Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖(Hoang-Yan Lin)
dc.contributor.authorNien-Mon Chenen
dc.contributor.author陳年謀zh_TW
dc.date.accessioned2021-06-12T17:56:20Z-
dc.date.available2010-02-01
dc.date.copyright2008-02-01
dc.date.issued2008
dc.date.submitted2008-01-31
dc.identifier.citation[1] R. W. Gerchberg and W. O. Saxton, ' A Practical Algorithm for Determination of Phase from Image and Diffraction Plane Pictures,' Optik 35, 237-246, 1972.
[2] W. B. Veldkamp, “Technique for generating focal-plane flattop laser-beam profiles,” Rev. Sci. Instrum. 53, 294–297, 1982.
[3] F. M. Dickey and S. C. Holswade, Laser Beam Shaping Theory and Techniques, Marcel Dekker, 2000.
[4] John A. Hoffnagle and C. Michael Jefferson, ' Design of performance of a refractive optical system that converts a Gaussian to a flattop profile,' Applied Optics, Vol. 39, No. 30, 5488-5499, October 2000.
[5] S. P. Chang, J. M. Kuo, Y. P. Lee, C. M. Lu, and K. J. Ling, ' Transforming of Gaussian to coherent uniform beams by inverse-Gaussian transmittive filters,' Applied Optics, Vol. 37, No. 4, 747-752, February 1998.
[6] N. F. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices: Marcel Dekker, 1999.
[7] M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, ' Synthesis of digital holograms by direct binary search,' Applied Optics, Vol. 26, No. 14, 2788-2798, July 1987.
[8] N. Yoshikawa and T. Yatagai, 'Phase optimization of a kinoform using simulated annealing,' Applied Optics, Vol. 33, No. 5, 863-868, February 1994.
[9] M. S. Kim and C. C. Guest, ' Simulated annealing algorithm for binary phase only filters in pattern classification,' Applied Optics, Vol. 29, No. 8, 1203-1208, March 1990.
[10] X. Tan, B. Y. Gu, G. Z. Yang, and B. Z. Dong, ' Diffractive phase elements for beam shaping: a new design method,' Applied Optics, Vol. 34, No. 8, 1314-1320, March 1995.
[11] T. HIRAI, K. FUSE, K. KURISU, K. EBATA, ' Development of Diffractive Beam Homogenizer,' SEI TECHNICAL REVIEW, Number 60, JUNE 2005.
[12] W. Wang, T. Li, Y. Li, ' A hybrid algorithm for the design of DOE in uniform illumination,' Optics Communications 181, July 2000.
[13] D. C. O'Shea, T. J. Suleski, A. D. Kathman, D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, SPIE, Bellingham, Washington 98227-0010, USA, 2003.
[14] B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology, Wiley, 2000.
[15] J. W. Goodman, Introduction to Fourier Optics: Roberts & Co, 2004.
[16] J. J. W. Goodman and A. M. Silvestri, ' Some effect of Fourier domain phase quantization,' IBM J. Res. Dev. 14, 478-484, (1970).
[17] K. H. Hsu, H. Y. Lin, ' Design of diffractive beam shaper for transforming a Gaussian beam to a squared uniform beam,' SPIE, vol. 6832, January 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27143-
dc.description.abstract在許多的雷射應用中,均勻強度的光束是常被利用,甚至在某些應用中這樣的特性是被要求必有的特質。然而一般的雷射光束並沒有提供均勻強度的光場,其強度為高斯分佈;當入射雷射光被擴大,僅使用部分近似均勻強度光場時,將會造成大量的能量損失,這是在許多應用時所不樂見的情況。因此,有效的將高斯光束轉化成強度均勻及相位均勻之光場將是雷射光束整型典型的重要問題。
在本論文中,我們設計一片繞射元件將高斯光束轉換成均勻分布的光束,並且利用另外一片繞射相位元件去補償相位差,在重建場得到相位均勻的效果。根據Fresnel 繞射理論,我們利用複立葉轉換疊代演算法(Iterative Fourier Transform Algorithm)計算設計,以得到繞射元件的相位分佈。在模擬過程中,我們透過統計化參數測試的模擬情形,提出如何得到較佳光束品質的設計規則;我們使用不同的相位量化方法模擬設計,進一步提昇均勻度及效率較好的結果。對於二階元件而言,傳統相位量化方法與步階量化方法的均勻度值(Uniformity)各別為6.04及4.16;對於四階元件而言,其均勻度值各別為2.46及2.36;與前人的模擬結果比較,其八階相位量化的誤差平方和(sum-squared error)為19.5%。根據步階量化的結果可改善至13.5%。最後,針對元件之製程深度及刻度誤差,進行容忍度的模擬分析。
zh_TW
dc.description.abstractIn many laser applications, a uniform beam is useful and required. However, common Gaussian beams don’t provide uniform intensity distributions and will have considerable energy loss if it is expanded to obtain a locally uniform illumination. Therefore, to efficiently shape a Gaussian beam into a uniform beam is of significant. Hence, a typical and important beam shaping problem is the transformation of a Gaussian laser beam into a beam with uniform intensity and phase.
In this thesis, we design a diffractive optical element to transform a Gaussian beam to an expanded squared uniform profile and use another diffractive phase element which can compensate the phase difference to achieve a uniform phase distribution on the reconstruction plane. According to Fresnel diffraction theory, we use a design method based on the iterative Fourier transform algorithm (IFTA) to compute the phase distributions of an optical system composed of diffractive phase elements. In this thesis, we propose some design rules to get a better beam quality through systematically studying the simulation parameters. We also study the effects of different quantized methods, further improve the beam quality. For L=2, the uniformity values of traditional quantization and progressive quantization are 6.04 and 4.16, respectively. For L=4, the uniformity values of traditional quantization and progressive quantization are 2.46 and 2.36, respectively. Comparing with the previous literature by Xin Tan [10], the value of sum-squared error is 19.5% by the traditional quantization of L=8 in [10] and is 13.5% by progressive quantization of L=4 in our study. After designing the DOEs, we make a tolerance analysis about the fabricated error of depth and pitch.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:56:20Z (GMT). No. of bitstreams: 1
ntu-97-J94941022-1.pdf: 5647738 bytes, checksum: b0aca330c578aa7e8c40ce1dfe914899 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents致 謝...................................................ii
摘 要..................................................iii
Table of Contents........................................vi
Chapter 1 Introduction.....................................1
1.1Introduction...........................................1
1.2Content................................................2
Chapter 2 Methods of Laser Beam Shaping and Diffractive Optical elements..........................................3
2.1Introduction of Laser Beam Shaping.....................3
2.2Methods of Laser Beam Shaping..........................4
2.3Diffractive Optical Elements...........................7
2.4Fabrication of Diffractive Optical Element.............8
2.5Approaches to Design Diffractive Optical Element......10
Chapter 3 Principle of Diffractive Optical Element........12
3.1Effect of Diffraction.................................12
3.2The Kirchhoff Formulation of Diffraction..............14
3.3Diffraction Formula of Rayleigh-Sommerfeld ...........18
3.4Diffraction Formula of Fresnel and Fraunhofer.........20
Chapter 4 Simulation Process and Results..................23
4.1Method and Optical Configuration of Simulation........23
4.1.1The Simulated Optical Configuration.................23
4.1.2Iterative Fourier Transform Algorithm (IFTA)........25
4.1.3Traditional Quantization in IFTA....................29
4.1.4Definition for Parameters of Image Performance......30
4.2Simulation of Testing Variables.......................32
4.2.1Changing the Number of Iterative Loop...............34
4.2.2Changing the Size of Total Reconstructed Image......35
4.2.3Changing the Size of Input Gaussian Beam............39
4.2.4Changing the Size of Bright Region..................42
4.3Results and Discussion for IFTA with Traditional Quantization.............................................46
4.3.1Changing the Size of Uniformly Bright Region for L=2
.........................................................47
4.3.2Changing the Size of Uniformly Bright Region for L=4
.........................................................54
4.4Results and Discussion for IFTA with Progressive Quantization.............................................59
4.4.1Progressive Quantization in IFTA....................59
4.4.2Changing the Size of Bright Region with Progressive Quantization for L=2.....................................62
4.4.3Changing the Size of Bright Region with Progressive Quantization for L=4.....................................67
4.4.4Changing Iterative Number to Optimize the Results of Bright Region 10 mm with Progressive Quantization for L=2 and L=4..................................................73
4.4.5Simulation for the Effect of Rotating Element.......76
4.4.6Simulation for Phase-Compensating Element...........79
4.5Tolerance Analysis....................................81
Chapter 5 Conclusion and Future Work......................83
Reference ................................................88
dc.language.isoen
dc.title以疊代演算法設計整型高斯光束為強度及相位均勻分佈之純相位繞射元件zh_TW
dc.titleDesign of Diffractive Phase Elements to Transform Gaussian Beam to Uniform Intensity and Phase by Iterative Algorithmen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee邱益鵬(Yih-Peng Chiou),黃鼎偉(Ding-Wei Huang)
dc.subject.keyword光束整型,平頭式,純相位繞射元件,複立葉疊代演算法,zh_TW
dc.subject.keywordbeam-shaping,flat-top,diffractive phase element,DOE,IFTA,iterative algorithm,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2008-02-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
5.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved