Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27047Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 于宏燦 | |
| dc.contributor.author | Chih-Yun Shao | en |
| dc.contributor.author | 邵芷筠 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:54:26Z | - |
| dc.date.available | 2010-02-18 | |
| dc.date.copyright | 2008-02-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-02-04 | |
| dc.identifier.citation | Asling B., Dushay M. S. and Hultmark D. (1995) Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25, 511-8.
Bachere E. (2000) Shrimp immunity and disease control - Introduction. Aquaculture 191, 3-11. Bartholomay L. C., Cho W. L., Rocheleau T. A., Boyle J. P., Beck E. T., Fuchs J. F., Liss P., Rusch M., Butler K. M., Wu R. C., Lin S. P., Kuo H. Y., Tsao I. Y., Huang C. Y., Liu T. T., Hsiao K. J., Tsai S. F., Yang U. C., Nappi A. J., Perna N. T., Chen C. C. and Christensen B. M. (2004) Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 72, 4114-26. Brennan C. A. and Anderson K. V. (2004) Drosophila: the genetics of innate immune recognition and response. Annu Rev Immunol 22, 457-83. Bulet P., Stocklin R. and Menin L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198, 169-84. Choe K. M., Werner T., Stoven S., Hultmark D. and Anderson K. V. (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359-62. Chuang T. and Ulevitch R. J. (2001) Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518, 157-61. De Gregorio E., Spellman P. T., Tzou P., Rubin G. M. and Lemaitre B. (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. Embo J 21, 2568-79. Dimarcq J. L., Hoffmann D., Meister M., Bulet P., Lanot R., Reichhart J. M. and Hoffmann J. A. (1994) Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. European Journal of Biochemistry 221, 201-9. Gottar M., Gobert V., Michel T., Belvin M., Duyk G., Hoffmann J. A., Ferrandon D. and Royet J. (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640-4. Hedengren M., Borge K. and Hultmark D. (2000) Expression and evolution of the Drosophila attacin/diptericin gene family.[erratum appears in Biochem Biophys Res Commun 2001 Feb 9;280(5):1415]. Biochemical & Biophysical Research Communications 279, 574-81. Hoffmann J. A. and Reichhart J. M. (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3, 121-6. Irving P., Troxler L., Heuer T. S., Belvin M., Kopczynski C., Reichhart J. M., Hoffmann J. A. and Hetru C. (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A 98, 15119-24. Kagan B. L., Selsted M. E., Ganz T. and Lehrer R. I. (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A 87, 210-4. Khush R. S., Leulier F. and Lemaitre B. (2001) Drosophila immunity: two paths to NF-kappaB. Trends Immunol 22, 260-4. Lazzaro B. P. and Clark A. G. (2003) Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. Mol Biol Evol 20, 914-23. Levashina E. A., Ohresser S., Bulet P., Reichhart J. M., Hetru C. and Hoffmann J. A. (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. European Journal of Biochemistry 233, 694-700. Levashina E. A., Ohresser S., Lemaitre B. and Imler J. L. (1998) Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J Mol Biol 278, 515-27. Lynn D. J., Higgs R., Gaines S., Tierney J., James T., Lloyd A. T., Fares M. A., Mulcahy G. and O'Farrelly C. (2004) Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56, 170-7. Oshiumi H., Tsujita T., Shida K., Matsumoto M., Ikeo K. and Seya T. (2003) Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54, 791-800. Pandey S. and Agrawal D. K. (2006) Immunobiology of Toll-like receptors: emerging trends. Immunology & Cell Biology 84, 333-41. Quesada H., Ramos-Onsins S. E. and Aguade M. (2005) Birth-and-death evolution of the Cecropin multigene family in Drosophila. J Mol Evol 60, 1-11. Steiner H. (2004) Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol Rev 198, 83-96. Wasserman S. A. (2004) Nature's fortress against infection. Nat Immunol 5, 474-5. West A. P., Koblansky A. A. and Ghosh S. (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22, 409-37. Zambon R. A., Nandakumar M., Vakharia V. N. and Wu L. P. (2005) The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci U S A 102, 7257-62. Arts J. A., Cornelissen F. H., Cijsouw T., Hermsen T., Savelkoul H. F. and Stet R. J. (2007) Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 23, 504-13. Bachere E. (2000) Shrimp immunity and disease control - Introduction. Aquaculture 191, 3-11. Bachere E., Gueguen Y., Gonzalez M., de Lorgeril J., Garnier J. and Romestand B. (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunological Reviews 198, 149-68. Burge C. and Karlin S. (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268, 78-94. Burge C. B. and Karlin S. (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8, 346-54. De Gregorio E., Spellman P. T., Tzou P., Rubin G. M. and Lemaitre B. (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. Embo J 21, 2568-79. Kim C. G., Fujiyama A. and Saitou N. (2003) Construction of a gorilla fosmid library and its PCR screening system. Genomics 82, 571-4. Luo M., Kim H., Kudrna D., Sisneros N. B., Lee S. J., Mueller C., Collura K., Zuccolo A., Buckingham E. B., Grim S. M., Yanagiya K., Inoko H., Shiina T., Flajnik M. F., Wing R. A. and Ohta Y. (2006) Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey. BMC Genomics 7, 106. Mekata T., Kono T., Yoshida T., Sakai M. and Itami T. (2007) Identification of cDNA encoding Toll receptor, MjToll gene from kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 24, 122-133. Milosavljevic A., Harris R. A., Sodergren E. J., Jackson A. R., Kalafus K. J., Hodgson A., Cree A., Dai W., Csuros M., Zhu B., de Jong P. J., Weinstock G. M. and Gibbs R. A. (2005) Pooled genomic indexing of rhesus macaque. Genome Res 15, 292-301. Pandey S. and Agrawal D. K. (2006) Immunobiology of Toll-like receptors: emerging trends. Immunology & Cell Biology 84, 333-41. Tuzun E., Sharp A. J., Bailey J. A., Kaul R., Morrison V. A., Pertz L. M., Haugen E., Hayden H., Albertson D., Pinkel D., Olson M. V. and Eichler E. E. (2005) Fine-scale structural variation of the human genome. Nat Genet 37, 727-32. Yang L. S., Yin Z. X., Liao J. X., Huang X. D., Guo C. J., Weng S. P., Chan S. M., Yu X. Q. and He J. G. (2007) A Toll receptor in shrimp. Mol Immunol 44, 1999-2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27047 | - |
| dc.description.abstract | 草蝦為海洋生物,其所生活的環境中,有著難以數計的微生物,經長期的演化過程,已與某些微生物物種之間,發展出互利共生的關係;相反的,某些微生物物種對草蝦而言,則具有感染力與致病性。因此,辨別出對自身有益或是有害的微生物,非常重要,而此機制,主要仰賴於個體的先天性免疫能力〈innate immunity〉,其間所涉及不同的訊息傳遞機制,與相關基因的表現與調控,成為備受關注的研究方向。
就無脊椎生物而言,先天性免疫反應包括兩條主要的訊息傳遞過程:Toll pathway與Imd pathway。兩條反應途徑可以分別針對真菌、革蘭氏陽性菌或革蘭氏陰性菌等外來微生物病原,啟動不同訊息分子的傳遞,從而促進相對應的antimicrobial peptides 〈AMPs〉大量生成,並釋放至組織以破壞入侵病原。先天性免疫機制的重要性不言可喻,所以相關的基因,即使在長久的演化時間下,不論哺乳動物、昆蟲乃至植物中,仍可觀察到高度的保守性,如Toll/Toll-like receptor基因。 本研究即針對Toll基因中較為保守的區段:Toll/Interleukin-1 receptor 〈TIR〉 domanin,設計專一的引子對,進行PCR screening,利用4-step PCR screening的策略,就草蝦fosmid基因體庫進行研究,以期篩選出包含有Toll基因的菌株。 由目前所得的positive clones個數與比例,可推估草蝦基因體中的Toll基因份數約為4.86份,且與已知的草蝦、白蝦及班節蝦的序列比對,相似度分別為62.3%、60.5%與49.2%。並且,確認其基因結構至少包含三個exons與兩個introns。更深入的細節尚待篩選到含有Toll基因的菌株並定序才能得知。 本論文另分析了一個全長完整定序的菌株,總共得14條contig序列,全長將近50 kb,經預測包含有7.5個open reading frames,平均基因密度為151 genes/Mb。推測此菌株中的草蝦序列基因密度較高,約為人類的十倍。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:54:26Z (GMT). No. of bitstreams: 1 ntu-97-R94b41018-1.pdf: 698356 bytes, checksum: 9d97acc3a4a59c0259142d9bc6b2e6ee (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書……………………………………………………………………………….… I 誌謝……………………………………………………………………………………………….…II 摘要………………………………………………………………….……………………………...III 目錄…………………………………………………………..…………………………..…..……IV 第一章 Review- Innate immunity of invertebrates 0. Innate immunity…………………………………………………….…………………………..2 1. Recognition…………………………………………………………..………..…………………3 2. Signal transduction:The Toll and Imd pathways…………………………………………………4 3. Effectors:Antimocrobial peptides〈AMPs〉……………………………………………………8 4. Figures and Tables……………………………………………………….………..…..…………13 5. References…………………………..……………………………………………………………21 第二章 Searching for innate immunity related Toll genes from Tiger shrimp (Penaeus monodon) using a genomic platform 1. Introduction:fosmid library construction and application………………………………………25 2. DNA cloning……………………………………………………………………………………27 3. Screening strategy(4-step PCR)…………………………………………………………………28 4. Results……………………………………………………………………………………………29 5. Discussion………………………………………………………………………………………33 6. Figures and Tables………………………………………………………………………………35 7. References…………………………..……………………………………………………………50 | |
| dc.language.iso | zh-TW | |
| dc.subject | Toll基因 | zh_TW |
| dc.subject | 草蝦 | zh_TW |
| dc.subject | 先天性免疫 | zh_TW |
| dc.subject | innate immunity | en |
| dc.subject | Toll genes | en |
| dc.subject | tiger shrimp | en |
| dc.title | 從草蝦基因體庫篩選Toll基因 | zh_TW |
| dc.title | Searching for innate immunity related Toll genes from tiger shrimp (Penaeus monodon) using a genomic platform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃曉薇,林仲彥 | |
| dc.subject.keyword | Toll基因,草蝦,先天性免疫, | zh_TW |
| dc.subject.keyword | Toll genes,tiger shrimp,innate immunity, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-02-04 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| Appears in Collections: | 動物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 681.99 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
