Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27162
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorJian-Chih Ouen
dc.contributor.author歐建志zh_TW
dc.date.accessioned2021-06-12T17:56:49Z-
dc.date.available2010-02-18
dc.date.copyright2008-02-18
dc.date.issued2008
dc.date.submitted2008-01-30
dc.identifier.citation[1] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm for Generation
of Frequent Itemsets. Jornal of Parallel and Distributed Computing (Special Issue on High
Performance Data Mining), 2000.
[2] C. Aggarwal, C. Procopiuc, J. Wolf, and P. Yu. Jong soo park: Fast algorithms for projected
clustering. Proc. ACM SIGMOD, 1999.
[3] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. A new method for similarity indexing of market
basket data. pages 407–418, 1999.
[4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of
high dimensional data for data mining applications. pages 94–105, 1998.
[5] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items
in Large Databases. Proc. of ACM SIGMOD, pages 207–216, May 1993.
[6] R. Agrawal, T. Imielinski, and A. Swami. Mining Associations between Sets of Items in
Massive Databases. In Proceeding of ACM SIGMOD, pages 207–216, May 1993.
[7] R. Agrawal and J. C. Shafer. Parallel Mining of Association Rules: Design, Implementation,
and Experience. IEEE Transactions on Knowledge and Data Engineering, pages 487–499,
December 1996.
[8] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases.
Proc. of the 20th International Conference on Very Large Data Bases, pages 478–499,
September 1994.
[9] R. Agrawal and R. Srikant. Mining Sequential Patterns. Proceedings of the 11th International
Conference on Data Engineering, pages 3–14, March 1995.
[10] J. M. Ale and G. Rossi. An Approach to Discovering Temporal Association Rules. ACM
Symposium on Applied Computing, 2000.
[11] K. Ali and S. P. Ketchpel. Golden path analyzer: Using divide-and-conquer to cluster web
clickstream. Proc. of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2003.
[12] Y.-L. C. amd A. W.-C. Fu. Mining frequent itemsets without support threshold: With and
without item constraints. IEEE Transactions on Knowledge and Data Engineering, pages
1052–1069, September 2004.
[13] A. Bchner and M. Mulvenna. Discovering internet marketing intelligence through online
analytical web usage mining. ACM SIGMOD, 1998.
[14] H. Blockeel, L. D. Raedt, N. Jacobs, and B. Demoen. Scaling up inductive logic programming
by learning from interpretations. Data Mining and Knowledge Discovery, 3(1):59–93, 1999.
[15] J. Borges and M. Levene. Mining Association Rules in Hypertext Databases . Proc. Conference
on Knowledge Discovery and Data Mining (KDD’98), pages 151–160, 1998.
[16] J. Borges and M. Levene. Data mining of user navigation patterns. Proc. of the Workshop on
Web Usage Analysis and User Profiling (WEBKDD’99), 1999.
[17] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing association
rules to correlations. pages 265–276, 1997.
[18] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic Itemset Counting and Implication
Rules for Market Basket Data. Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, pages 255–264, May 1997.
[19] B. Bruegge and B. Bennington. Applications of mobile computing and communication. IEEE
Personal Communication, 1996.
[20] M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from Database Perspective.
IEEE Transactions on Knowledge and Data Engineering, 8(6):866–883, December 1996.
[21] M.-S. Chen, J.-S. Park, and P. S. Yu. Efficient Data Mining for Path Traversal Patterns. IEEE
Transactions on Knowledge and Data Engineering, 10(2):209–221, April 1998.
[22] X. Chen and I. Petr. Discovering Temporal Association Rules: Algorithms, Language and
System. Proc. of 2000 Int. Conf. on Data Engineering, 2000.
[23] D. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of Discovered Association Rules
in Large Databases: An Incremental Updating Technique. Proc. of 1996 Int’l Conf. on Data
Engineering, pages 106–114, February 1996.
[24] D. Cheung, V. Ng, A.W. Fu, and Y. Fu. Efficient Mining of Association Rules in Distributed
Databases. IEEE Transactions on Knowledge and Data Engineering, pages 911–922, 1996.
[25] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang.
Finding Interesting Associations without Support Pruning. Proc. of 2000 Int. Conf. on Data
Engineering, pages 489–499, 2000.
[26] R. Cooley. The importance of understanding web site structure and content when performing
web usage mining. November 2000.
[27] R. Cooley, B. Mobasher, and J. Srivastava. Data Preparation for Mining World Wide Web
Browsing Patterns . Knowledge and Information System, pages 5–32, 1999.
[28] R. Cooley, P.-N. Tan, and J. Srivastava. Websift: The web site information filter system. Proc.
of the 1999 KDD Workshop on Web Mining, 1999.
[29] N. Davies, G. S. Blair, K. Cheverst, and A. Friday. Supporting collaborative application in
a heterogeneous mobile environment. Computer Communication Specical Issues on Mobile
Computing, 1996.
[30] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. The Mathematical association
of america, 1984.
[31] M. H. Dunham. Mobile computing and databases. Tutorial of International Conference on
Data Engineering, 1998.
[32] A. Elmagarmid, J. Jain, and T. Furukawa. Wireless client/server computing for personal
information services and applications. ACM SIGMOD RECORD, 1995.
[33] S. Fujiwara, J. D. Ullman, and R. Motwani. Dynamic miss-counting algorithms: Finding
implication and similarity rules with confidence pruning. Proc. of the 16th International
Conference on Data Engineering, 2000.
[34] E. Gabrilovich, S. Dumais, Y. D. Cai, and E. Horvitz. Newsjunkie: Providing personalized
newsfeeds via analysis of information novelty. Proc. of the 13th International World Wide
Web Conference, 2004.
[35] G. R. Grimmett and D. R. Stirzaker. Probability and Random processes. Oxford Science
Publications, 2nd edition, 1992.
[36] J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series
Database. Proceeding of the 15th International Conference on Data Engineering, pages
106–115, March 1999.
[37] J. Han and Y. Fu. Discovery of Multiple-Level Association Rules from Large Databases.
Proc. of the 21th International Conference on Very Large Data Bases, pages 420–431, September
1995.
[38] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,
2000.
[39] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. FreeSpan: Frequent
pattern-projected sequential pattern mining. Proc. of 2000 Int. Conf. on Knowledge Discovery
and Data Mining, pages 355–359, August 2000.
[40] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. Proc. of
2000 ACM-SIGMOD Int. Conf. on Management of Data, pages 486–493, May 2000.
[41] K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen. Knowledge discovery
from telecommunication network alarm databases. In Proceedings of the Twelfth
International Conference on Data Engineering, 1996.
[42] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining – a general
survey and comparison. SIGKDD Explorations, 2(1):58–64, July 2000.
[43] R. J. B. Jr., R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large, dense
databases. Data Mining and Knowledge Discovery, 4(2/3):217–240, 2000.
[44] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani. Locally adaptive dimensionality
reduction for indexing large time series databases. Proc. of 2001 ACM-SIGMOD Conf. on
Management of Data, 2001.
[45] F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast,
quantifiable data mining. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages
582–593, 24–27 1998.
[46] N. Krishnakumar and R. Jain. Escrow techniques for mobile sales and inventory applications.
ACM Journal of Wireless Network, 1997.
[47] D. L. Lee. Data management in a wireless environment. Tutorial of International Conference
on Database System for Advance Applications, 1999.
[48] Y. Lee, W.-Y. Kim, Y. D. Cai, and J. Han. Comine: Efficient mining of correlated patterns.
Proc. of 2003 IEEE International Conference on Data Miningg, 2003.
[49] H.-F. Li, S.-Y. Lee, and M.-K. Shan. On mining webclick streams for path traversal patterns.
Proc. of the 13th International World Wide Web conference on Alternate track papers and
posters, 2004.
[50] C.-R. Lin and M.-S. Chen. On the optimal clustering of sequential data. Proc. of 2nd SIAM
International Conference on Data Mining, pages 141–157, 2002.
[51] J.-L. Lin and M. H. Dunham. Mining Association Rules: Anti-Skew Algorithms. Proc. of
1998 Int’l Conf. on Data Engineering, pages 486–493, 1998.
[52] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Proc.
4th Int. Conf. Knowledge Discovery and Data Mining (KDD’98), pages 80–86, New York,
1998., 1998.
[53] B. Liu, W. Hsu, and Y. Ma. Mining Association Rules with Multiple Minimum Supports.
Proc. of 1999 Int. Conf. on Knowledge Discovery and Data Mining, August 1999.
[54] B. Liu, Y. Ma, and P. S. Yu. Discovering unexpected information from your competitors’ web
sites. Proc. of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2001.
[55] H. Mannila and H. Toivonen. Discovering generalized episodes using minimal occurrences.
Proc. of 1996 Int. Conf. on Knowledge Discovery and Data Mining, page 146, 1996.
[56] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3):259–289, 1997.
[57] R. Mao, Y. Lu, and J. Han. Mining Multi-level andMulti-dimensional Frequent Patterns with
Flexible Support Constraints. Proc. IEEE International Conference on Data Mining, 2001.
[58] Q. Mei, C. Liu, H. Sue, and C.-X. Zhai. A probabilistic approach to spatiotemporal theme
pattern mining on weblogs. Proc. of the 15th International World Wide Web Conference,
2006.
[59] A. Nanopoulos and Y. Manolopoulos. Finding Generalized Path Patterns forWeb Log Data
Mining. Proc. East-European Conference on Advanced Databases and Information System,
pages 215–228, 2000.
[60] O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzalez. Mining evolving user profiles in noisy
web clickstream data with a scalable immune system clustering algorithm. Proc. of the
Workshop on Web mining as a Premise to Effective and Intelligent Web Applications (WEBKDD’
03), August 2003.
[61] R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining.
Proc. of the 18th International Conference on Very Large Data Bases, pages 144–155, September
1994.
[62] D. of, S. Indices, and f WWW. Daily prediction of stock market indices from textual www
data. Conference on Knowledge Discovery and Data Mining, to appear, New York, 1998.
(This paper is also invited for IEEE Int Conf on SMC, 1998), 1998.
[63] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In ICDE, pages
412–421, 1998.
[64] J.-S. Park,M.-S. Chen, and P. S. Yu. Using aHash-BasedMethodwithTransaction Trimming
for Mining Association Rules. IEEE Transactions on Knowledge and Data Engineering,
9(5):813–825, October 1997.
[65] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proc. of 2001 Int.
Conf. on Data Engineering, 2001.
[66] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining Access Patterns Efficiently from Web
Logs . Proceedings Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD’00), 2000.
[67] M. Satyanarayanan. Mobile information access. IEEE Personal Communication, 1996.
[68] J. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable parallel classifier for data mining.
In Proceeding of the 22th International Conference on Very Large Databases, 1996.
[69] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A multi-resolution clustering
approach for very large spatial databases. Very Large Spatial Databases, Proc. of 24th Intl.
Conf. On Very Large Data Bases., pages 428–439, 1998.
[70] C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Generalizing association
rules to dependence rules. Data Mining and Knowledge Discovery, 2(1):39–68, 1998.
[71] K. W. Simon. Mining confident rules without support requirement. the 10th ACM International
Conference on Information and Knowledge Management (CIKM 2001), Atlanta.
[72] R. Srikant and R. Agrawal. Mining Generalized Association Rules. Proc. of the 21th International
Conference on Very Large Data Bases, pages 407–419, September 1995.
[73] H. Toivonen. Sampling Large Databases for Association Rules. Proc. of the 22th VLDB
Conference, pages 134–145, September 1996.
[74] A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in
Large Databases. Proc. of 2001 Int. Conf. on Database Theory, January 2001.
[75] K. Wang, Y. He, and J. Han. Mining Frequent Itemsets Using Support Constraints. Proc. of
2000 Int. Conf. on Very Large Data Bases, September 2000.
[76] K. Wang, S. Q. Zhou, and S. C. Liew. Building Hierarchical Classifiers Using Class Proximity.
Proc. of 1999 Int. Conf. on Very Large Data Bases, pages 363–374, 1999.
[77] R.Wolff and A. Schuster. Association RuleMining in Peer-to-Peer Systems. Proc. of the 3rd
IEEE International Conference on Data Mining, pages 363–370, December 2003.
[78] C. Yang, U. Fayyad, and P. Bradley. Efficient discovery of error-tolerant frequent itemsets in
high dimensions. Proc. of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2001.
[79] L. Yi, B. Liu, and X. Li. Eliminating noisy information in web pages for data mining. Proc.
of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2003.
[80] H. Yu and J. Han. Pebl: Positive example based learning for web page classification using
svm. Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2002.
[81] O. Zaane and M. Antonie. Automatic text categorization using association rule mining. The
Journal of Intelligent Information Systems, Special Issue on Automated Text Categorization,
2001, 2001.
[82] M. Zaki, C. Ho, and R. Agrawal. Scalable parallel classification for data mining on shared
memory multiprocessors. Proceedings of IEEE International Conference on Data Engineering.,
1999.
[83] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms.
ACM SIGKDD, 2001.
79
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27162-
dc.description.abstract近年來,由於資料收集以及儲存裝置技術的快速進步,使得各機構累積了相當大量的資料。然而,由於資料量太大的緣故,傳統的資料分析技術並不能派上用場。資料探勘是一門同時結合了傳統資料分析方法以及精心設計的演算法以便可以快速處理大量資料的熱門學術研究方向。就目前為止已經有很多相關的研究提出高效率的演算法。在此之中,連續性關係勘測的技術已被廣泛的在選擇性市場行銷,決策分析以及企業管理中所應用。然而大部分連續性關係勘測的相關研究都是利用單一信心水準,也就是說完全依靠單一信心水準來決定該模式是有趣與否。在此篇論文中,我們研究了非單一性信心水準之連續性關係勘測的相關技術。首先我們提出了在動態信心水準條件及漸進式網路資料庫環境下的高效率演算法,之後我們研究在連續性法則之中如何找出關鍵的催化性事件。最後,我們解決了特定條件限制下的連續性關係勘測問題。
由於網路上各式各樣的活動越來越頻繁,網路資料勘測不管在學術界或是業界都是相當熱門的研究主題,然而傳統的使用者瀏覽模式勘測都是利用單一信心水準。也就是說並沒有考慮如模式的長度,網頁的位置及重要性等。有鑑於此,我們提出了動態信心水準條件及漸進式網路資料庫環境模型。尤其我們利用了馬可夫模型來輔助決定各網頁文件的信心水準條件,除此之外,我們提出的演算法DTM 亦可以在動態信心水準條件下有效率的找出使用者瀏覽模式。
此外,連續性事件勘測也是相當重要的學術研究方向,然而傳統的連續性事件勘測也面臨到關於信心水準大小決定的兩難問題。簡而言之,太高的信心水準會使得結果產生出來的連續性法則是平凡無奇的,太小的信心水準則會產生大量的連續性法則,使得從中要發現有價值的連續性法則困難重重。在本論文中我們研究在連續性法則之中如何找出關鍵的催化性事件。傳統的信心水準模型下的過濾技術在本課題中已無法利用了,因此我們發現及利用了一些特性來加速發現關鍵的催化性事件的過程。
最後,由於電信系統每天產生出大量的警報紀錄,警報記錄中可能隱藏著特定的系統運作模式可以用以解決系統問題和預測嚴重錯誤的發生,因此我們設計了一套特定條件限制下的連續性警報記錄關係勘測的系統。首先我們針對警報記錄資料的特性,設計了一連串的資料清理的步驟,之後我們亦針對警報記錄的特性,在連續性警報記錄關係勘測的演算法中提出了新的計數方式以及加入了事件發生時間區隔的限制。我們所提出的演算法已實際在電信業者所提供的警報記錄中驗證效能及實用性。
zh_TW
dc.description.abstractRemarkable advancement in data collection and storage technology have enabled institutions to store up vast amount of data. However, traditional data analysis techniques cannot be used here because of the huge size of data. Data mining is a technology that combine traditional data analysis procedure and sophisticated algorithms for dealing with large amount of data. A significant amount of research effort has been elaborated upon the development of efficient algorithms for data mining. In particular, the discovery of sequential relationship among the data in a huge database has been known to be useful in selective marketing, decision analysis, and business management. However, most work of sequential relationship are based on the model of a uniform support threshold only, where a single support threshold is used to determine whether the patterns are interesting or not. In this dissertation, we explore several techniques to mining sequential relationship for different constraints. First, we propose efficient algorithms for incremental Web log mining with dynamic thresholds. Then, we investigate the model of mining catalytic events of episode rules in event sequences. Finally, we study the problem of constrained based sequential pattern mining.
With the fast increase in Web activities, Web data mining has recently become an important research topic and is receiving a significant amount of interest from both academic and industrial environments. While existing methods are efficient for the mining of frequent path traversal patterns from the access information contained in a log file, these approaches are likely to over evaluate associations. Explicitly, most previous studies of mining path traversal patterns are based on the model of a uniform support threshold, where a single support threshold is used to determine frequent traversal patterns without taking into consideration such important factors as the length of a pattern, the positions of Web pages, and the importance of a particular pattern, etc. As a result, a low support threshold will lead to lots of uninteresting patterns derived whereas a high support threshold may cause some interesting patterns with lower supports to be ignored.
In view of this, we broadens the horizon of frequent path traversal pattern mining by introducing a flexible model of mining Web traversal patterns with dynamic thresholds. Specifically, we study and apply the Markov chain model to provide the determination of support threshold of Web documents; and further, by properly employing some effective techniques devised for joining reference sequences, the proposed algorithm DTM (standing for Dynamic Threshold Miner) not only possesses the capability of mining with dynamic thresholds, but also improves the execution efficiency as well as contributes to the incremental mining of Web traversal patterns. Performance of algorithm DTM and the extension of existing methods is comparatively analyzed with synthetic and real Web logs.
The data mining techniques include association rules mining, classification, clustering, mining time series, and sequential pattern mining, to name a few. Among others, finding frequent episodes has attracted a significant amount of research attention. However, the traditional episodes mining also suffers from a dilemma of frequency threshold determination. To put it briefly, with a high frequency threshold, the discovered rules are often well-known and valueless, and rules of low frequency threshold but high usefulness are usually not discovered. And with a low frequency threshold, the amount of the discovered rules explodes and it is very difficult to find the valuable rules among them. In view of this, we consider the following problem. Given a set of episodes and a sequence database of events, find all catalytic events of episode rules in the event sequence. An event E is a catalytic event of a given episode rule α=>β if event E and the triggering part of episode rule α together trigger the consequential part of episode rule β more easily than the triggering part of episode rule α does. In other words, event E is a catalyst which makes the probability of β happens after α become larger, that is to say, the event E makes β happens after α more often. Obviously, the classic support-based pruning strategy does not work here. Hence, we find some properties to make the process of mining catalytic events of episodes more efficient.
A telecommunication system produces daily a large amount of alarm data which contains hidden valuable information about the system behavior. The knowledge discovered from alarm data can be used in finding problems in networks and possibly in predicting severe faults. Hence, we devise a solution procedure for mining sequential alarm patterns from the alarm data of a GSM system. First, by observing the features of the alarm data, we develop operations for data cleaning without compromising the quality of sequential alarm patterns obtained. After the data cleaning procedure, we transform the alarm data into a set of alarm sequences. Note that the consecutive alarm events exist in the alarm sequences, and it is complicated to count the occurrence counts of events and extract patterns. Therefore, we devise a new counting method to determine the occurrence count of the sequential alarm patterns in accordance with the nature of alarms. More importantly, by utilizing time constraints to restrict the time difference between two alarm events, we devise a mining algorithm to discover useful sequential alarm patterns. The proposed mining algorithm is implemented and applied to test against a set of real alarm data provided by a cellular phone company. The quality of knowledge discovered is evaluated. The experimental results show that the proposed operations of data cleaning are able to improve the execution of our mining algorithm and the knowledge obtained from the alarm data is very important from the perspective of network operators for alarm prediction and alarm control.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:56:49Z (GMT). No. of bitstreams: 1
ntu-97-F89921128-1.pdf: 821171 bytes, checksum: f8b741d84e7a419a1ad5993a86c32445 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation and Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Preliminaries about Sequential Relationship 5
2.1 Web Path traversal Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 EpisodeRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Efficient Algorithms for IncrementalWeb Log Mining with Dynamic Thresholds 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 SearchSpaceTraversedbyAlgorithmUTM. . . . . . . . . . . . . . . . . 16
3.3 DTM: Dynamic Threshold Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 AlgorithmDTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 AlgorithmIncrementalDTM(IDTM) . . . . . . . . . . . . . . . . . . . . 26
3.4 PerformanceStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Generation of synthetic workload . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 PerformanceComparisonbetweenDTMandUTM . . . . . . . . . . . . . 33
3.4.3 Scale-UpExperimentalResultsonIDTM . . . . . . . . . . . . . . . . . . 38
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Mining Catalytic Events of Episode Rules in Event Sequences 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Mining Catalytic Events of Episodes . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 The effect of pruning strategies . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Experimental resultsontheExecutionTime . . . . . . . . . . . . . . . . . 51
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 Constrained Based Sequential Pattern Mining 54
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Alarm Data in GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 ProcedureofMiningAlarmSequentialPatterns . . . . . . . . . . . . . . . 59
5.3 Mining Sequential Alarm Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 DataCleaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Algorithm MSAP: Mining Sequential Alarm Patterns . . . . . . . . . . . . 61
5.3.3 An Illustrative Example for Mining Sequential Alarm Patterns . . . . . . . 65
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1 The Impact of Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.2 ExperimentalResultsofAlgorithmMSAP . . . . . . . . . . . . . . . . . 68
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6 Conclusions 71
Bibliography 73
dc.language.isoen
dc.subject警報紀錄zh_TW
dc.subject資料探勘zh_TW
dc.subject信心水準zh_TW
dc.subject馬可夫模型zh_TW
dc.subject連續性事件zh_TW
dc.subjectsequential relationship.en
dc.subjectalarm logen
dc.subjectMarkov modelen
dc.subjectsupporten
dc.subjectData miningen
dc.title不同條件限制之連續性關係勘測zh_TW
dc.titleMining Sequential Relationship for Different Constraintsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee王勝德(Sheng-De Wang),曾新穆(Vincent S. Tseng),呂永和(Yung-Ho Leu),林守德(Shou-De Lin)
dc.subject.keyword資料探勘,信心水準,馬可夫模型,警報紀錄,連續性事件,zh_TW
dc.subject.keywordData mining,support,Markov model,alarm log,sequential relationship.,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2008-01-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
801.92 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved