Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘國隆(Kuo-Long Pan)
dc.contributor.authorPing-Chung Chouen
dc.contributor.author周秉忠zh_TW
dc.date.accessioned2021-06-12T17:56:22Z-
dc.date.available2018-12-31
dc.date.copyright2008-02-18
dc.date.issued2008
dc.date.submitted2008-01-31
dc.identifier.citation參 考 文 獻
[1] Lord Rayleigh,” On the Instability of Jets”, Proc. London Math Soc., Vol.10, no.4, 1878, pp.4-13.
[2] R. Gunn,” Droplet-Electrification Process and Coagulation in Stable and Unstable Clouds”, J. Meteorol.12, 1955, pp. 511.
[3] R. H. Magarvey and B. W .Taylor, ”Free Fall Breakup of Large Drops”, J. Appl. Phys.,Vol.27,no.10,1956,pp1129.
[4] R. H. Magarvey and J. W. Geldart,” Drop Collision Under Conditions of Free Fall’, J. Atmo. Sci., Vol.19, 1961, pp. 107.
[5] J. M. schneider and C. D. Hendricks, ”Source of Uniform-Sized Liquid Droplets”, The Review of Scientific Instruments,Vol.35,no.10,1964,pp.1349.
[6] Richard G. Sweet, ”High Frequency Recording with Electrostatically Deflected Ink Jets”, The Review of Scientific Instruments,Vol.36,no.2,1965,pp.131.
[7] Ross Gunn,” Collision Characteristics of Freely Falling Water Drops”, Sci., Vol.150, no.3697, 1965, pp.695.
[8] William R. Cotton and Narayan R. Gokhale,” Collision, Coalescence, and Breakup of Large Water Drops in a Vertical Wind Tunnel”, J. Geo. Res., Vol. 72,no. 16,1967,pp.4041.
[9] J. R. Adam, N. R. Lindblad, and C. D. Hendricks,” The Collision, Coalescence, and Disruption of Water Droplets”, J. Appl. Phys., Vol. 39, no. 11,1968,pp.5173.
[10] R. List and D. M. Whelpdale,” A Preliminary Investigation of Factors Affecting the Coalescence of Colliding Water Drops” ,J. Atmo.Res.,Vol.26,1969,pp.305.
[11] D. N. Montgomery and G. A. Dawson, ”Collisional Charging of Water Drops”, J. Geo.Res.,Vol.74,no.4,1969,pp.962.
[12] E. Ruckenstein,” Unsteady mass transfer near fluid-liquid interfaces”, Chemical Engineering Science, Vol.25, 1970, pp.1699
[13] E. F. Goedde, ”Experiment on liquid jet instability”, J. Fluid Mech.,Vol.40,1970,pp.495.
[14] D. N. Montgomery,” Collision and Coalescence of Water Drops”, J. Atmo. Sci., Vol. 28, 1971, pp. 291.
[15] James D. Klett,” On the Breakup of Water Drops in Air”, J. Atmo.Sci., Vol. 28, 1971, pp.646.
[16] D. M. Whelpdale and R. List,” The Coalescence Process in Raindrop Growth”, J. Geo. Res.,Vol.76 ,no.12,1971,pp.2836.
[17] P. R .Brazier-Smith; S. G. Jennings;J. Latham, ”The Interaction of Falling Water Drops: Coalescence”, Proc. R. Soc. Lond. A. Math. Phys. Sci., Vol. 326, no. 1566, 1972, pp.393.
[18] Joseph B. Keller;S. I .Rubinow; Y. O. Tu,” Spatial instability of a jet”, Phys. Fluids, Vol. 16, no. 12, 1973, pp.2052.
[19] H. C. Lee,” Drop Formation in a Liquid Jet”, IBM J. Res .Develop. , 1974, pp. 364.
[20] J. D. Mctaggart-Cowan and Roland List, ”Collision and Breakup of Water Drops at Terminal Velocity”, J. Atmo. Sci., Vol.32 , 1975, pp.1401.
[21] W. T. Pimbley,” Drop Formation from a Liquid Jet: A Linear One-dimensional Analysis Considered as a Boundary Value Problem”, IBM J. Res. Develop., 1976, pp.148.
[22] W. T. Pimbley and H. C. Lee,” Satellite Droplet Formation in a Liquid Jet”, IBM J. Res. Develop., 1977, pp. 21.
[23] S. G. Bradley; C. D. Stow,” Collision between Liquid Drops”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Science, Vol.287, no.1349, 1978, pp.635.
[24] S. G. Bradley; C. D. Stow,” On the Production of Satellite Droplets During Collisions Between Water Drops Falling in Still Air” ,J. Atmo. Sci., Vol. 36, 1979, pp. 494.
[25] T. W. Shield; D. B. Bogy; F. E. Talke,” Drop formation by DOD ink-jet nozzle: A comparison of experiment and numerical simulation”, IBM J. Res. Develop., 1987, pp. 96.
[26] S. D. R. Wilson,” The slow dripping of a viscous fluid”, J. Fluid Mech., Vol. 190, 1988, pp.561.
[27] N. Ashgriz and P. Givi,” Coalescence Efficiencies of Full Droplets in Binary Collision”, INT. COMM. HEAT MASS TRANSFER, Vol. 16, 1989, pp. 11.
[28] D. H. Peregrine; G. Shoker; A. Symon,” The bifurcation of liquid bridges”, J. Fluid Mech. , Vol.212, 1990, pp.25.
[29] G. Brenn; A.Frohn,” Collision and merging of two equal droplets of propanol”, Experiments in Fluids, Vol.7, 1989, pp.441.
[30] N. Ashgriz; J. Y. Poo,” Coalescence and separation in binary collisions of liquid drops”, J. Fluid Mech., Vol. 221, 1990 , pp.183.
[31] Y. J. Jiang; A. Umemura; C. K. Law,” An experimental investigation on the collision behavior of hydrocarbon droplets”, J. Fluid Mech., Vol. 234, 1992, pp. 171.
[32] A. Asai,” Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer”, Journal of Fluids Engineering, Vol. 104, 1992, pp. 638.
[33] M. R. Nobari; Y. J. Jan; G. Tryggvason,” Head-on collision of drops of –Anumerical investigation”, Phys. Fluid, Vol.8, 1996, pp.29
[34] J. Qian; C. K. Law,” Regimes of coalescence and separation in droplet collision”, J. Fluid Mech., Vol.331, 1997, pp. 59.
[35] Jens Eggers,” Nonlinear dynamics and breakup of free-surface flows”, Reviews of Modern Physics, Vol. 69, no.3, 1997, pp.865.
[36] Melissa Orme,” Experiments on droplet collisions, bounce, coalescence and disruption”, Prog. Energy Combust. Sci., Vol. 23, 1997, pp.65.
[37] Arvind Gopinath and Donald L. Koch,” Collision and rebound of small droplets in an incompressible continuum gas”, J. Fluid Mech., Vol.454, 2002, pp.145.
[38] K. L. Pan and C. K. Law, “Experimental and mechanistic descriptions of merging and bouncing in head-on binary droplet collision,” Journal of Applied Physics , accepted 2007; also presented as ”On the dynamics of head-on droplet collision: experiment and simulation”, at The 42nd AIAA Aerospace Sciences Meeting & Exhibit, Reno, USA, Paper Number 1159 (January, 2004).
[39] Pan, K. L,” Dynamics of droplet collision and flame-front motion”, PhD. thesis, Princeton University, 2004.
[40] 謝松益,“液滴間碰撞結合現象研究”, 國立台灣大學機械工程研究所碩士論文,2005.
[41] 陳威翰, “利用壓電致動器成型穩定微液滴之實驗研究”,國立台灣大學機械工程研究所碩士論文,2006.
[42] 余傳濬, “純水層流液柱噴流於斜向對撞後所形成之液頁流場之實驗與理論研究”, 國立台灣大學機械工程研究所碩士論文,2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27144-
dc.description.abstract不 同 表 面 張 力 水 溶 液 之 高 速 雙 液 滴 碰 撞

周秉忠
指導教授:潘國隆博士

國立台灣大學機械工程學研究所

摘要
本文針對不同的溶液下所產生的液滴進行正向對撞,進而觀察其碰撞之現象,並且建立一套產生液滴之實驗設備,以及建立一套可觀測液滴撞擊現象的觀測設備,經由改變溶液的性質(表面張力)以及液滴大小與速度,並且藉由攝影所擷取的瞬間影像來了解液滴對撞之現象。實驗著重於二部份,第一,利用液滴產生器以及氣壓缸產生一穩定的低速以及高速液滴,並且能夠改變其成型的粒徑大小以及速度,第二,產生穩定液滴之後,進而使其對撞,對撞面必須為正向,且此二液滴的粒徑大小必須一樣,之後再觀察其現象。期望能夠提供液滴碰撞現象明確而且充分的資料。
過去前人對於液滴碰撞的研究雖然多,然而在之前的研究當中,其所探討之區域主要在較低韋伯數之區域,因此,本實驗主要在於能夠產生高速(高韋伯數)之液滴並且將其正向對撞。而本實驗的控制參數為液滴的性質(表面張力)、液滴大小與速度、噴嘴孔徑的大小、訊號產生器之電壓以及頻率、氣壓缸的壓力大小、馬達之轉速。

本實驗主要探討三個部份:一為在低速(低韋伯數)之下,液滴撞擊之現象觀察與討論;二為在高速(高韋伯數)之下,液滴撞擊之現象觀察與討論;三為更換不同的溶液,將表面張力改變,進而觀察其液滴撞擊的現象,而最後將實驗所得到之數據整理完整,之後再加以分析與比較其之間的差異。

關鍵字:液滴碰撞、液滴產生器、高速液滴、表面張力、韋伯數、訊號產生器
zh_TW
dc.description.abstractHigh-Speed Binary Water Droplet Collision with Different Surface Tension
Ping-Chung Chou
Advisor:Kuo-Long Pan, Ph.D.
Department of Mechanical Engineering
National Taiwan University

Abstract
This study aims at droplet generation with different water solution to achieve a head-on collision and to observe the phenomenon under head-on collision. The set of devices for droplet generation and for observation of droplet collision are elaborated, through changing the parameters of solution (such as surface tension, size and velocity of droplets) and collecting the instant image by a high-speed camera to get more understanding of droplet collision phenomenon. In this experimental study, the most attention is given to two aspects. The first one is to generate a stable droplet with low and high speed respectively by using a droplet generator and a gas cylinder. At this stage we can control the size and velocity of a droplet. The second stage of experiment is to provide the droplet with head-on collision, whereby the size of two droplets must be almost the same, and then we observe the phenomenon. We expect to provide explicit and full data for droplet collision phenomena on this experiment.
In spite of numerous researches on droplet collision, most of the research investigated into low Weber number of droplet. Therefore, this experiment is mainly focused on how to generate a high-speed (high Weber number) droplet and to make the droplet always keep head-on collision. The variables in this experiment include the droplet surface tension, the size and the velocity of droplet, the diameter of nozzle, the voltage and the frequency of signal generator, the pressure of gas cylinder, and the rotational speed of motor tested.
The conclusions of this experiment consist of three parts. In the first part, we observe and discuss the collision of low velocity (low Weber number). The second is to describe the experimental results of high velocity (high Weber number) droplet collision. The third is to observe and discuss the phenomena of droplet collision under different surface tensions.

Keywords: droplet collision, droplet generator, high-speed droplet, surface tension, Weber number, signal generator.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:56:22Z (GMT). No. of bitstreams: 1
ntu-97-R94522317-1.pdf: 18297616 bytes, checksum: 9d21c438424c748b1c02eaed2cf21f79 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents本 文 目 錄
中文摘要 ..............................I
英文摘要 ..............................III
本文目錄 ..............................V
圖表目錄 ..............................VII
符號說明 ..............................XI
第 一 章 緒論..........................1
1-1前 言...............................1
1-2文獻回顧............................2
1-3研究動機及目的......................8
第 二 章 實驗設備裝置..................10
2-1液滴產生裝置........................10
2-1-1液滴產生方式......................10
2-1-2液滴產生器........................10
2-1-3電子控制裝置......................11
2-1-4噴嘴..............................12
2-1-5流體供應系統......................13
2-1-6液柱截斷裝置......................14
2-2影像拍攝系統........................15
2-3影像處理系統........................17
2-4其他測量設備........................17
第 三 章 實驗步驟與基礎理論............20
3-1實驗操作與拍攝......................20
3-1-1低速液滴對撞之操作................20
3-1-2高速液滴對撞之操作................21
3-1-3使用不同水溶液碰撞之操作..........23
3-2實驗數據讀取與分析..................24
3-3實驗數據之誤差分析..................25
3-4基礎理論............................26
3-4-1液滴拉伸斷裂理論..................26
3-4-2液柱噴流之斷裂理論................27
3-4-3液滴碰撞理論......................27
第 四 章 結 果 與 討 論................30
4-1結合................................31
4-2分離................................31
4-3分離後生成衛星液滴..................32
4-4指狀................................32
4-5指狀後分離..........................33
4-6破裂................................33
4-7飛濺................................34
第 五 章 結 論 與 未 來 發 展..........37
參 考 文 獻.........................39
圖 表.............................43

圖 表 目 錄
圖 2-1 實驗設備之示意圖...............................43
圖 2-2、2-3 實驗設備全貌實體圖........................44
圖 2-4 液滴產生器.....................................45
圖 2-5 液滴產生器與儲水瓶之相對位置...................45
圖 2-6 電子控制箱.....................................46
圖 2-7 不同大小之Nozzle 口徑..........................46
圖 2-8 兩種不同 Nozzle 之比較.........................47
圖 2-9 氣壓缸之管路配置實體圖.........................47
圖 2-10 氣壓缸之動作圖 (引用自[42])...................48
圖 2-11 馬達以及轉盤之實體圖..........................48
圖 2-12 轉盤之切口....................................49
圖 2-13 CCD攝影機與 NAVIYAR 鏡頭......................49
圖 2-14 電視影像擷取介面卡............................50
圖 2-15 高速攝影機與 Nikon 之鏡頭.....................50
圖 2-16 投影機燈......................................51
圖 2-17 高速攝影機與 Computar MLH-10X 之鏡頭..........51
圖 2-18 同步LED燈.....................................52
圖 2-19 高速攝影機之操作使用介面......................52
圖 2-20 MATROX 操作使用介面...........................53
圖 2-21 表面張力測量儀................................53
圖 2-22 黏度計........................................54
圖 2-23 電子秤........................................54
圖 2-24 界面活性劑....................................55
圖 2-25 超音波震盪器..................................55
圖 3-1 a、b表面張力72之切過長與切過短之液柱變化圖.....56
圖 3-1 c、d表面張力72之8.7a與12a之液柱變化圖..........57
圖 3-2 a、b表面張力16之切過長與切過短之液柱變化圖.....58
圖 3-2 c、d表面張力16之7.5a與9a之液柱變化圖...........59
圖 3-3 a、b表面張力31之切過長與切過短之液柱變化圖.....60
圖 3-3 c、d表面張力31之8a與9.5a之液柱變化圖...........61
圖 3-4 液滴拉伸斷裂實體圖.............................62
圖 3-5 液滴拉伸斷裂機制圖 (引用自[34])................62
圖 3-6 液柱直徑、擾動波長,液滴尺寸之關係 (引用自[41])63
圖 3-7 液滴撞擊之模型圖 (引用自[31])..................63
圖 3-8 水滴碰撞現象與對應韋伯數與撞擊參數之關係.......64
圖 4-1 液滴撞擊現象與相對應之韋伯數與表面張力之關係...65
圖 4-2 各區域在不同表面張力之劃分圖...................66
圖 4-3純水在We=16.2下之液滴撞擊時序圖.................67
圖 4-4表面張力31在We=44.9下之液滴撞擊時序圖...........68
圖 4-5表面張力16在We=46.0下之液滴撞擊時序圖...........69
圖 4-6液滴撞擊產生分離(separation)現象之示意圖........70
圖 4-7純水在We=36.5下之液滴撞擊時序圖.................71
圖 4-8表面張力31在We=86.7下之液滴撞擊時序圖...........72
圖 4-9表面張力16在We=123.4下之液滴撞擊時序圖..........73
圖 4-10純水在We=45.3下之液滴撞擊時序圖................74
圖 4-11表面張力31在We=147.7下之液滴撞擊時序圖.........75
圖 4-12表面張力16在We=168.1下之液滴撞擊時序圖.........76
圖 4-13純水在We=108.9下之液滴撞擊時序圖...............77
圖 4-14表面張力31在We=872.7下之液滴撞擊時序圖.........78
圖 4-15表面張力16在We=660.7下之液滴撞擊時序圖.........79
圖 4-16純水在We=210.2下之液滴撞擊時序圖...............80
圖 4-17表面張力31在We=1236.2下之液滴撞擊時序圖........81
圖 4-18表面張力16在We=2268.8下之液滴撞擊時序圖........82
圖 4-19純水在We=277.3下之液滴撞擊時序圖...............83
圖 4-20表面張力31在We=1444.8下之液滴撞擊時序圖........84
圖 4-21表面張力16在We=2487.3下之液滴撞擊時序圖........85
圖 4-22純水在We=252.4之盤狀擴散飛濺過程...............86
圖 4-23表面張力31在We=1444.8之盤狀擴散飛濺過程........87
圖 4-24表面張力16在We=2460.9之盤狀擴散飛濺過程........88
圖 4-25純水在We=877.5下之液滴撞擊時序圖...............89
圖 4-26表面張力31在We=2257.5下之液滴撞擊時序圖........90
圖 4-27表面張力16在We=3326.7下之液滴撞擊時序圖........91
圖 4-28純水在We=371.2之盤狀擴散飛濺過程...............92
圖 4-29表面張力31在We=1716.6之盤狀擴散飛濺過程........93
圖 4-30表面張力16在We=2800.0之盤狀擴散飛濺過程........94
圖 4-31純水在We=442.3之盤狀擴散飛濺過程...............95
圖 4-32純水在We=650.0之盤狀擴散飛濺過程...............96
圖 4-33純水在We=805.2之盤狀擴散飛濺過程...............97
圖 4-34表面張力31在We=1923.2之盤狀擴散飛濺過程........98
圖 4-35表面張力31在We=2141.6之盤狀擴散飛濺過程........99
圖 4-36表面張力16在We=3160.9之盤狀擴散飛濺過程........100
圖 4-37表面張力16在We=4032.0之盤狀擴散飛濺過程........101
圖 4-38純水在We=972.3之盤狀擴散飛濺過程...............102
圖 4-39純水在We=1176.5之盤狀擴散飛濺過程..............103
圖 4-40表面張力31在We=2371.8之盤狀擴散飛濺過程........104
圖 4-41表面張力31在We=2488.9之盤狀擴散飛濺過程........105
圖 4-42表面張力16在We=4375.0之盤狀擴散飛濺過程........106
圖 4-43表面張力16在We=4823.4之盤狀擴散飛濺過程........107
圖 4-44純水在We=1519.2之盤狀擴散飛濺過程..............108
圖 4-45表面張力31在We=2731.6之盤狀擴散飛濺過程........109
圖 4-46表面張力16在We=5293.8之盤狀擴散飛濺過程........110
圖 4-47純水在We=1593.0下之液滴撞擊時序圖..............111
圖 4-48表面張力31在We=2731.6下之液滴撞擊時序圖........112
圖 4-49表面張力16在We=5293.8下之液滴撞擊時序圖........113
圖 4-50純水在We=5143.5下之液滴撞擊時序圖..............114
圖 4-51表面張力31在We=6146.0下之液滴撞擊時序圖........115
圖 4-52表面張力16在We=7393.8下之液滴撞擊時序圖........116
圖 4-53不同表面張力下韋伯數(We)與盤狀寬度(W)之關係....117
圖 4-54韋伯數與歐式數在分離現象分界之關係.............118
圖 4-55韋伯數與歐式數在區域分界之關係.................118
表 一 兩種界面活性劑之性質............................119
表 二 噴嘴口徑與形成之液滴大小之關係..................120
表 三 表面張力值與截斷長度之關係比較..................120
表 四 在各表面張力值之各現象分佈區域..................120
附錄一................................................121
附錄二................................................122
dc.language.isozh-TW
dc.title不同表面張力水溶液之高速雙液滴碰撞zh_TW
dc.titleHigh-Speed Binary Water Droplet Collision with Different Surface Tensionen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王興華(Ching-Hua Wang),賴君亮(Chun-Liang Lai)
dc.subject.keyword液滴碰撞,液滴產生器,高速液滴,表面張力,韋伯數,訊號產生器,zh_TW
dc.subject.keyworddroplet collision,droplet generator,high-speed droplet,surface tension,Weber number,signal generator,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2008-01-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
17.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved