異所造成的自我聚合及相分離現象,本研究使用acetylacetone對aluminum sec-butoxide的表面作修飾,降低其反應性,使其能與其他反應物進行反應。在對反應物作修飾之後,再加入適當的催化劑催化,在這研究中是使用鹼(氨水)作為催化劑,不使用酸(硝酸)作為催化劑的原因是因為鹼在本製程有較好的催化效率。在所得的產物中,籍由XRD, FTIR, 及MAS NMR的結果,不但可以得知在產物中可以鑑定出介穩水泥中的所有成份,而且擁有反應性較高的monoclinic的結晶相,而這個現象也與水合產物及微硬度測試的結果一致,經由溶膠-凝膠法製備出的介穩水泥其起始強度在第24小時的時候就可以在微硬度儀上可被偵測到,比起傳統製程的介穩水泥早了大約72個小時達到可被偵測的強度,而到了第7天時,溶膠-凝膠法製備的介穩水泥其微硬度為27.26HV,而傳統製程的介穩水泥的微硬度才2.05HV。
本研究的第二部份是著重於材料的體外測試,經由crystal violet, MTT,及LDH的測試方法可得知,溶膠-凝膠法製備的介穩水泥並不會影響到細胞的增殖能力、粒腺體活性及細胞毒性,除此之外,根據鹼性磷酸酶及骨鈣素的測試結果可知,由跟材料萃取後的培養基與細胞共養後,細胞比較不容易失去其phenotype,而且根據PI cell cycle及Annexin V-FITC cell apoptosis test的結果,細胞也比較不會朝凋亡的方向進行,而維持較高的活性,而且這些現象的原因都是來自於材料所釋放出的鈣離子及氫氧基離子。鈣離子對於骨母細胞及細胞凋亡扮演相當重要角色,而氫氧基離子的釋放會促進鹼性磷酸酶的作用及減緩因為細胞代謝物所造成的酸化。
由溶膠-凝膠法製備出的介穩水泥其生物相容性及其細胞反應並不會因為製程的改變而有所變化,而且,籍由溶膠-凝膠法製備出的介穩水泥擁有較高反應性的結晶相及較高的水合反應速率,由以上這些結果我們可以知道,對於作為牙科逆向封填材料而言,溶膠-凝膠法製備出的介穩水泥是有相當大的潛力及發展空間。
zh_TW
dc.description.abstractConventionally, Partial-Stablized Cement (PSC), which is a kind of calcium silicate cement, is prepared through powder mixing method and have to prepare each component separately. Low reaction efficiency in conventional process leads to a very time- and energy-consuming preparation process. Moreover, low initial strength of conventional PSC limited the application of PSC as a dental root-end filling material. This study provides a one-step sol-gel process for the synthesis of PSC for more simple and economic preparation process.
First part of this study will focus on the preparation and characterization of sol-gel synthesized PSC. Because of inconsistency between alkoxide and metal salts used in the sol-gel process, complexing ligand (acetylacetone) is used for tuning down the activity of aluminum sec-butoxide (ASB) in order to avoid possible self-polymerization and phase separation. After the modification with complex ligand, ammonia water is used instead of nitric acid as catalyst in the process because of better reaction efficiency. Each component of PSC is identified and more active monoclinic phase is formed in the product according to the result XRD, FTIR, and MAS NMR. This fact of more active product is also in agreement with result of hydration product formation and microhardness test. The initial strength of sol-gel-synthesized PSC achieves detectable level 24 hours which is 72 hours earlier than PSC synthesized by conventional process. Moreover, the microhardness value of sol-gel-synthesized PSC at 7th day is 27.26 HV which is much higher than conventional PSC which is 2.05 HV.
Second part is the in vitro evaluation of PSC. PSC synthesized by sol-gel will not alter the proliferation ability, mitochondria activity, and cytoxicity of the target cells according to result of crystal violet, MTT and LDH assays. Cell phenotype is maintained when incubated with medium extract from PSC (both groups) according to the result of alkaline phosphatase and osteocalcin. Moreover, cell apoptosis is also delayed according to the PI cell cycle and Annexin V-FITC cell apoptosis test. This phenomenon is due to the higher Ca2+ ion and OH- group content in the extract medium. Ca2+ ion plays a very important in the regulation of osteoblast maturation and cell apoptosis. Higher content of OH- group in the medium can not only favors the function of alkaline phosphatase but also delays acidized tendency due to the cell metabolites.
Sol-gel synthesized PSC remains its biocompatibility and similar cell response as conventional PSC. Moreover, more active monoclinic phase and much faster hydration rate are observed in PSC synthesized by sol-gel process. The results above suggest that sol-gel prepared PSC is a potential candidate as dental retrograde-filling materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:57:02Z (GMT). No. of bitstreams: 1
ntu-97-D91548005-1.pdf: 4821977 bytes, checksum: a62fafea6e84cbd05db272df3d4d03c2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書………………………………………………………….I
謝誌…………….…………………………………………………………II
English abstract……………………………………………………………III
Chinese abstract……………………………………………………………..VI
Chart list…………………………………………………………………VIII
Table list…………………………………………………………………….XII
Table of content…………………………………………………………….XIII
Abbreviation Table………………………………………………………XVIII
Chapter 1 Introduction…………….……………….…………………………1
1-1 Root-End Surgery……………………………...……….....……….1
1-2 Root-End Filling Materials………………………………………….3
1-2-1 Amalgam…………………………………………………..…3
1-2-2 Zinc Oxide Eugenol (ZOE) and Reinforced ZOE cement………………………………………………………………4
1-2-3 Composite Resin……………………………………….……5
1-2-4 Mineral trioxide aggregate (MTA)…………………………5
1-3 Calcium Silicate Cement……………..………………………………7
Chapter 2 Theoretical Basis………………………………….....………..13
2-1 Sol-Gel Process………………………………………………….13
2-2 Precursors……………………………………………………….15
2-2-1 Hydrolysis and condensation reactions of metal salt precursors…………………………………………….…………16
2-2-2 Hydrolysis and condensation of metal alkoxide precursors………………..….................................................19
2-3 Purpose of the Study………………………………………………………………..21
Chapter 3 Materials and Method……………………………………...22
3-1 Materials Preparation…………………....................................23
3-2 Materials Analysis……………………………………………24
3-2-1 XRD…………………………………………….……..24
3-2-2 FTIR……………………………………………………24
3-2-3 Microhardness Test………………………………..…..24
3-2-4 pH Variation in the Solution Incubate with Material…………25
3-2-5 Scanning Electron Microscopy (SEM)…………………………………….26
3-3 In vitro Evaluation………………………………..…………..27
3-3-1 Cell Culture……………………………………………27
3-3-2 Lactate Dehydrogenase Assay…………………………28
3-3-3 Crystal Violet Assay………………………….………..29
3-3-4 Mitochondria Activity Assay…………………………….29
3-3-5 Alkaline Phosphatase Activity Assay…………………..30
3-3-6 Osteocalcin Assay………………………….…………31
3-3-7 PI Cell Cycle………………………………………..…..32
3-3-8 Annexin V-FITC Cell Apoptosis………………………33
3-4 Genotoxicity ……………………………………......……….34
3-4-1 Chromosome Aberration…………………..……………34
3-4-2 Sister Chromatid Exchange……………………………..35
3-5 Morphological Examination of Cell on the Developed Material………………………………………………….…….37
3-6 The Effect of Developed Material in Antibacterial………………………………………………………38
3-7 Statistics Analysis……………………………………………….39
Chapter 4 Results ………………………………………………………40
4-1. Materials Analysis……………………………………………40
4-1-1 Synthesis of PSC by Sol-Gel Process………..……..40
4-1-2 Characterization of PSC Synthesized by Sol-Gel Process……………………………………………………….…….44
4-2. In-vitro Evaluation……………………………………………59
4-2-1 Cell proliferation and Cytotoxicity……………………..59
4-2-2 Protein Secretion in Osteoblast….…………………..….63
4-2-3 Cell Cycle Analysis……………………………………..67
4-2-4 Cell Apoptosis Assay………………….………...……..67
4-2-5 Genotoxicity……………………………………..……..71
4-2-6 The Effect of Developed Material in Antibacterial………………………………...................………73
4-2-7 Morphological Examination of Cell on the Developed Material……………………………………………………..75
Chapter 5 Discussion…………………………………………………..76
Discussion of Synthesis of PSC by Sol-Gel Process………….76
Discussion of Characterization of PSC Synthesized by Sol-Gel Process………………..……………………………………..81
Discussion of In vitro Evaluation……………………………84
Chapter 6 Conclusion………………….…………………………..….90
Reference………………………………………………………….……91
Appendix…………………………………………………………………99
Appendix A Resume…………………………………………………..100
Appendix B Publication List…………………………………………..101
dc.language.isoen
dc.title以溶膠-凝膠法製備介穩水泥並評估其作為牙科逆向封填材料的可能性zh_TW
dc.titlePreparation of Sol-Gel Synthesized Partial-Stabilized Cement (PSC) and Evaluate the Feasibility as Dental Retrograde-Filling Materialen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.coadvisor林俊彬(Chun-Pin Lin)
dc.contributor.oralexamcommittee郭宗甫(Tzong-Fu Kuo),曾厚(How Tseng),許淙慶(Chung - King Hsu),李苑玲(Yuan-Ling Lee),郭士民(Shyh-Ming Kuo),董國忠(Guo-Chung Dong),沙達文(S. Sadhasiviam)
dc.subject.keyword逆向封填,牙科材料,生醫陶瓷,溶膠-凝膠法,水泥,zh_TW
dc.subject.keywordretrograde-filling,dental materials,bioceramics,sol-gel process,cement,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2008-01-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved