請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27165完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏,曾文毅 | |
| dc.contributor.author | Jun-Cheng Weng | en |
| dc.contributor.author | 翁駿程 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:56:54Z | - |
| dc.date.available | 2009-02-01 | |
| dc.date.copyright | 2008-02-01 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-30 | |
| dc.identifier.citation | 1. Woolsey, T.A. and H. Van der Loos, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res, 1970. 17(2): p. 205-42.
2. Watres, R., C. Li, and C. McCandlish, Relationship between the organization of the forepaw barrel subfield and the representation of the forepaw in layer IV of rat somatosensory cortex. Exp Brain Res, 1995. 103(2): p. 183-197. 3. Welker, C., Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol, 1976. 166(2): p. 173-89. 4. Broca, P., Sur le siege de la faculte du langage articule. Bull. Soc. ana. de Paris, 1861. 2 Serie(6): p. 355. 5. Orrison, W., et al., Functional Brain Mapping. 1995, St. Louis: Mosby-Year Book, Inc. 6. Cohen, D., Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science, 1972. 175: p. 664-666. 7. Roy, C. and C. Sherrington, On the regulation of the blood supply of the brain. J. Physiol, 1890. 11: p. 85-108. 8. Kety, S.S. and C.F. Schmidt, The Nitrous Oxide Method for the Quantitative Determination of Cerebral Blood Flow in Man: Theory, Procedure and Normal Values. J Clin Invest., 1948. 27(4): p. 476-483. 9. Fox, P., et al., A noninvasive approach to quantitative functional brain mapping with H2 15O and positron emission tomography J. Cereb. Blood Flow Metab., 1984. 4: p. 329-333. 10. Yamamura, H., M. Kuhar, and S. Snyder, In vivo identification of muscarinic cholinergic receptor binding in rat brain. Brain Res. , 1974. 80(1): p. 170-176. 11. Gibson, A., J. Hebden, and S. Arridge, Recent advances in diffuse optical imaging. Phys. Med. Biol., 2005. 50: p. R1-R43. 12. Farsiu, S., et al., Statistical detection and imaging of objects hidden in turbid media using ballistic photons. Applied Optics, 2007. 46(23): p. 5805-5822. 13. Villringer, A., et al., Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett., 1993. 154: p. 101-104. 14. Belliveau, J., et al., Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991. 254: p. 716-719. 15. Kwong, K., et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA, 1992. 89: p. 5951-5955. 16. Ogawa, S., et al., Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance image. Proc Natl Acad Sci USA, 1992. 89: p. 5951-5955. 17. Lauterbur, P.C., Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature 1973(242): p. 190-191. 18. Lin, Y.J. and A.P. Koretsky, Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med, 1997. 38(3): p. 378-88. 19. Lee, J.H. and A.P. Koretsky, Manganese enhanced magnetic resonance imaging. Curr Pharm Biotechnol, 2004. 5(6): p. 529-37. 20. Moonen, C. and P. Bandettini, Functional MRI. 1999, Berlin: Springer. 21. Pautler, R.G., In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed, 2004. 17(8): p. 595-601. 22. van den Burg, E.H., et al., Brain Responses to Ambient Temperature Fluctuations in Fish: Reduction of Blood Volume and Initiation of a Whole-Body Stress Response. J Neurophysiol, 2005. 93(5): p. 2849-2855. 23. Van Meir, V., et al., In vivo MR imaging of the seasonal volumetric and functional plasticity of song control nuclei in relation to song output in a female songbird. Neuroimage, 2006. 31(3): p. 981-92. 24. Weng, J.C., et al., Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast. Neuroimage, 2007. 36(4): p. 1179-88. 25. Fox, P. and M. Raichle, Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA, 1986. 83: p. 1140-1144. 26. Fox, P., et al., Nonoxidative glucose consumption during focal physiologic neural activity. Science, 1988. 241: p. 462-464. 27. Malonek, D. and A. Grinvald, Interactions between electrical activity and cortical microcirculation revealed by image spectroscopy: implications for functional brain mapping. Science, 1996. 272: p. 551-554. 28. Menon, R., et al., BOLD based functional MRI at 4 Tesla includes a capillary bed contributions: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med, 1995. 33: p. 453-459. 29. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990. 87: p. 9868-9872. 30. Pauling, L. and C. Coryell, The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA, 1936. 22: p. 210-216. 31. Ogawa, S., et al., Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J, 1993. 64: p. 803-812. 32. Jezzard, P., P.M. Matthews, and S.M. Smith, Functional MRI A Introduction to Methods. 2001, UK: Oxford. 33. Du, C., et al., Calibration of the calcium dissociation constant of Rhod (2) in the perfused mouse heart using manganese quenching. Cell Calcium, 2001. 29: p. 217-227. 34. Kumar, A., C. Dudley, and R. Moss, Functional dichotomy within the vomeronasal system: distinct zones of neuronal activity in the accessory olfactory bulb correlate with sex-specific behaviors. J. Neurosci., 1999. 19(20): p. RC32. 35. Narita, K., F. Kawasaki, and H. Kita, Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res, 1990. 510: p. 289-295. 36. Pautler, R. and A. Koretsky, Tracing odor induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage, 2001. 16: p. 441-448. 37. Simpson, P., R. Challiss, and S. Nahorski, Divalent cation entry in cultured rat cerebellar granule cells measured using Mn2+ quench of fura 2 fluorescence. Eur. J. Neurosci., 1995. 7: p. 831-840. 38. Duong, T., et al., Functional MRI of calciumdependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn Reson Med, 2000. 43: p. 383-392. 39. Angenstein, F., et al., Manganese-enhanced MRI reveals structural and functional changes in the cortex of Bassoon mutant mice. Cereb Cortex, 2007. 17(1): p. 28-36. 40. Cross, D.J., et al., Statistical mapping of functional olfactory connections of the rat brain in vivo. Neuroimage, 2004. 23(4): p. 1326-35. 41. Pautler, R.G. and A.P. Koretsky, Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage, 2002. 16(2): p. 441-8. 42. Yu, X., et al., In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci, 2005. 8(7): p. 961-8. 43. Aoki, I., et al., In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage, 2004. 22(3): p. 1046-59. 44. Rennels, M., O. Blaumanis, and P. Grady, Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol, 1990. 52: p. 431-439. 45. Rennels, M., et al., Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res, 1985. 326: p. 47-63. 46. Lee, J.H., et al., Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magn Reson Med, 2005. 53(3): p. 640-8. 47. Sloot, W. and J. Gramsbergen, Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res., 1994. 657: p. 124-132. 48. Pautler, R., R. Mongeau, and R. Jacobs, In vivo trans-synaptic tracttracing from the murine striatum and amygdala utilizing manganese- enhanced MRI (MEMRI). Magn. Reson. Med., 2003. 50(1): p. 33-39. 49. Pautler, R.G., A.C. Silva, and A.P. Koretsky, In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med, 1998. 40(5): p. 740-8. 50. Takeda, A., A. Ishiwatari, and S. Okada, In vivo stimulation-induced release of manganese in rat amygdala. Brain Res., 1998. 811(1-2): p. 147-151. 51. Frame, M. and M. Milanick, Mn and Cd transport by the Na-Ca exchanger f ferret red blood cells. Am J Physiol, 1991. 261: p. C467-C475. 52. Gunther, T., J. Vormann, and E. Cragoe, Jr, Species-specific Mn2+/Mg2+ antiport from Mg2(+)-loaded erythrocytes. FEBS Lett, 1990. 261: p. 47-51. 53. Akai, F.M., M, et al., Immunocytochemical localization of manganese superoxide dismutase (Mn-SOD) in the hippocampus of the rat. Neurosci Lett, 1990. 115: p. 19-23. 54. Gavin, C., K. Gunter, and T. Gunter, Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J, 1990. 266: p. 329-334. 55. Wedler, F. and R. Denman, Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul, 1984. 24: p. 153-169. 56. Murphy, F., et al., Direct hepatic tumor injection in rats: can it be used for analysis of MR imaging contrast agent? J Magn Reson Imaging, 1991. 1: p. 83-85. 57. Rabin, O., et al., Rapid brain uptake of manganese(II) across the blood-brain barrier. J Neurochem, 1993. 61: p. 509-517. 58. Chandra, S.V., et al., An exploratory study of manganese exposure to welders. Clin. Toxicol., 1981. 18: p. 407-416. 59. McMillan, D.E., A brief history of the neurobehavioral toxicity of manganese: some unanswered questions. Neurotoxicology, 1999. 20: p. 449-507. 60. Pal, P., A. Samii, and D. Calne, Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology, 1999. 20: p. 227-238. 61. Aschner, M., Manganese: brain transport and emerging research needs. Environ Health Perspect, 2000. 108: p. 429–432. 62. López-Bendito, G. and Z. Molnár, Thalamocortical Development: How are we going to get there? Nature Reviews Neuroscience, 2003. 4: p. 276-289. 63. Prasad, P.V., Magnetic Resonance Imaging Methods and Biologic Applications. Methods in Molecular Medicine, ed. J.M. Walker. 2006, Totowa, New Jersey: Humana Press Inc. 64. Ransohoff, R.M., P. Kivisäkk, and G. Kidd, Three or more routes for leukocyte migration into the central nervous system. Nature Reviews Immunology, 2003. 3: p. 569-581. 65. Liguz-Lecznar, M., et al., Dissociation of synaptic zinc level and zinc transporter 3 expression during postnatal development and after sensory deprivation in the barrel cortex of mice. Brain Res Bull, 2005. 66(2): p. 106-13. 66. Shin, J.W., et al., Metabolic barrel representations with various patterns of neonatal whisker deafferentation in rats. Int J Dev Neurosci, 2005. 23(6): p. 537-44. 67. Kennerley, A.J., et al., Concurrent fMRI and optical measures for the investigation of the hemodynamic response function. Magn Reson Med, 2005. 54(2): p. 354-65. 68. Rector, D.M., et al., Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. Neuroimage, 2005. 26(2): p. 619-27. 69. Yang, X., F. Hyder, and R.G. Shulman, Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci U S A, 1996. 93(1): p. 475-8. 70. Lu, H., et al., Temporal evolution of the CBV-fMRI signal to rat whisker stimulation of variable duration and intensity: a linearity analysis. Neuroimage, 2005. 26(2): p. 432-40. 71. Lu, H., et al., Multishot partial-k-space EPI for high-resolution fMRI demonstrated in a rat whisker barrel stimulation model at 3T. Magn Reson Med, 2003. 50(6): p. 1215-22. 72. Aoki, I., et al., Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med, 2002. 48(6): p. 927-33. 73. Henning, E.C., et al., Visualization of cortical spreading depression using manganese-enhanced magnetic resonance imaging. Magn Reson Med, 2005. 53(4): p. 851-7. 74. Paxinos, G. and C. Watson, The rat brain in stereotaxic coordinates. 1998, San Diego: Academic Press. 75. Kuo, Y.T., et al., In vivo measurements of T1 relaxation times in mouse brain associated with different modes of systemic administration of manganese chloride. J Magn Reson Imaging, 2005. 21(4): p. 334-9. 76. Aoki, I., S. Naruse, and C. Tanaka, Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia. NMR Biomed, 2004. 17(8): p. 569-80. 77. Baumgartner, R., W. Backfrieder, and E. Moser, Quantification of statistical type I and II errors in correlation analysis of simulated functional magnetic resonance imaging data. Magma, 1996. 4(3-4): p. 251-6. 78. Magnotta, V.A. and L. Friedman, Measurement of Signal-to-Noise and Contrast-to-Noise in the fBIRN Multicenter Imaging Study. J Digit Imaging, 2006. 19(2): p. 140-7. 79. Wu, G. and S.J. Li, Theoretical noise model for oxygenation-sensitive magnetic resonance imaging. Magn Reson Med, 2005. 53(5): p. 1046-54. 80. Krampfl, K., et al., Kinetic analysis of the agonistic and blocking properties of pentobarbital on recombinant rat alpha(1)beta(2)gamma(2S) GABA(A) receptor channels. Eur J Pharmacol, 2002. 435(1): p. 1-8. 81. Anthony, B.L., R.L. Dennison, and R.S. Aronstam, Influence of volatile anesthetics on muscarinic regulation of adenylate cyclase activity. Biochem Pharmacol, 1990. 40(2): p. 376-9. 82. Seeman, P. and S. Kapur, Anesthetics inhibit high-affinity states of dopamine D2 and other G-linked receptors. Synapse, 2003. 50(1): p. 35-40. 83. Tassonyi, E., et al., The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia. Brain Res Bull, 2002. 57(2): p. 133-50. 84. Brockmeyer, D.M. and J.J. Kendig, Selective effects of ketamine on amino acid-mediated pathways in neonatal rat spinal cord. Br J Anaesth, 1995. 74(1): p. 79-84. 85. Alter, W.A., 3rd, et al., Barbiturate depression of neurally mediated reflexes to coronary artery occlusion. Proc Soc Exp Biol Med, 1979. 160(2): p. 281-6. 86. Werz, M.A. and R.L. Macdonald, Barbiturates decrease voltage-dependent calcium conductance of mouse neurons in dissociated cell culture. Mol Pharmacol, 1985. 28(3): p. 269-77. 87. Alenda, A. and A. Nunez, Cholinergic modulation of sensory interference in rat primary somatosensory cortical neurons. Brain Res, 2007. 1133(1): p. 158-67. 88. Dafny, N., Neurophysiological approach as a tool to study the effects of drugs on the central nervous system: dose effect of pentobarbital. Experimental Neurology, 1978. 59: p. 263-274. 89. Winegar, B.D., G.D. Bittner, and S.W. Leslie, Effects of pentobarbital on behavioral and synaptic plasticities in crayfish. Brain Res, 1988. 475(1): p. 21-7. 90. Yang, C.C., T.B. Kuo, and S.H. Chan, Auto- and cross-spectral analysis of cardiovascular fluctuations during pentobarbital anesthesia in the rat. Am J Physiol, 1996. 270(2 Pt 2): p. H575-82. 91. Sanganahalli, B.G., P. Herman, and F. Hyder. Reproducible whisker stimulation for fMRI and neurophysiological studies. in ISMRM 2006. 92. Dawson, D.R. and H.P. Killackey, The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat. J Comp Neurol, 1987. 256(2): p. 246-56. 93. McCandlish, C., et al., Digit removal leads to discrepancies between the structural and functional organization of the forepaw barrel subfield in layer IV of rat primary somatosensory cortex. Exp Brain Res., 1996. 108(3): p. 417-426. 94. Gochin, P.M., et al., Intrinsic signal optical imaging in the forepaw area of rat somatosensory cortex. Proc Natl Acad Sci U S A, 1992. 89(17): p. 8381-3. 95. Li, C., et al., Electrical stimulation of a forepaw digit increases the physiological representation of that digit in layer IV of SI cortex in rat. NeuroReport, 1996. 7(14): p. 2395-2400. 96. Duong, T., et al., Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA, 2001. 98(19): p. 10904-10909. 97. Silva, A.C. and A.P. Koretsky, Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci U S A, 2002. 99(23): p. 15182-15187. 98. Cheng, K., R.A. Waggoner, and K. Tanaka, Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 2001. 32(2): p. 359-374. 99. Zhou, X., et al., Dissociated brain organization for single-digit addition and multiplication. Neuroimage, 2007. 35(2): p. 871-80. 100. Francis, S.T., et al., fMRI of the responses to vibratory stimulation of digit tips. Neuroimage, 2000. 11(3): p. 188-202. 101. Keilholz, S.D., et al., BOLD and CBV-weighted functional magnetic resonance imaging of the rat somatosensory system. Magn Reson Med, 2006. 55(2): p. 316-24. 102. de Zwart, J.A., et al., Temporal dynamics of the BOLD fMRI impulse response. Neuroimage, 2005. 24: p. 667-677. 103. Vanhoutte, G., M. Verhoye, and A. Van der Linden, Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity. Magn Reson Med, 2006. 55(5): p. 1006-12. 104. Van der Linden, A., et al., Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed, 2007. 105. Silverman, J. and W.W. Muir, 3rd, A review of laboratory animal anesthesia with chloral hydrate and chloralose. Lab Anim Sci, 1993. 43(3): p. 210-6. 106. Lee, S.-P., et al., Diffusion-Weighted Spin-Echo fMRI at 9.4 T: Microvascular/Tissue Contribution to BOLD Signal Changes. Magn Reson Med, 1999. 42: p. 919-928. 107. Michelich, C.R., A.W. Song, and J.R. MacFall, Dependence of Gradient-echo and Spin-echo BOLD fMRI at 4 T on diffusion weighting. NMR Biomed, 2006. 19(566-572). 108. Song, A.W., H. Guo, and T.-K. Truong, Single-Shot ADC Imaging for fMRI. Magn Reson Med, 2007. 57: p. 417-422. 109. Zhao, F., P. Wang, and S.-G. Kim, Cortical Depth-Dependent Gradient-Echo and Spin-Echo BOLD fMRI at 9.4T. Magn Reson Med, 2004. 51: p. 518-524. 110. Choi, J.J., et al., Spatio-temporal analysis of molecular delivery through the blood–brain barrier using focused ultrasound. Physics in Medicine and Biology, 2007. 52: p. 5509-5530. 111. Kinoshita, M., et al., Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A, 2006. 103(31): p. 11719-11723. 112. Yang, F.-Y., et al., Quantitative Evaluation of Focused Ultrasound with a Contrast Agent on Blood-Brain Barrier Disruption. Ultrasound in Med. & Biol., 2007. 33(9). 113. Meir, V.V., et al., Differential effects of testosterone on neuronal populations and their connections in a sensorimotor brain nucleus controlling song production in songbirds: a manganese enhanced-magnetic resonance imaging study. NeuroImage, 2004. 21: p. 914-923. 114. Wu, C., S. Dodd, and A. Koretsky, In vivo visualization of cytoarchitecture of define boundaries in cortex, thalamic nuclei and superior colliculus using manganese enhanced MRI. ISMRM, 2006. 14: p. 223. 115. Kim, S.-G. and K. Ugurbil, High-resolution functional magnetic resonance imaging of the animal brain. Method, 2003. 30: p. 28-41. 116. Duong, T.Q., et al., Spatiotemporal Dynamics of the BOLD fMRI Signals: Toward Mapping Submillimeter Cortical Columns Using the Early Negative Response. Magn Reson Med, 2000. 44: p. 231-242. 117. Zhao, F., et al., Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD. NeuroImage, 2007. 34: p. 1084-1092. 118. Hayama, T. and H. Ogawa, Regional differences of callosal connections in the grabular zones of the primary somatosensory cortex in rats. Brain Research Bulletin, 1997. 43: p. 341-347. 119. Colvin, R., et al., Zn2+ transporters and Zn2+ homeostasis in neurons. European Journal of Pharmacology, 2003. 479: p. 171-185. 120. Cole, T., et al., Elimination of zinc from synaptic vesicle in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci., 1999. 96: p. 1716-1721. 121. Milde-Langosch, K., The Fos family of transcription factors and their role in tumourigenesis. European Journal of Cancer, 2005. 41(16): p. 2449-2461. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27165 | - |
| dc.description.abstract | 大鼠初級觸覺皮層桶狀區的神經拓撲分佈,是研究神經功能與可塑性的最佳模型,然而以高空間解析度與精準空間定位方法,非侵入式地造影大腦功能與可塑性仍具有很高的挑戰性。本論文的目標為發展新的造影方法來偵測大腦功能的進行,包括解剖、神經活化、以及神經可塑性。我們嘗試以錳離子增強磁振造影術,建立了大鼠於鬍鬚刺激下,造影大腦皮質之適宜的工作平台;我們也嘗試以功能性磁振造影術,建立了大鼠於手指刺激下,造影出大腦手指初級觸覺皮質區,並應用至斷指大鼠大腦可塑性之研究。我們發展及改良了功能性磁振造影與錳離子增強磁振造影二個技術,能以最低侵入限度來研究大腦功能,此外這個研究使我們更加理解對所發展的大腦功能造影術的應用範圍。
我們以錳離子增強磁振造影術所造影大鼠大腦鬍鬚皮質區,證實了大腦中錳離子增強皮質區域與鬍鬚觸覺誘發神經活化間的關係,在大腦皮質反應區,鬍鬚刺激組的大鼠之影像強度(1.72 ± 0.22)與R1值(1.12 ± 0.16)皆比控制組的值高(1.27 ± 0.14, p<0.05; 0.83 ± 0.21, p<0.05)。我們也證實了在11.7 T的高場下,以功能性磁振造影術可以造影出單一手指觸覺皮質區,及斷指大鼠的大腦皮質可塑性。二根手指反應區質心的距離由控制組的1.45 ± 0.29 mm下降至斷指組的0.90 ± 0.21 mm (p<0.01)。這個技術對於研究大鼠的神經可塑性有很大的幫助。 總結而言,我們成功的使用錳離子增強磁振造影的策略,以非侵入性的方式及技術,造影出大鼠大腦神經活化;並且配合被我們完整建立的全腦功能性磁振造影,我們以非侵入性的方式得到更多過去必須以侵入性的組織切片或耗時的電生理量測所取得的資訊。據我們的瞭解,這是世界上首次以功能性磁振造影術來研究大腦皮質神經桶的可塑性。未來這些發展於大鼠上的磁振造影術將可以推展至人的研究與應用上,而這些新造影術的發展將有助於正常大腦以及因為學習、可塑性、藥物或基因調控而變化大腦的研究。 | zh_TW |
| dc.description.abstract | The topographic organization of cortical barrel in layer IV of rat primary somatosensory cortex is a good model for studying neural function and plasticity. However, mapping brain function and plasticity with high spatial resolution and accurate spatial localization methods non-invasively remained challenges. The overall objectives of this dissertation were to develop novel imaging techniques to monitor functional processes of the brain, including anatomy, neural activity, and neural plasticity. We sought to establish a feasible working protocol of applying manganese- enhanced magnetic resonance imaging (MEMRI) to map the cortical barrels of the rat following whisker stimulation. We’d also like to test the feasibility of using functional MRI (fMRI) to map the forepaw digit representations in the primary somatosensory cortex of the rat and to apply to the study of cortical plasticity after digit amputation. The development of these technologies provided two techniques, i.e. fMRI and MEMRI, that can be used to study brain function in minimally invasive ways. In addition, the study allowed us to better understand the range of applicability of new brain functional imaging techniques that were developed.
In our results, we have mapped rat whisker barrels using the MEMRI method and have shown a clear relationship between manganese-enhanced cortical regions and whisker tactile-sense-evoked activity. In the right cortical barrels, the enhancement ratios (1.72 ± 0.22) and R1 values (1.12 ± 0.16) in the whisker stimulation group were significantly higher than those (1.27 ± 0.14, p<0.05; 0.83 ± 0.21, p<0.05) in the control group. We have also demonstrated that forepaw barrel subfields of single digits can be reliably mapped using fMRI at 11.7T. The alteration of the digit representation after digit amputation was also detected. The distance between the centers of mass of two digits representations decreased from 1.45 ± 0.29 mm in the control group to 0.90 ± 0.21 mm (p<0.01) in the amputated group. The method will be useful to study neural plasticity in rat brains after surgical or genetic manipulation. In conclusions, exciting MEMRI strategies showed great promise for enabling non-invasive techniques to map neuronal activity throughout the rat brain non-invasively. Combined with established whole brain fMRI techniques, it became possible to get an increasing range of information non-invasively that in the past required invasive histology or time consuming electrophysiology. To the best of out knowledge this is the first fMRI demonstration of plasticity in cortical columns by fMRI. In the future, these MRI techniques developed in rats can often be extended for use in humans. The development of these new imaging techniques will be used to study the normal rodent brain and changes in the brain that occur during learning and plasticity or due to specific genetic changes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:56:54Z (GMT). No. of bitstreams: 1 ntu-97-D91921020-1.pdf: 4692938 bytes, checksum: 0d7850f2e9de8935de00fa6f53109b7d (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Cover..........0
Acknowledgement..........4 Chinese abstract..........6 English abstract..........8 Contents..........10 List of figures..........13 List of tables..........14 Chapter 1 Introduction 1.1 Background..........15 1.1.1 Neuroarchitecture..........15 1.1.2 Functional imaging methods..........17 1.2 Functional measurement of animal by MRI..........21 1.2.1 Functional magnetic resonance imaging..........22 1.2.2 Manganese-enhanced magnetic resonance imaging..........25 1.3 Outline..........29 Chapter 2 Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast 2.1 Introduction..........38 2.2 Materials and methods..........41 2.2.1 Animal preparation..........41 2.2.2 Whisker stimulation..........41 2.2.3 MEMRI data acquisitions..........42 2.2.4 Image post-processing..........42 2.3 Results..........45 2.3.1 Averaged T1WI and R1 map..........45 2.3.2 VOI analysis..........45 2.3.3 Subtraction and t-value mapping..........46 2.4 Discussions..........47 2.4.1 Different modes of systemic administration of MnCl2..........47 2.4.2 Recrystallization of mannitol and inhomogeneity of BBB disruption..........47 2.4.3 Type and depth of anesthesia..........48 2.4.4 Stimulation frequency and duration..........51 2.4.5 Advantages and disadvantages of AIM..........52 2.5 Conclusions..........54 Chapter 3 Mapping plasticity in the forepaw digit barrel subfield of rat brain using functional MRI 3.1 Introduction..........63 3.2 Materials and methods..........65 3.2.1 Animal preparation..........65 3.2.2 Digit stimulation..........66 3.2.3 Data acquisition..........66 3.2.4 Data analysis..........67 3.3 Results..........68 3.4 Discussions..........69 3.4.1 Type of anesthesia..........69 3.4.2 Physiological monitoring and adjustment..........70 3.4.3 Methods for digit stimulation..........71 3.4.4 Spatial resolvability..........71 3.5 Conclusions..........73 Chapter 4 Discussions and conclusions 4.1 Summary..........82 4.2 Discussions..........85 4.2.1 Improving the spatial localization with MEMRI..........86 4.2.2 Improving the spatial localization with fMRI..........88 4.3 Conclusions..........91 4.4 Future works..........92 References..........97 Publications..........103 | |
| dc.language.iso | en | |
| dc.subject | 初級觸覺皮質區 | zh_TW |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 錳離子增強磁振造影 | zh_TW |
| dc.subject | 神經活化 | zh_TW |
| dc.subject | 神經可塑性 | zh_TW |
| dc.subject | 皮層桶狀區 | zh_TW |
| dc.subject | 鬍鬚刺激 | zh_TW |
| dc.subject | 手指刺激 | zh_TW |
| dc.subject | cortical barrels | en |
| dc.subject | neural activity | en |
| dc.subject | neural plasticity | en |
| dc.subject | primary somatosensory cortex | en |
| dc.subject | digit stimulation | en |
| dc.subject | whisker stimulation | en |
| dc.subject | functional MRI | en |
| dc.subject | manganese-enhanced MRI | en |
| dc.title | BOLD與錳離子增強磁振造影於大鼠初級觸覺皮質區之功能研究 | zh_TW |
| dc.title | Functional Mapping of Primary Somatosensory Cortex in Rat Brain using BOLD and Manganese-Enhanced MRI | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林發暄,莊凱翔,張程,林慶波,嚴震東,符文美,孫永年 | |
| dc.subject.keyword | 功能性磁振造影,錳離子增強磁振造影,神經活化,神經可塑性,初級觸覺皮質區,皮層桶狀區,鬍鬚刺激,手指刺激, | zh_TW |
| dc.subject.keyword | functional MRI,manganese-enhanced MRI,neural activity,neural plasticity,primary somatosensory cortex,cortical barrels,whisker stimulation,digit stimulation, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
