Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor湯佩芳(Pei-Fang Tang)
dc.contributor.authorShu-Ru Linen
dc.contributor.author林書如zh_TW
dc.date.accessioned2021-06-12T17:54:59Z-
dc.date.available2010-02-20
dc.date.copyright2008-02-20
dc.date.issued2008
dc.date.submitted2008-02-02
dc.identifier.citation1. Anthony JC, LeResche L, Niaz U, von Korff MR, Folstein MF. Limits of the 'Mini-Mental State' as a screening test for dementia and delirium among hospital patients. Psychol Med 1982; 12: 397-408.
2. Badke MB, Duncan PW, Di Fabio RP. Influence of prior knowledge on automatic and voluntary postural adjustments in healthy and hemiplegic subjects. Phys Ther 1987; 67: 1495-1500.
3. Balash Y, Peretz C, Leibovich G, Herman T, Hausdorff JM, Giladi N. Falls in outpatients with Parkinson's disease: frequency, impact and identifying factors. J Neurol 2005; 252: 1310-1315.
4. Beckley DJ, Bloem BR, Remler MP. Impaired scaling of long latency postural reflexes in patients with Parkinson's disease. Electroencephalogr Clin Neurophysiol 1993; 89: 22-28.
5. Beckley DJ, Bloem BR, Remler MP, Roos RA, Van Dijk JG. Long latency postural responses are functionally modified by cognitive set. Electroencephalogr Clin Neurophysiol 1991; 81: 353-358.
6. Bennis N, Roby-Brami A, Dufosse M, Bussel B. Anticipatory responses to a self-applied load in normal subjects and hemiparetic patients. J Physiol Paris 1996; 90: 27-42.
7. Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med 1995; 27: 27-36.
8. Berg K, Wood-Dauphinee S, Williams JI, Gayton D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother Can 1989; 41: 304-311.
9. Berg K, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health 1992; 83 Suppl 2: S7-S11.
10. Blake H, McKinney M, Treece K, Lee E, Lincoln NB. An evaluation of screening measures for cognitive impairment after stroke. Age Ageing 2002; 31: 451-456.
11. Bloem BR, Beckley DJ, van Dijk JG, Zwinderman AH, Remler MP, Roos RA. Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson's disease. Mov Disord 1996; 11: 509-521.
12. Boecker H, Ceballos-Baumann A, Bartenstein P et al. Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H(2)(15)O-PET. Brain 1999; 122 ( Pt 9): 1651-1665.
13. Brass M, von Cramon DY. Decomposing components of task preparation with functional magnetic resonance imaging. J Cogn Neurosci 2004; 16: 609-620.
14. Brusse KJ, Zimdars S, Zalewski KR, Steffen TM. Testing functional performance in people with Parkinson disease. Phys Ther 2005; 85: 134-141.
15. Burleigh-Jacobs A, Horak FB, Nutt JG, Obeso JA. Step initiation in Parkinson's disease: influence of levodopa and external sensory triggers. Mov Disord 1997; 12: 206-215.
16. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. Modified Card Sorting Test: normative data. J Clin Exp Neuropsychol 2004; 26: 246-250.
17. Carpenter MG, Allum JH, Honegger F, Adkin AL, Bloem BR. Postural abnormalities to multidirectional stance perturbations in Parkinson's disease. J Neurol Neurosurg Psychiatry 2004; 75: 1245-1254.
18. Chang CM, Yu YL, Ng HK, Leung SY, Fong KY. Vascular pseudoparkinsonism. Acta Neurol Scand 1992; 86: 588-592.
19. Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L. Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther 2005; 85: 740-749.
20. Chong RK, Horak FB, Woollacott MH. Parkinson's disease impairs the ability to change set quickly. J Neurol Sci 2000; 175: 57-70.
21. Chong RK, Jones CL, Horak FB. Postural set for balance control is normal in Alzheimer's but not in Parkinson's disease. J Gerontol A Biol Sci Med Sci 1999; 54: M129-M135.
22. Crago PE, Houk JC, Hasan Z. Regulatory actions of human stretch reflex. J Neurophysiol 1976; 39: 925-935.
23. Cunnington R, Windischberger C, Moser E. Premovement activity of the pre-supplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Hum Mov Sci 2005; 24: 644-656.
24. de Rijk MC, Tzourio C, Breteler MM et al. Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson's disease. J Neurol Neurosurg Psychiatry 1997; 62: 10-15.
25. Demirkiran M, Bozdemir H, Sarica Y. Vascular parkinsonism: a distinct, heterogeneous clinical entity. Acta Neurol Scand 2001; 104: 63-67.
26. Dickstein R, Shefi S, Marcovitz E, Villa Y. Anticipatory postural adjustment in selected trunk muscles in post stroke hemiparetic patients. Arch Phys Med Rehabil 2004; 85: 261-267.
27. Diener HC, Horak F, Stelmach G, Guschlbauer B, Dichgans J. Direction and amplitude precuing has no effect on automatic posture responses. Exp Brain Res 1991; 84: 219-223.
28. Diener HC, Horak FB, Nashner LM. Influence of stimulus parameters on human postural responses. J Neurophysiol 1988; 59: 1888-1905.
29. Dimitrova D, Horak FB, Nutt JG. Postural muscle responses to multidirectional translations in patients with Parkinson's disease. J Neurophysiol 2004; 91: 489-501.
30. Dreisbach G, Haider H, Kluwe RH. Preparatory processes in the task-switching paradigm: evidence from the use of probability cues. J Exp Psychol Learn Mem Cogn 2002; 28: 468-483.
31. Duncan PW, Studenski S, Chandler J, Bloomfeld R, LaPointe LK. Electromyographic analysis of postural adjustments in two methods of balance testing. Phys Ther 1990; 70: 88-96.
32. Elsinger CL, Harrington DL, Rao SM. From preparation to online control: reappraisal of neural circuitry mediating internally generated and externally guided actions. Neuroimage 2006; 31: 1177-1187.
33. Evarts EV, Shinoda Y, Wise SP. Preparatory Set and Behavior. Neurophysiological Approaches to Higher Brain Functions. New York, USA: John Wiley & Sons; 1984. p. 7-20.
34. Fahn S, Elton RL, Members of the UPDRS Development Committee. Unified Parkinson's Disease Rating Scale. In: Fahn S, Marden SD, Calne DB, Goldstein M, editors. Recent Developments in Parkinson's Disease. Florham Park: NJ: Macmillan Healthcare Information; 1987. p. 153-63.
35. Fillenbaum GG, George LK, Blazer DG. Scoring nonresponse on the Mini-Mental State Examination. Psychol Med 1988; 18: 1021-1025.
36. Folstein MF, Folstein SE, McHugh PR. 'Mini-mental state'. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198.
37. Fujimoto K. Vascular parkinsonism. J Neurol 2006; 253 Suppl 3: iii16-iii21.
38. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999; 56: 33-39.
39. Golden CJ. Stroop Color and Word Test. Wood Dale: IL: Stoelting Co.; 1978.
40. Grant DA, Berg EA. A behavioral analysis of reinforcement and ease of shifting to new responses in a Wiegl-type card sorting problem. J Exp Psychol 1948; 43: 404-411.
41. Greve KW, Love JM, Sherwin E, Mathias CW, Ramzinski P, Levy J. Wisconsin Card Sorting Test in chronic severe traumatic brain injury: factor structure and performance subgroups. Brain Inj 2002; 16: 29-40.
42. Grouios G. Footedness as a potential factor that contributes to the causation of corn and callus formation in lower extremities of physically active individuals. Foot 2005; 15: 154-162.
43. Hislop HJ, Montgomery J. Muscle Testing Technique of Manual Examination. Philadelphia: W.B. Saunders Company; 1995.
44. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967; 17: 427-442.
45. Holt RR, Simpson D, Jenner JR, Kirker SG, Wing AM. Ground reaction force after a sideways push as a measure of balance in recovery from stroke. Clin Rehabil 2000; 14: 88-95.
46. Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol 1994; 72: 479-493.
47. Horak FB, Diener HC, Nashner LM. Influence of central set on human postural responses. J Neurophysiol 1989; 62: 841-853.
48. Horak FB, Frank J, Nutt J. Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone. J Neurophysiol 1996; 75: 2380-2396.
49. Horak FB, Nutt JG, Nashner LM. Postural inflexibility in parkinsonian subjects. J Neurol Sci 1992; 111: 46-58.
50. Ihara M, Tomimoto H, Ishizu K et al. Association of vascular parkinsonism with impaired neuronal integrity in the striatum. J Neural Transm 2007; 114: 577-584.
51. Immisch I, Bandmann O, Quintern J, Straube A. Different postural reaction patterns for expected and unexpected perturbations in patients with idiopathic Parkinson's disease and other parkinsonian syndromes. Eur J Neurol 1999; 6: 549-554.
52. Inkster LM, Eng JJ. Postural control during a sit-to-stand task in individuals with mild Parkinson's disease. Exp Brain Res 2004; 154: 33-38.
53. Inzelberg R, Plotnik M, Flash T, Schechtman E, Shahar I, Korczyn AD. Mental and motor switching in Parkinson's disease. J Mot Behav 2001; 33: 377-385.
54. Jacobs JV, Horak FB. Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson's disease. Neuroscience 2006; 141: 999-1009.
55. Keijsers NL, Admiraal MA, Cools AR, Bloem BR, Gielen CC. Differential progression of proprioceptive and visual information processing deficits in Parkinson's disease. Eur J Neurosci 2005; 21: 239-248.
56. Klockgether T, Dichgans J. Visual control of arm movement in Parkinson's disease. Mov Disord 1994; 9: 48-56.
57. Koch I. The role of external cues for endogenous advance reconfiguration in task switching. Psychon Bull Rev 2003; 10: 488-492.
58. Kray J. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults. Brain Res 2006; 1105: 83-92.
59. Lajoie Y, Gallagher SP. Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch Gerontol Geriatr 2004; 38: 11-26.
60. Latash ML, Aruin AS, Neyman I, Nicholas JJ. Anticipatory postural adjustments during self inflicted and predictable perturbations in Parkinson's disease. J Neurol Neurosurg Psychiatry 1995; 58: 326-334.
61. Lee RG, Tonolli I, Viallet F, Aurenty R, Massion J. Preparatory postural adjustments in parkinsonian patients with postural instability. Can J Neurol Sci 1995; 22: 126-135.
62. Lin MR, Hwang HF, Hu MH, Wu HD, Wang YW, Huang FC. Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and Tinetti balance measures in community-dwelling older people. J Am Geriatr Soc 2004; 52: 1343-1348.
63. Lineweaver TT, Bond MW, Thomas RG, Salmon DP. A normative study of Nelson's (1976) modified version of the Wisconsin Card Sorting Test in healthy older adults. Clin Neuropsychol 1999; 13: 328-347.
64. Marigold DS, Patla AE. Strategies for dynamic stability during locomotion on a slippery surface: effects of prior experience and knowledge. J Neurophysiol 2002; 88: 339-353.
65. Martinez-Martin P, Forjaz MJ. Metric attributes of the unified Parkinson's disease rating scale 3.0 battery: Part I, feasibility, scaling assumptions, reliability, and precision. Mov Disord 2006; 21: 1182-1188.
66. Martinez-Martin P, Gil-Nagel A, Gracia LM, Gomez JB, Martinez-Sarries J, Bermejo F. Unified Parkinson's Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov Disord 1994; 9: 76-83.
67. McChesney JW, Sveistrup H, Woollacott MH. Influence of auditory precuing on automatic postural responses. Exp Brain Res 1996; 108: 315-320.
68. Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the Timed 'Up & Go' test in people with Parkinson disease. Phys Ther 2001; 81: 810-818.
69. Nelson HE. A modified card sorting test sensitive to frontal lobe defects. Cortex 1976; 12: 313-324.
70. Ng SS, Hui-Chan CW. The timed up & go test: its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch Phys Med Rehabil 2005; 86: 1641-1647.
71. Norkin CC, White C. Measurement of Joint Motion: A Guide to Goniometry. Philadephia: F.A. Daviscompany; 1995.
72. Pai YC, Rogers MW, Patton J, Cain TD, Hanke TA. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J Biomech 1998; 31: 1111-1118.
73. Paradiso G, Cunic D, Saint-Cyr JA et al. Involvement of human thalamus in the preparation of self-paced movement. Brain 2004; 127: 2717-2731.
74. Paradiso G, Saint-Cyr JA, Lozano AM, Lang AE, Chen R. Involvement of the human subthalamic nucleus in movement preparation. Neurology 2003; 61: 1538-1545.
75. Park S, Horak FB, Kuo AD. Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 2004; 154: 417-427.
76. Pavol MJ, Runtz EF, Edwards BJ, Pai YC. Age influences the outcome of a slipping perturbation during initial but not repeated exposures. J Gerontol A Biol Sci Med Sci 2002; 57: M496-M503.
77. Podsiadlo D, Richardson S. The timed 'Up & Go': a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39: 142-148.
78. Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J Gerontol A Biol Sci Med Sci 1995; 50A: M28-M34.
79. Purzner J, Paradiso GO, Cunic D et al. Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. J Neurosci 2007; 27: 6029-6036.
80. Rampello L, Alvano A, Battaglia G, Raffaele R, Vecchio I, Malaguarnera M. Different clinical and evolutional patterns in late idiopathic and vascular parkinsonism. J Neurol 2005; 252: 1045-1049.
81. Reider-Groswasser I, Bornstein NM, Korczyn AD. Parkinsonism in patients with lucanar infarcts of the basal ganglia. Eur Neurol 1995; 35: 46-49.
82. Rektor I, Rektorova I, Kubova D. Vascular parkinsonism--an update. J Neurol Sci 2006; 248: 185-191.
83. Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural strategies defined by joint torques. Gait Posture 1999; 10: 161-170.
84. Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM. Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. Neuroimage 2004; 21: 568-575.
85. Seiss E, Praamstra P, Hesse CW, Rickards H. Proprioceptive sensory function in Parkinson's disease and Huntington's disease: evidence from proprioception-related EEG potentials. Exp Brain Res 2003; 148: 308-319.
86. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther 2000; 80: 896-903.
87. Shumway-Cook A, Woollacott MH. Normal postural control. In: Shumway-Cook A, Woollacott MH, editors. Motor Control: Theory and Practical Applications. Maryland, USA: Lippincott Williams & Wilkins; 2001. p. 163-91.
88. Sibon I, Fenelon G, Quinn NP, Tison F. Vascular parkinsonism. J Neurol 2004; 251: 513-524.
89. Stuss DT, Floden D, Alexander MP, Levine B, Katz D. Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location. Neuropsychologia 2001; 39: 771-786.
90. Suteerawattananon M, Morris GS, Etnyre BR, Jankovic J, Protas EJ. Effects of visual and auditory cues on gait in individuals with Parkinson's disease. J Neurol Sci 2004; 219: 63-69.
91. Taniwaki T, Okayama A, Yoshiura T et al. Functional network of the basal ganglia and cerebellar motor loops in vivo: different activation patterns between self-initiated and externally triggered movements. Neuroimage 2006; 31: 745-753.
92. Thompson PD, Marsden CD. Gait disorder of subcortical arteriosclerotic encephalopathy: Binswanger’s disease. Mov Disord 1987; 2: 1-8.
93. Timmann D, Horak FB. Prediction and set-dependent scaling of early postural responses in cerebellar patients. Brain 1997; 120 ( Pt 2): 327-337.
94. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol 2006; 5: 75-86.
95. Trenkwalder C, Paulus W, Krafczyk S, Hawken M, Oertel WH, Brandt T. Postural stability differentiates 'lower body' from idiopathic parkinsonism. Acta Neurol Scand 1995; 91: 444-452.
96. Van Spaendonck KP, Berger HJ, Horstink MW, Buytenhuijs EL, Cools AR. Executive functions and disease characteristics in Parkinson's disease. Neuropsychologia 1996; 34: 617-626.
97. van Zagten M, Lodder J, Kessels F. Gait disorder and parkinsonian signs in patients with stroke related to small deep infarcts and white matter lesions. Mov Disord 1998; 13: 89-95.
98. Viallet F, Massion J, Massarino R, Khalil R. Coordination between posture and movement in a bimanual load lifting task: putative role of a medial frontal region including the supplementary motor area. Exp Brain Res 1992; 88: 674-684.
99. Wing AM, Goodrich S, Virji-Babul N, Jenner JR, Clapp S. Balance evaluation in hemiparetic stroke patients using lateral forces applied to the hip. Arch Phys Med Rehabil 1993; 74: 292-299.
100. Winikates J, Jankovic J. Clinical correlates of vascular parkinsonism. Arch Neurol 1999; 56: 98-102.
101. Wolfson LI, Whipple R, Amerman P, Kleinberg A. Stressing the postural response. A quantitative method for testing balance. J Am Geriatr Soc 1986; 34: 845-850.
102. Yamanouchi H, Nagura H. Neurological signs and frontal white matter lesions in vascular parkinsonism. A clinicopathologic study. Stroke 1997; 28: 965-969.
103. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding? Eur J Neurosci 2005; 22: 1248-1256.
104. Zijlmans JC, Poels PJ, Duysens J et al. Quantitative gait analysis in patients with vascular parkinsonism. Mov Disord 1996; 11: 501-508.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27078-
dc.description.abstract目的:本實驗的目的在探討原發性巴金森氏症患者、血管性巴金森氏症患者與年齡相符的健康成人在接受三種不同牽拉位移量的前向腰部牽拉干擾時,其姿勢反應策略與度量姿勢反應大小能力的差異。並檢測一外加的聽覺前置提示對於三組受試者度量姿勢反應大小能力的影響。方法:本研究共蒐集10位原發性巴金森氏症患者 (平均年齡= 68.6 ± 6.5歲;8男與2女)、9位單純基底核或合併基底核與大腦白質區損傷的血管性巴金森氏症患者 (平均年齡= 73.8 ± 7.8歲;9男)與10位年齡相符的健康成人 (平均年齡= 74.2 ± 6.6歲;8男與2女)。每位受試者需接受認知執行功能測試 (包括修正版威斯康辛卡片分類測驗 (MCST)與叫色測驗 (Stroop Test))與動作功能測驗 (含巴金森氏症分級量表-動作檢查 (UPDRS-ME)、三公尺計時起走測試 (TUG)與伯格式平衡量表 (BBS))。此外,在評估反應性姿勢控制方面,每位受試者分別在有與沒有關於牽拉位移量大小的前置提示的情境下,接受由一自製的多方向人體牽拉系統 (MDP) (多如有限公司,台灣)所產生的三種不同牽拉位移量 (2、4和6公分)但固定牽拉速度 (9公分/秒)的前向腰部牽拉干擾。每個提示情境下,每個牽拉位移量各進行6次連續牽拉測試,即共18次測試。在提示情境下,受試者在牽拉開始前會先聽到一個關於即將產生的牽拉干擾強度的前置提示,在無提示情境下受試者將無法預知干擾強度。本研究以內側腓腸肌 (MG)、脛前肌 (TA)與第一腰椎旁的脊旁肌 (PARA)的肌肉活化順序、肌肉起始潛伏期 (muscle onset latency)與肌肉活化和腓腸肌-脛前肌共同收縮 (MG-TA co-contraction)的發生率 (occurrence rate)分析受試者所使用的反應性姿勢策略。在度量姿勢反應能力方面,則進一步量測腓腸肌和脊旁肌的肌肉活化程度 (肌肉活化晚期的肌電圖平均積分,AIEMGlate)、最大前後向力矩 (peak moment)以及此三個參數和牽拉位移量間的相關性(CORRMG、CORRPARA和CORRMoment)。結果:臨床測試方面,原發性與血管性巴金森氏症患者在MCST、TUG以及BBS的表現皆較健康成人差 (p< .05)。血管性巴金森氏症患者則較原發性巴金森氏症患者呈現較明顯的執行功能 (executive function)、步行和平衡能力的損傷,但此結果未達統計上顯著差異 (p> .05)。當接受一前向腰部牽拉干擾時,三組受試者皆呈現類似的遠端肌肉比近端肌肉先收縮 (MG→PARA)的姿勢肌收縮次序與肌肉活化模式。然而,相較於血管性巴金森氏症患者與健康成人,原發性巴金森氏症患者傾向以不同的肌肉反應型態 (主為腓腸肌-脛前肌共同收縮與代償性的脊旁肌活化現象) 回復與維持平衡。肌肉起始潛伏期在三組間與不同牽拉位移量之間並沒有顯著差異 (p> .05)。隨著牽拉位移量增加,原發性與血管性巴金森氏症患者皆能顯著增大其最大前後向力矩以及腓腸肌和脊旁肌的肌肉活化程度 (p< .05)。而且其肌肉活化程度及最大前後向力矩與牽拉位移量之間的相關係數亦呈現顯著正相關性。至於前置提示的影響部份,本研究發現相較於無提示情境,在提示情境下健康成人較能適當地調節脊旁肌肌肉活化程度 (p< .05)。但是,原發性巴金森氏症患者在提示情境下的肌肉活化程度與牽拉位移量之間的相關性反而較無提示情境時為差。討論及結論:血管性與原發性巴金森氏症患者接受前向腰部牽拉干擾時雖然呈現不同的姿勢肌活化模式,但卻皆保有隨干擾大小度量姿勢反應大小的能力。顯示此兩組病患仍保有姿勢準備狀態 (postural set)的功能。這可能因為患者與動作準備相關的感覺動作皮質區與小腦迴路都仍完好所致。此外,一外加的聽覺前置提示並無法增進血管性與原發性巴金森氏症患者度量姿勢反應的能力。這可能因為使用外顯式 (explicit)資訊反而使對這些病患分心或增加其轉換任務 (switching task)的需求。最後,本研究顯示,認知執行功能的缺失並不會影響血管性與原發性巴金森氏症患者的度量姿勢反應大小的能力。zh_TW
dc.description.abstractPerpose: This study was aimed to investigate: (1) the differences in the reactive postural strategies and scaling functions in response to forward waist-pulling perturbation of three levels of pulling amplitude among healthy adults (HE), patients with idiopathic Parkinson’s disease (PD) and patients with vascular parkinsonism (VP) and (2) the effects of an auditory precue about upcoming perturbation magnitude on scaling reactive postural responses. Methods: Ten PD subjects (mean age= 68.6 ± 6.5 years, 8 males and 2 females), nine VP subjects with vascular lesions at the basal ganglia (BG) or with vascular BG lesions plus white matter changes (mean age= 73.8 ± 7.8 years, 9 males) and ten age-matched HE (mean age= 74.2 ± 6.6 years, 8 males and 2 females) participated in this study. In the clinical examination, each subject received the cognitive executive tests, including the Modified Card Sorting Test (MCST) and the Stroop Test, and the motor assessment, including the motor subscale of the Unified Parkinson’s Disease Rating Scale (UPDRS-ME), the Timed “Up & Go” test (TUG), and the Berg Balance Scale (BBS). To test the reactive postural control, each participant was randomly exposed to forward pulls of three consecutive 6-trial blocks of different perturbation amplitude (2, 4, and 6 cm) at a constant perturbation velocity of 9 cm/s, delivered by a custom-built Multidirectional Human Pulling (MDP) System (Advance Instrument Inc., Taipei, Taiwan), in both the Cue and No-cue conditions. To test the precuing effects, an auditory cue regarding the forthcoming perturbation amplitude was given prior to the perturbation onset in the Cue condition. The reactive postural strategies were investigated by examining the muscle activation sequence, muscle onset latency and occurrence rate of the tibialis anterior (TA), medial gastrocnemius (MG), paraspinal muscles at the L1 level of the spine (PARA) and MG-TA co-contraction. The ability to scale reactive postural responses was inferred by measuring the magnitude of the late muscle response (AIEMGlate of MG and PARA), peak anteroposterior moment, and the correlation between these variables and the pulling amplitude (CORRMG, CORRPARA and CORRMoment). Results: Both PD and VP subjects performed poorer on the MCST, the TUG and the BBS than the HE group (p< .05). The VP subjects revealed more evident, but non-significant (p> .05), deficits in mental shifting, gait and balance functions than PD. After exposure to forward waist-pulling perturbations, all subjects primarily activated muscles in the similar distal-to-proximal sequence (MG→PARA), and there were no significant differences in the muscle onset latency among groups and among the three levels of perturbation amplitude (p> .05). However, PD subjects tended to present altered muscle responses, such as MG-TA co-contraction and compensatory greater trunk muscle activation, compared to the HE and VP subjects. Both PD and VP groups significantly enlarged the peak moement and AIEMGlate of MG and PARA with the increased pulling amplitude (p< .05), as shown by significant positive correlation coefficients (rs) of CORRMG, CORRPARA and CORRMoment. The precuing did help the HE group scale AIEMGlate of PARA to the specific perturbation amplitude (p< .05). However, PD subjects, whose CORRMG and CORRPARA showed significant correlations in the No-cue condition, presented nonsignificant CORRMG and CORRPARA in the Cue condition. Discussion and Conclusions: The results indicated that VP and PD were distict entities and presented different patterns in response to waist-pulling perturbation. However, both VP and PD groups preserved the set-dependent scaling functions of reactive postural responses as the HE group. The preserved postual set in VP and PD might be attributed to the spared sensorimotor cortical area and cerebellar circuits responsible for movement preparation. Moreover, the absence of auditory precuing effects on improving the ability of scaling reactive responses in VP and PD subjects might be due to the increased distraction or switching load introduced by the provision of prior explicit information to these patients. Finally, our results suggest that the deficits of executive function might not affect the ability of scaling reactive postural responses in PD and VP.en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:54:59Z (GMT). No. of bitstreams: 1
ntu-97-R94428004-1.pdf: 2400734 bytes, checksum: db737cc1c0f5ced0ffa0ad524ca2535b (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT vi
LIST OF FIGURES xiii
LIST OF TABLES xiv
CHAPTER 1: INTRODUCTION 1
1.1. Research Background 1
1.2. Purposes 4
1.3. Terms and Definition of Variables 4
1.3.1. Terms 4
1.3.2. Independent Variables 6
1.3.3. Dependent Variables 7
3.2. Research Questions and Hypotheses 10
3.3. Significance of the Study 12
CHAPTER 2: LITERATURE REVIEW 14
2.1. The Role of the Basal Ganglia in Central Set 14
2.1.1. Definition of Central Set 14
2.1.2. The Basal Ganglia are Involved in Central Set of Cognitive Tasks 14
2.1.3. Summary 15
2.2. Influences of Central Set Function on Postural Control 15
2.2.1. Set and Anticipatory Postural Adjustments (APAs) 15
2.2.2. Set-dependent Scaling Reactive Postural Responses 16
2.2.3. Summary 20
2.3. Impairments in Scaling Reactive Postural Responses in Patients with Idiopathic Parkinson’s Disease (PD) 20
2.3.1. Reactive Postural Responses in PD 20
2.3.2. Impaired Scaling Ability in PD 22
2.3.3. Summary 23
2.4. Postural Impairments in Vascular Parkinsonism (VP) 24
2.4.1. Epidemiology of VP 24
2.4.2. Pathology of VP 24
2.4.3. Clinical Features of VP 25
2.4.4. Postural Instability in VP 26
2.4.5. Summary 27
2.5. The Effect of External Cues on Movement Performance 27
2.6. Summary of Literature Review 30
CHAPTER 3: METHODS 31
3.1. Study Design 31
3.2. Participants 31
3.3. Instrumentation 32
3.3.1. Clinical Assessment Instruments 32
3.3.2. Laboratory Instruments 39
3.4. Procedures 41
3.5. Data and Statistical Analyses 44
3.5.1. Data Analyses 44
3.5.2. Statistical Analyses 46
CHAPTER 4: RESULTS 49
4.1. Demographics and Results of the Clinical Examination 49
4.2. Reactive Postural Strategies in Response to Forward Waist-pulling with Three Levels of Amplitude 51
4.2.1. Typical Reactive Muscle Activation Patterns 52
4.2.2. Muscle Activation Sequence 53
4.2.3. Muscle Onset Latency 53
4.2.4. Occurrence Rate of Muscle Activation and Co-contraction 54
4.3. Difference in the Ability of Scaling Reactive Postural Response among the Three Groups 55
4.3.1. AIEMGlate 55
4.3.2. Peak Moment 56
4.3.3. CORRMG, CORRPARA and CORRMoment 56
4.4. Effects of Precuing on the Scaling Ability in the Three Groups 57
4.4.1. AIEMGlate of PARA 57
4.4.2. CORRMG, CORRPARA and CORRMoment 58
CHAPTER 5: DISCUSSION 59
5.1. Differences in the Automatic Postural Responses following Forward Waist-pulling Perturbation among the Three Groups 60
5.2. Differences in the Set-dependent Scaling Function following Forward Waist-pull among the Three Groups 62
5.3. Effects of Precuing on the Ability of Scaling Reactive Postural Response 64
5.4. Different Pathological Mechanisms in Postural Control between VP and PD Subjects 64
5.5. Relationship between Executive Function and Postural Stability 66
5.6. Limitations 67
5.7. Future Studies 68
5.8. Clinical Implications and Conclusions 69
REFERENCES 71
APPENDICES 104
APPENDIX A: Signs Most Typical for Vascular Parkinsonism 104
APPENDIX B: Proposed Diagnostic Criteria for Parkinson’s Disease 105
APPENDIX C: Human Subject Proposal Approval Letter 106
APPENDIX D: Subject Informed Consent 107
APPENDIX E: Subject Information Records for Patients with VP or PD 112
APPENDIX F: Subject Information Records for Healthy Adults 113
APPENDIX G: Activities-specific Balance Confidence Scale 114
APPENDIX H: Waterloo Footedness Questionnaire-Revised 115
APPENDIX I: The Assessment of Range of Motion, Sensation and the Muscle Manual Testing for Lower Extremities 116
APPENDIX J: The Timed “Up & Go” Test 118
APPENDIX K: The Berg Balance Scale 119
APPENDIX L: Illustration of Key Stimulus Cards on the Modified Card Sorting Test (MCST). 121
dc.language.isoen
dc.title血管性與原發性巴金森氏症病患度量姿勢反應大小之能力:能力缺失與前置提示之影響zh_TW
dc.titleScaling Reactive Postural Responses in Patients with Vascular Parkinsonism and Patients with Idiopathic Parkinson's Disease: Deficits and Effects of Precuesen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞美(Ruey-Meei Wu),謝淑蘭(Shu-Lan Hsieh),伍麗珍(Janice Eng),王堯弘(Yiao-Hong Wang)
dc.subject.keyword基底核,原發性巴金森氏症,血管性巴金森氏症,姿勢控制,外來干擾,度量能力,提示,zh_TW
dc.subject.keywordBasal Ganglia,Parkinson's Disease,Vascular Parkinsonism,Postural Control,External Perturbation,Scaling,Cue,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2008-02-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved