Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorShan-Yan Dingen
dc.contributor.author丁善焉zh_TW
dc.date.accessioned2021-06-12T17:54:23Z-
dc.date.available2009-02-18
dc.date.copyright2008-02-18
dc.date.issued2008
dc.date.submitted2008-02-04
dc.identifier.citation安寶貞. 洋蘭保護. 2001. 行政院農業委員會動植物防疫檢疫局.
安寶貞. 植物疫病菌的診斷鑑定技術. 2002. 植物重要防檢疫疫病診斷鑑定技術研討會專刊. 111-120。
黃千育. 2006. 疫病菌 Phytophthora parasitica mitogen-activated protein kinase 之功能性分析. 國立台灣大學碩士論文.
蔡雲鵬. 1991. 臺灣植物病害名彙. 中華植物保護學會.
Anwyl, R. 1999. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity Brain Res. Brain Res. Rev. 29: 83-120.
Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A. I., Eisman, B., Nombela, C. and Pla, J. 2003. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot. Cell. 2: 351-361.
Akhurst R. J. 2004. TGFβ signaling in health and disease, Nat. Genet. 36: 790–792.
Baldauf, S. L., A. J. Roger, Wenk-Siefert, I. and Doolittle, W. F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 290: 972-977.
Banuett, F. 1998. Signaling in the Yeasts: An Informational Cascade with Links to the Filamentous Fungi. Microbiol. Mol. Biol. Rev. 62: 249-274.
Baril, C. and Therrien, M. 2006. Alphabet, a Ser/Thr phosphatase of the protein phosphatase 2C family, negatively regulates RAS/MAPK signaling in Drosophila. Dev. Biol. 294: 235-245.
Bartnki-Garcia, S. 1969. Cell wall differentiation in the Phycomycetes. Phytopathology. 59:1065-1071.
Bartnki-Garcia, S. 1970. Cell wall composition and other biochemical markers in fungus phylogeny. Pages 81-102 in : Phytochemical Phylogeny. J. B. Harborne, ed. Academic Press, London. 335 pp.
Bartnki-Garcia, S. and Wang, M. C. 1983. Biochemical aspects of morphogenesis in Phytophthora. Page 121-137 in Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology. D.C. Erwin, S. Bartnicki-Garcia, and P. H. Tsao, eds. American Phytophathologycal Society, St. Paul, Minn. 392 pp.
Baykov, A. A., Evtushenko, O. A. and Avaeva, S. M. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171: 266-270.
Branchmann, A., Schirawski, J., Müller, P., and Kahmann, R. 2003. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22: 2199-2210.
Bulone, V. et al. 1992. Characterization of chitin and chitin synthase from the cellulosec cell wall fungus Saprolegnia monoica. Exp. Mycol. 16: 8-21.
Clapham, D. E. 2007. Calcium signaling. Cell. 131: 1047-1058.
Cohen, P. and Cohen, P. T. W. 1989. Protein phosphatase come of age. J. Biol. Chem. 264: 21435-21438.
Cornish, J. L. and Kalivas, P. W. 2000. Glutamate Transmission in the Nucleus Accumbens Mediates Relapse in Cocaine Addiction J. Neurosci. 20: RC89.
Coutinho, V.and Knopfel, T. 2002. Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8: 551-561.
Dai, J., Zhang, J., Sun, Y., Wu, Q., Sun, L., Ji, C., Gu, S., Feng, C., Xie, Y., and Mao Y.. and 2006. Characterization of a novel human protein phosphatase 2C family member, PP2Cκ. Int. J. Mol. Med. 17: 1117-1123.
Das, A. K., Helps, N. R., Cohen, P. T. and Barford, D. 1996. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 Å resolution. EMBO J. 15: 6798-6809.
De Nadal, E., Alepuz, P. M. and Posas, F. 2002. Dealing with osmostress through MAP kinase activation. EMBO Rep. 3: 735-740.
Derynck R. and Zhang Y. 2003, Smad-dependent and Smad-independent pathways in TGFβ family signaling, Nature. 425: 577–584.
Donella Deana, A., McGowan, C. H., Cohen, P., Marciori, F., Meyer, H. E., and Pinna, L. A. 1990. An investigation of the substrate specificy to protein phosphatase 2C using synthetic peptide substrates. Comparison with protein phosphatase 2C. Biochim. Biophys. Acta. 1051: 199-202.
Dufresne, M., Bailey, J. A., Dron, M. and Langin, T. 1998. clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Mol. Plant Microbe Interact. 11: 99-108.
Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora diseases worldwide. APS press. Minn.
Fjeld, C. C. and Denu, J. M. 1999. Kinetic analysis of human serine/threonine protein phosphatase 2Cα. J. Biol. Chem. 274: 20336-20343.
Feng X. -H. and Derynck R. 2005. Specificity and versatility in TGFβ signaling through Smads, Annu. Rev. Cell Dev. Biol. 21: 659–693.
Flajolet, M., Rakhilin, S., Wang, H., Starkova, N., Nuanggchamnong, N., Nairn, A. C. and Greengard, P. 2003. Protein phosophatase 2C binds selectively to and dephosphorylates metabotropic glutamate receptor 3. Proc. Natl. Acad. Sci. 100: 16006-16011.
Geladopoulos, T. P., Sotiroudis, T. G., and Evangelopoulos, A. E. 1991. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192. 112-116.
Griffith, J. M. et al. 1991. Targetsites of fungicides to control oomycetes. In Target Sites of Fungicide Action (Koller, w., ed.). pp. 69-100. CRC Press.
Hajnóczky, G., Davies, E., and Madesh, M. 2003. Calcium signaling and apoptosis. Biochem. Biohys. Res. Commun. 3:445-54.
Hloch, P., Hoffmann, K., Kruchen, B., and rueger, B. 2001. The DIG system – a high sensitive substitute of radioactivity in northern blot analysis. Biochemica Roche Molecular Biochemicals. 2: 24-25.
Hu, X., Song, F. and Zheng, Z. 2006. Molecular characterization nad expression analysis of a rice protein phosphatase 2C gene, OsBIPP2C1, and overexpression in transgenic tobacca conferred enhanced disease resistance and abiotic tolerance. Physiol. Plant. 127: 225-236.
Jiang, L., Whiteway, M., Ramos, C., Rodriguez-Medina, J. R. and Shen, S. H. 2002. The YHR076w gene encodes a type 2C protein phosphatase and represents the seventh PP2C gene in budding yeast. FEBS Lett. 527: 323-325.
Klumpp, S., Selke, D., Fischer, D., Baumann, A., Muller, F. and Thanos, S. 1998. Protein phosphatase type-2C isozymes present in vertebrate retinae: purification, characterization, and localization in Photoreceptors. J. Neurosci. Res. 51: 328-338.
Kyriakis, J. M. and Avruch, J. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation, Physiol. Rev. 81: 807–869.
Lai, S. M. and Moual, H. L. 2005. PrpZ, a Salmonella enterica serovar Typhi serine/threonin protein phosphatase 2C with dual substrate specificity. Microbiology 151: 1159-1167.
Latijnhouwers, M., de Wit, P. J.G.M., and Govers, F. 2003. Oomycetes and fungi: similar weaponry to attack plants. Trends microbiol. 11: 462-469
Lawson, J. E., Niu, X.-D., Browning, K. S., Trong, H. L., Yan, J. and Reed, L. J. 1993. Molecular cloning and expression of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase and sequence similarity with protein phosphatase 2C. Biochemistry. 32: 8987-8993.
Li, H. C. 1983. Phosphoprotein phosphatases. Curr. Top. Cell. Regul. 21: 129-171.
Maeda, T., Wurgler-Mruphy, S. M. and Saito, H. 1994. A two-componet system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 369: 242-245.
Mann, D. J., Campbell, D. G., McGowan, C. H., and Cohen P. T. 1992. Mammalian protein serine/threonine phosphatase 2C: cDNA cloning and comparative analysis of amino acid sequences. Biochim. Biophys. Acta. 1130:100–104.
Marley, A. E., Sullivan, J. E., Carling, D., Abbott, W. M., Smith, G. J., Taylor, L. W. F., Carey, F. and Beri, R. K. 1996. Biochemical characterization and deletion analysis of recombinant human protein phosphatase 2Cα. J. Biochem. 320: 801-806.
Martin, H., flandez, M., Nombela, C. and Molina, M. 2005. Protein phosphatases in MAPK signaling: we keep learning from yeast. Trends Biochem. Sci. 10: 514-520.
Meskiene, I., Baudouin, E., Schweighofer, A., Liwosz, A., Jonak, C., Rodriguez, P. L., Jelinek, H. and Hirt, H. 2003. Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J. Biol. Chem. 278: 18945-18952.
Moore, F., Weekes, J. and Hardie, D. G. 1991. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. Eur. J. Biochem. 199: 691-697.
Moustakas, A. and Heldin, C. H. 2005. Non-Smad TGFβ signals, J. Cell Sci. 118: 3573–3584.
Proft, M., Mas, G., de Nadal, E., Vendrell, A., Noriega, N., Struhl. K., and Posas, Francesc. 2006. The stress-activated Hog1 kinase is a selective transcriptional elongation factor ofr genes responding to osmotic stress. Mol. Cell. 23: 241-250.
Ruiz A, González A, García-Salcedo R, Ramos J. and Ariño J. (2006). Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 62: 263-77.
Sansome, E. 1965. Meiosis in diploid and polyploid sex organs of Phytophthora and Achlya. Cytologia. 30: 103-117.
Schweighofer, A., Hirt, H. and Meskiene, I. 2004. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 9: 236-243.
Schwinn, F and Staub, T. 1995. Oomycetes fungicides. In Modern Selective fungicides: properties, applications, mechanisms of action (Lyr, H., ed.), pp 323-344, Fischer Verlag.
Seger, R. and Krebs, E. 1995. The MAPK signaling cascade. FASEB J. 9: 726-735.
Sheikh-Hamad D. and Gustin M. C. 2004. MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals, Am. J. Physiol. Renal Physiol. 287: F1102–F1110.
Shiozaki, K., Akhavan-Niaki, H., McGowan, c. H. and Russell, P. 1994. Protein phosphatase 2C encoded by ptc1+, is important in the heat shock response of Schizosaccharomyhces pombe. Mol. Cell. Biol. 14: 3742-3751.
Shiozaki, K. and Russell, P. 1995. Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase homolog in the osmoregulatioin of fission yeast. EMBO J. 14: 492-502.
Shitamukai, A., Hirata, D., Sonobe, S., and Miyakawa, T. 2004. Evidence for Antagonistic Regulation of Cell Growth by the Calcineurin and High Osmolarity Glycerol Pathways in Saccharomyces cerevisiae J. Biol.Chem. 279: 3651-3661.
Stern, A., Privman, E., Rasis, M., Lavi, S. and Pupko, T. 2007. Evolution of the metazoan protein phosphatase 2C superfamilly. J. Mol. Evol. 64: 61-70.
Takai, A. and Mieskes, G. 1991. Inhibitory effect of okadaic acid on the p-nitrophenyl phosphate phosphatase activity of protein phosphatases. J. Biochem. 275: 233-239.
Tamura, S., Lynch, K. R., Larner, J., Fox, J., Yasui, A., Kikuchi, K., Suzuki, Y., and Tsuiki, S. 1989. Molecular cloning of rat type 2C (IA) protein phosphatase mRNA. Proc. Natl. Acad. Sci. 86: 1796–1800.
Tamura, S., Toriumi, S., Saito, J. I., Awano, K., Kudo, T. A., and Kobayashi, T. 2006. PP2C family members play key roles in regulation of cell survival and apoptosiss. Cancer Sci. 97: 563-567.
ten Dijke P. and Hill C. S. 2004. New insights into TGFβ-Smad signaling, Trends Biochem. Sci. 29: 265–273.
Tong, Y., Quirion, R. and Shen, S. H. 1998. Cloning and characterization of a novel mammalian PP2C isozyme. J. Biol. Chem. 27: 35282-35290.
Tyler, B. M., Tripathy, S., Zhang, Xuemin, Dehal, P., Jiang, R. H. Y., and Aerts, A. et al. 2006. Phytophthora genomes sequences unceover evolutionary origins and mechanisms of pathogenesis. Science. 313: 1261-1266.
Vranova, E., Inze, D., and Breusegem, F. V. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227-1236
Vranova, E., Langebartels, C., Montagu, M. V., Inze, D., and Camp, W. V. 2000. Oxidative stress, heat shock and drought differentially affect expression of a tobacco protein phosphatase 2C. J. Exp. Bot. 51:1763-1764.
Vautard-Mey, G. and Fèvre, M. 2003. Carbon and pH modulate the expression of the fungal glucose repressor encoding genes. Curr. Microbiol. 46: 146-150.
Waite K. and Eng, C. 2003. From developmental disorder to heritable cancer: it's all in the BMP/TGFβ family, Nat. Rev. Genet. 4: 763–773.
Wenk, J., Trompeter, H. I., Pettrich, K. G., Cohen, P. T., Campbell, D. G, and Mieske,s G. 1992. Molecular cloning and primary structure of a protein phosphatase 2C isoform. FEBS Lett. 297: 135–138.
Warmka, J., Hanneman, J., Lee, J., Amin, D., and Ota, I. 2001. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase mitogen-activated protein kinase Hog1. Mol. Cell Biol. 21: 51-60.
Werner, S. et al. 2002. Chitin synthesis during in planta growth and asexual propagation of the cellulosic Oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiol. Let. 208: 169-173.
Whitman M. and Raftery L. 2005. TGFβ signaling at the summit, Development 132: 4205–4210.
Xing, T., Ouellet, T. and Miki, B. L. 2002. Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci. 7: 224-230.
Yan, H. Z., Huang, C. Y., and Liou, R. F. 2006. The MAP kinase pathway involved in the pathogenesis of Phytophthora parasitica. International molecular mycology conference.
Yan, H. Z. and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 43: 430-438.
Young, C., Mapes, J., Hanneman, J., Al Zarban, S., and Ota, I. 2002. Role of ptc2 Type 2C Ser/Thr Phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryot. Cell. 1: 1032-1040.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27044-
dc.description.abstractPhytophthora parasitica Dastur (疫病菌,又名P. nitcotianae Breda de Haan) 廣泛分布於全球各地。疫病菌的孢囊與游走子能靠著環境中些微水分迅速傳播,且生活史極短,能在同一植株上進行重複感染,寄主範圍又廣,經常造成重大農業損失,是世界上重要的植物病原菌之一。近年來許多研究顯示絲裂原活化蛋白激酶 (mitogen-activated protein kinases,MAPK) 訊息傳導與植物病原菌的病原性有關,例如炭疽病菌 (Colletotrichum spp.) 與稻熱病菌 (Magnaporthe grisea)。 Protein phosphatase 2C 在MAPK訊息傳遞路徑中扮演負向調控的角色,藉由去除磷酸根來抑制MAPK的活性。我們根據 Phytophthora ramorum 與 P. sojae 的 PP2C 同源性序列設計引子對,從 P. parasitica 基因體中增幅得到一長為 350 bp 之部份序列;再由 RACE (rapid amplification of cDNA ends)得到全長基因,其ORF (open reading frame)可轉譯出 344 個胺基酸序列,並將此基因命名為 ppptc1 (Phytophthora parasitica phosphatase two C 1)。ppptc1 與人類 PP2Cα的相似度高達 40%。在 P. parasitica 基因體中,ppptc1的拷貝數為一,但可能有其他同源基因存在。利用 pMAL (pMALTM Protein Fusion and Purification System) 載體於大腸桿菌中表現之 PPPTC1 重組蛋白能夠對 pNPP進行去磷酸化反應。PPPTC1 在胞外能將已磷酸化的 PPMK3 去磷酸化,但在in vivo下是否能對 PPMK3 進行逆向調控,有待進一步驗證。Ppptc1基因表現受過氧化物、鈣離子及酸性環境所抑制,但為鹼性環境而誘導。根據 ppptc1蛋白特性及逆境下之表現情形,推斷 ppptc1 極有可能參與疫病菌 MAPK 訊息傳導途徑。zh_TW
dc.description.abstractPhytophthora parasitica Daster (=P. nitcotianae Breda de Haan) is an oomycete plant pathogen. Spreading easily by water, short life cycle, and wide host range contributes P. parasitica a worldwide disease. Recent studies show that MAPK pathway is related with the pathogenicity of plant pathogens, such as Colletotrichum spp and Magnaporthe grisea. PP2C negatively regulate MAPK pathway by inactive phospo-MAPKs. We designed specific primers to amplify partial sequence of PP2C from P. parasitica genomes. The entire open reading frame was gained by Rapid Amplify cDNA ends and named as ppptc1 (Phytophthora parasitica phosphatase two C 1), which encoded 344 amino acids. Ppptc1, which has 40% similarity to human PP2Cα gene, is a one-copy number gene but other homologuesin may exist in the genome of P. parasitica. To express the PPPTC1 protein, the pMAL vector was used to express heterogeneous fusion protein from E. coli. As an alkaline phosphatase, PPPTC1 can dephosphorylate pNPP (para-nitrophenyl phosphate), a non-protein substrate. PPPTC1 also seems to dephosphorylate ppmk3 in vitro, a MAP kinase in P. parasitica. ppptc1 is down-regulated by calcium ion, acidity, and oxdative stress but induced by alkalinity. Base on protein character and expression pattern under stresses, we propose that ppptc1 is involved in MAPK pathway in P. parasitica.en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:54:23Z (GMT). No. of bitstreams: 1
ntu-97-R94633016-1.pdf: 733052 bytes, checksum: 758b62e90f862ba485e653bd3b174dfe (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要………………………………………………………………………… i
英文摘要………………………………………………………………………… ii
前言 ……………………………………………………………………………… iii
壹、前人研究 …………………………………………………………………… 1
貳、材料與方法 ………………………………………………………………… 9
參、結果 …………………………………………………………………………19
肆、討論 …………………………………………………………………………23
伍、參考文獻 ……………………………………………………………………27
陸、圖 …………………………………………………………………………38
附錄……………………………………………………………………………… 53
dc.language.isozh-TW
dc.title疫病菌Phytophthora parasitica 蛋白去磷酸酶PP2C之選殖與特性分析zh_TW
dc.titleCloning and characterization of the protein phosphatase 2C of Phytophthora parasiticaen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee曾顯雄,沈湯龍
dc.subject.keywordMAPK,Phytophthora parasitica,pNPP,ppmk3,protein phosphatase 2C,zh_TW
dc.subject.keywordalkaline phosphatase,MAPK,Phytophthora parasitica,protein phosphatase 2C,ppmk3,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2008-02-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
715.87 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved