請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27137完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟 | |
| dc.contributor.author | Li-Yin Chen | en |
| dc.contributor.author | 陳俐吟 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:56:12Z | - |
| dc.date.available | 2011-02-14 | |
| dc.date.copyright | 2008-02-14 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-31 | |
| dc.identifier.citation | . M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, 2nd ed, Oxford University Press, Oxford (1999)
. P. M. Borsenberger, D. S. Weiss, Organic Photoreceptors for Xerography, Marcel Dekker Inc., New York, (1998). . A. Tusmura. K. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986) . F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys. 347, 539 (1990) . L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70,152 (1997) . C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002) . M. O,Neill, S. M. Kelly, Adv. Mater. 15, 1135 (2003) . M. Pope, H. P. Kallmann, and P. Magnate, J. Chem. Phys. 38, 2042 (1963) . C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987) . M. A. Lampert and P. Mark, Current Injection in Solids, Academic Press, New York (1970) . W. Brutting, S. Berleb and A. G. Muckl, Synth. Met. 122, 99 (2001) . P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Imaging Systems (Marcel Dekker, New York, 1993) . Shirota, Y. J. Mater. Chem. 10, 1 (2000) . N. Tessler, G. J. Denton, and R. H. Freind, Nature 382, 695 (1996) . C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) . U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer and M. Grätzel, Nature, 195, 563 (1988) . R. A. Street, D. Knipp and A. R. Völkel, Appl. Phys. Lett. 80, 1658 (2002). . D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher, and K. Siemensmeyer, Phys. Rev. Lett. 70, 457 (1993) . M. Funahashi and J. I. Hanna, Adv. mater. 17, 594 (2005) . T. Kreouzis, K. Scott, K.J. Donovan, N. Boden, R. J. Bushby, O.R. Lozman, Q. Liu, Chem. Phys. 262, 489 (2000) . E. Bellmann, S. E. Shaheen, S. Thayumanavan, S. Barlow, R. H. Grubbs, S. R. Marder, B. Kippelen, and N. Peyghambarian, Chem. Mater. 10, 1668 (1998) . N. Yoshimoto and J. I. Hanna, Adv. Mater. 14, 988 (2002) . M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo. Appl. Phys. Lett. 74, 1400 (1999) . M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Adv. Mater. 9, 798 (1997) . S. H. Chen, H. Shi, B. M. Conger, J. C. Mastrangelo, and T. Tsutsui, Adv. Mater. 8, 998 (1996) . Y. Geng, S. W. Culligan, A. Trajkovska, J. U. Wallace, and S. H. Chen, Chem. Mater. 15, 542 (2003) . T. Yasuda, K. Fujita, T. Tsutsui, Y. Geng, S. W. Culligan, and S. H. Chen, Chem. Mater. 17, 264 (2005) . J. R. Haynes and W. Shockley, Phys. Rev., 81, 835 (1951) . R. G. Kepler, Phys. Rev. 119, 1226 (1960) . O. H. LeBlanc and Jr., J. Chem. Phys. 33, 626 (1960) . S. M. Vaezi-Nejad, Measurement, 17, 267 (1996) . N. F. Mott, E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed., Clarendon Press, Oxford (1979) . N. R. Mirchina, A. Peled, Int. J. Electronics, 87, 1421 (2000) . E. Lebedev, Th. Dittrich, V. Petrova-Koch, S. Karg, and W. Brutting, Appl. Phys. Lett. 71, 3 (1997) . J. C. de Mello, H. F. Wittmann, and R. H. Friend, Adv. Mater. 9, 230 (1997) . C. C. Wu, W. Y. Hung, T. L. Liu, L. Z. Zhang, T. Y. Luh, J. Appl. Phys. 93, 6465 (2003) . T. Siegrist, R. M. Fleming, R. C. Haddon, R. A. Laudise, A. J. Lovinger, H. E. Katz. P. Bridenbaugh, D. D. Davis, J. Mater. Res. 10, 2170 (1995) 2. N. Karl, Synth. Met. 133-134, 649 (2003) 3. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004) 4. J. H. Kang, D. A. da Silva Filho, J. L. Brédas, X. Y. Zhy, Appl. Phys. Lett. 86, 152115 (2005) 5. J. Mort, G. Pfister, and S. Grammatica, Solid State Commun. 18, 693 (1976) 6. G. Pfister, Phys. Rev. B 16, 3676 (1977) 7. H. H. Poole, Philos. Mag. London 34, 195 (1917) 8. J. Frenkel, Phys. Rev. 54, 647 (1938) 9. I. T. Johansen, J. Appl. Phys. 37, 499 (1966) 10. A. K. Jonscher, Thin Solid Films 1, 213 (1967) 11. A. M.Okoniewski, C. Tannous, and A. Yelon, Phys. Rev. B 35, 6465 (1987) 12. P. C. Arnett and N. Klein, J. Appl. Phys. 46, 1399 (1975) 13. P. A. Martin, B. G. Streetman, and K. Hess, J. Appl. Phys. 52, 7409 (1981) 14. L. B. Schein, A. Peled, and D. Glatz, J. Appl. Phys. 66, 686 (1989) 15. J. M. Marshall, Philos. Ma. B, 36, 959 (1977) 16. H. Bässler, Phys. Status Solidi B 107, 9 (1981) 17. L. Pautmeier, R. Richert, and H. Bässler, Phil. Mag. Lett. 59, 325 (1989) 18. B. Movaghar, B. Pohlmann, and D. Wurtz, J. Phys. C 14, 5217 (1981) 19. B. Movaghar, M. Grunewald, B. Ries, H. Bässler, and D. Wurtz, Phys. Rev. B 33, 5545 (1986) 20. B. Ries, H. Bässler, M. Grunewald, and B. Movaghar, Phys. Rev. B 37, 5508 (1988) 21. P. M. Borsenberger, R. Richert and H. Bässler, Phys. Rev. B 47, 4289 (1993) 22. P. M. Borsenberger, L. T. Pautmeier and H. Bässler, J. Chem. Phys. 94, 5447 (1991) 23. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993) 24. R. A. Marcus, J. Chem. Phys. 24, 966 (1956); 24, 979 (1956) 25. R. A. Marcus and N. Sutin, Biochem. Biophys. Acta. 811, 265 (1985) 26. J. Cornil, D. Beljonne, J.-P. Calbert, and J. L. Brédas, Adv. Mater. 13, 1053 (2001) 27. H. Li, J. L. Brédas, and C. Lennartz, J. Chem. Phys. 126, 164704 (2007) 28. J. L. Brédas, J. P. Calbert, D. A. Da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci. U.S.A. 99, 5804 (2002) 29. J. L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil, Chem. Rev. (Washington, D. C.) 104, 4971 (2004) and references therein 30. H. Bässler, Phys. Stat. Sol. (b) 175, 15 (1993) . P. Strohriegal and J. G. Grazulevicius, Adv. Mater. (Weinheim, Ger.) 14, 1439 (2002) . Y. Shirota, J. Mater. Chem. 10, 1 (2000) . L. B. Schein, Phys. Rev. B 12, 1024 (1977) . R. A. Street, D. Knipp, and A. R. Völkel, Appl. Phys. Lett. 80, 1658 (2002) . K. Naito and A. Miura, J. Phys. Chem. 97, 6240 (1993) . D Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher, and K. Siemensmeyer, Phys. Rev. Lett. 70, 457 (1993) 7. M. Funahasi and J. –I. Hanna, Phys. Rev. Lett. 78, 2184 (1997) 8. M. Funahasi and J. –I. Hanna, Appl. Phys. Lett. 71, 602 (1997) 9. S. Méry, D. Haristoy, J. –F. Nicoud, D. Guillon, S. Diele, H. Monobe, and S. Shimizu, J. Mater. Chem. 12, 37 (2002) 10. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 74, 1400 (1999) 11. S. R. Farrar, A. E. A. Contoret, M. O’Neill and J. E. Nicholls, G. J. Richards, and S. M. Kelly, Phys. Rev. B 66, 125107 (2002) 12. H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Appl. Phys. Lett. 77, 406 (2000) 13. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004) 14. T. Yasuda, K. Fujita, T. Tsutsui, Y. Geng, S. W. Culligan, and S. H. Chen, Chem. Mater. 17, 264 (2005) 15. Y. Geng, S. W. Culligan, A. Trajkovska, J. U. Wallace, and S. H. Chen, Chem. Mater. 15, 542 (2003) 16. Y. Geng, A. Trajkovska, D. Katsis, J. J. Ou, S. W. Culligan, and S. H. Chen, J. Am. Chem. Soc. 124, 8337 (2002) 17. C.-C. Wu, T.-L. Liu, W.-Y. Hung, Y.-T Lin, K.-T. Wong, R.-T. Chen, Y.-M. Chen, and Y.-Y. Chien, J. Am. Chem. Soc. 125, 3710 (2003) 18. C.-C. Wu, T.-L. Liu, Y.-T Lin, W.-Y. Hung, T.-H. Ke, K.-T. Wong, and T.-C. Chao, Appl. Phys. Lett. 85, 1172 (2004) 19. M. N. Bussac and L. Zuppiroli, Phys. Rev. B 54, 4674 (1996) . Y. Shirota, J. Mater. Chem. 10, 1 (2000) 2. B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett. 75, 4010 (1999) 3. P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Imaging Systems (Marcel Dekker, New York, 1993) 4. C.-C. Wu, T.-L. Liu, W.-Y. Hung, Y.-T. Lin, K.-T. Wong, T.-T. Chen, Y.-M. Chen, Y.-Y. Chien, J. Am. Chem. Soc. 125, 3710 (2003) 5. W. D. Gill, J. Appl. Phys. 43, 5033 (1972) 6. M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu and E. P. Woo, Adv. Mater. 11, 241 (1999) 7. P. M. Borsenberger, W. T. Gruenbaum and E. H. Magin, Jpn. J. Appl. Phys. 35, 2698 (1996) 8. L.-B. Lin, S. A. Jenekhe, and P. M. Borsenberger, Appl. Phys. Lett. 69, 3495 (1996) 9. G. G. Malliaras, Y. Shen, and D. H. Dunlap, H. Murata and Z. H. Kafafi, Appl. Phys. Lett. 79, 2582 (2001) 10. H. Murata, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi, Chem. Phys. Lett. 339, 161 (2001) 11. H. Tokuhisa, M. Era, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 66, 3433 (1995) 12. J. Frenkel, Phys. Rev. 54, 647 (1938) 13. H. Bässler, Philos. Mag. B 65, 795 (1992) 14. H. Bässler, Phys. Status Solidi B 15, 175 (1993) 15. H. Bässler, Int. J. Mod. Phys. 8, 847 (1994) 16. G. Schönherr, H. Bässler and M. Silver, Philos. Mag. B 44, 47 (1981) 17. P. M. Borsenberger, L. Pautmeier and H. Bässler, J. Chem. Phys. 94, 5447 (1991) 18. J. S. Facci and M. Stolka, Phys. Rev. B. 54, 1 (1986) . C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989) . J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature (London) 347, 539 (1990) . H. Yersin, J. Strasser, Coord. Chem. Rev. 208, 331 (2000) 4. A. Köhler, J. S. Wilson, R. H. Friend, Adv. Mater. 10, 701 (2002) 5. K. Nozaki, K. Takamori, Y. Nakatsugawa, T. Ohno, Inorg. Chem. 45, 6161 (2006) 6. M. S. Lowry, S. Bernhard, Chem. Eur. J. 12, 7970 (2006) 7. P.-T. Chou, Y. Chi, Eur. J. Inorg. Chem. 3319 (2006) 8. P.-T. Chou, Y. Chi, Chem. Eur. J. 13, 380 (2007) 9. X. R. J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Chem. Mater. 16, 4743 (2004) 10. S.-J. Yeh, M.-F. Wu, C.-T. Chem, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu, C. H. Chen, Adv. Mater. 17, 285 (2005) 11. R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich, M. E. Thompson, J. Brooks, Y.-J Tung, B. W. D’Andrade, M. S. Weaver, R. C. Kwong, J. J. Brown, Appl. Phys. Lett. 87, 243507 (2005) 12. M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang, Y.-L. Liao, K.-T. Wong, C.-I. Wu, Adv. Mater. 18, 1216 (2006) 13. C.-H. Yang, Y.-M. Cheng, Y. Chi, C.-J. Hsu, F.-C. Fang, K.-T. Wong, P.-T. Chou, C.-H. Chou, C.-H. Chang, M.-H. Tsai, C.-C. Wu, Angew. Chem. Int. Ed. 46, 2418 (2007) 14. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987) 15. C. H. Chen, J. Shi and C. W. Tang, Macromol. Symp. 125, 1 (1997) 16. C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 57, 531 (1990) 17. E. W. Neuse, M. S. Loonat, Macromolecules, 16, 128 (1983) 18. J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaughnessy, L. M. Alcazar-Roman, J. Org. Chem. 64, 5575 (1999) 19. J. F. Hartwig, Acc. Chem. Res. 31, 852 (1998) 20. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, Org. Electro. 4, 77 (2003) 21. C.-C. Wu, W.-G. Liu, W.-Y. Hung, T.-L. Liu, Y.-T. Lin, H.-W. Lin, K.-T. Wong, Y.-Y. Chien, R.-T. Chen, T.-H. Hung, T.-C. Chao, Y.-M. Chen, Appl. Phys. Lett. 87, 052103 (2005) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27137 | - |
| dc.description.abstract | 由於有機材料具有許多有趣的光電特性與應用,因此在近二十年受到相當廣泛的研究。而在有機光電元件中,載子傳輸能力為影響元件特性之重要因素,因此如何提高載子遷移率及發展双極性載子傳輸材料是相當重要的研究方向。在本論文中,我們使用飛行時間量測技術探討有機材料中的載子特性。
我們研究具有液晶相的有機半導體,四聚芴化物(Tetrafluorene)之載子傳輸特性。透過在液晶相對其做分子的配向排列,發現可將材料的載子傳輸率較非晶態薄膜之值提高約一百倍。此外,為了更進一步了解不同的分子排列對載子傳輸機制的影響,我們進行了變溫/變電場的量測,並應用不同之電荷傳輸模型來解釋量測中所發現的一些趨勢。 最後,我們研究一系列具有高量子效率及藍光發光特性之苯並咪唑(Benzimidazole)/芳香胺(arylamiine)化合物,亦發現這些材料具有有趣之双極性載子傳輸特性。 | zh_TW |
| dc.description.abstract | Organic semiconductors have attracted a great deal of attention in the last two decades because they exhibit a variety of interesting optical, electrical, and optoelectronic properties. In the applications of organic optoelectronics, charge transport ability plays an important role in the device performance. Therefore, the enhancement of carrier mobility and the development of bipolar carrier transport materials are important. In this thesis, we use the time-of-flight technique to investigate carrier transport properties of organic materials.
In the first part of the works, we studied the charge-transport properties of a tetrafluorene which exhibit the liquid crystal (LC) mesophase at high temperature and the glass phase at room temperature. By mesophase-mediated alignment, the carrier mobilities in the aligned LC glass of tetrafluorene are enhanced approximately by two orders of magnitude, compared to those in amorphous film. To understand the influences of molecular arrangement on detailed mechanisms of carrier transport in tetrafluorene, we also investigated the temperature and field dependence of charge transport and analyzed them with existed charge-transport models. Finally, we investigate the charge-transport properties of a class of high-quantum-yield blue-emitting compounds containing benzimidazole and arylamines moieties. It is found that these compounds exhibit interesting bipolar carrier-transport properties in the amorphous phase. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:56:12Z (GMT). No. of bitstreams: 1 ntu-97-F91941024-1.pdf: 1274518 bytes, checksum: c516c24d3429b7c3b081348b4e9074ee (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Chapter 1 Introduction
1.1 General Overview of Organic Charge Transport Materials 1 1.2 Mobility Enhancement through Meshophase-Mediated Molecular Alignment 4 1.3 Thesis Organization 7 References 8 Figures 10 Chapter2 Experimental Methods 2.1 Introduction 13 2.2 Principles of Time-of-Flight Measurement 14 2.3 Analysis with Transient TOF Signals 18 2.4 Preparation of TOF Samples 19 2.5 Material Preparation and Characterization 21 Reference 23 Figures 24 Chapter3 Models of Charge Transport in Organic Systems 3.1 Introduction 30 3.2 Charge Hopping 31 3.3 Poole-Frenkel Model 33 3.4 Bässler Formalism 35 3.4.1 Low-Field Case 36 3.4.2 Field Dependent Case 37 3.4.3 Nondispersive-to-dspersive Transiton 39 3.5 Marcus Electron-Transfer Theory 41 Reference 43 Figures 45 Chapter4 Enhancement of Bipolar Carrier Transport in Tetrafluorene by Mesophase-Mediated Alignment 4.1 Introduction 52 4.2 Material Properties 55 4.3 Results and Discussion 58 4.3.1 TOF Results in Amorphous Film 58 4.3.2 TOF Results in Homogeneously Aligned LC Glass 58 4.3.3 TOF Results in Homeotropically Aligned LC Glass 59 4.3.4 Discussions 60 4.4 Summary 61 Reference 62 Figures 64 Chapter5 Field and Temperature Dependence Mobility of Tetrafluorene 5.1 Introduction 79 5.2 Results and Discussion 81 5.2.1 Results in Amorphous Film 81 5.2.2 Results in Homogeneously Aligned LC Glass 81 5.2.3 Results in Homeotropically Aligned LC Glass 82 5.2.4 Discussions 83 5.3 Summary 84 Reference 85 Figures 87 Chapter6 Nondispersive Ambipolar Carrier Transport in Benzimidazole/Amine-based Compounds 6.1 Introduction 97 6.2 Material Properties 99 6.3 TOF Results and Discussions 100 6.4 Summary 102 Reference 103 Figures 105 Chapter7 Summary and Future Directions 7.1 Summary 115 7.2 Future Directions 116 | |
| dc.language.iso | en | |
| dc.subject | 非晶態 | zh_TW |
| dc.subject | 極性 | zh_TW |
| dc.subject | 液晶玻璃 | zh_TW |
| dc.subject | 載子傳輸 | zh_TW |
| dc.subject | liquid crystall glass | en |
| dc.subject | amorphous | en |
| dc.subject | ambipolar | en |
| dc.subject | carrier transport | en |
| dc.title | 具液晶玻璃態及非晶態有機半導體之双極性載子傳輸特性研究 | zh_TW |
| dc.title | Study of Ambipolar Charge Transport in Organic Semiconductors Having Liquid Crystal Glass and Amorphous Phases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳志毅,汪根欉,葉永輝,陳介偉 | |
| dc.subject.keyword | 液晶玻璃,載子傳輸,双,極性,非晶態, | zh_TW |
| dc.subject.keyword | liquid crystall glass,carrier transport,ambipolar,amorphous, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-02-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
