Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐源泰(Yuan-Tay Shyu)
dc.contributor.authorTseng-Wei Chenen
dc.contributor.author陳增蔚zh_TW
dc.date.accessioned2021-06-12T17:53:54Z-
dc.date.available2009-02-25
dc.date.copyright2008-02-25
dc.date.issued2008
dc.date.submitted2008-02-13
dc.identifier.citation參考文獻
方宣鈞、吳為人、唐紀良。2001。作物DNA標記輔助育種。科學出版社。
田永彥。2007。番荔枝分子分類、乳酸菌發酵飲品開發及果膠酯酶抑制劑之研究。國立臺灣大學園藝系研究所博士論文。
林裕森。2004。燕巢的綠色珍珠。鄉間小路。30 (9):5-9。
林順福。2001。分子標誌在作物育種上之應用。生物技術在農業上之應用。pp21-30。楊盛行編。國立台灣大學農業陳列館。
林慧玲。1998。番石榴果實後熟生理之研究。國立臺灣大學園藝系研究所博士論文。
邱年永、張光雄。1998。原色臺灣藥用植物圖鑑。5:143-144。
洪紫馨。1996。番石榴果實的後熟生理及細胞水解酶在後熟期間的變化。國立臺灣大學園藝系研究所碩士論文。
高拱乾。1696。臺灣文獻叢刊。六五 臺灣府志,卷之四,物產,果之屬。73。
陳弈君,楊正山。2004。臺東番荔枝屬植物。75週年特刊。行政院農委會臺東農業改良場。
陳敏祥。1988。番石榴品種。高雄區農業推廣簡訊,p14,高雄區農業改良場印行。
曾美菁。2003。利用半定量即時定量聚合酶連鎖反應偵測基因改造大豆。國立中興大學食品科學系研究所碩士論文。
黃和炎。1998。番石榴栽培管理與合理化施肥。臺南區農業專訊第23期:6-10。
黃明德,林慶喜,2004,鳳梨釋迦。臺東區農業改良場成立75週年特刊。臺東地區農業改良場。
楊正山,1984a,番荔枝產業經營與展望。臺灣熱帶地區果園經營管理研討會專刊。臺灣省臺中區農業改良場發行。pp. 119-133.
楊正山,1996,常見番荔枝屬植物之特性與產期調節技術。番荔枝(釋迦)生產與運銷,臺灣省臺東區農業改良場編印。
楊正山,1998,鳳梨釋迦(Atemoya)提高產量與品質方法。臺東區農技專刊,21:1,臺灣省臺東區農業改良場編印,第七頁。
楊欣怡,2000,鳳梨釋迦及數種番荔枝果實採後生理與儲藏之研究。屏東科技大學熱帶農業研究所。
劉棠瑞,1981。壹、植物分類學之基礎與方法。植物分類學。國立編譯館出版。p. 1-86。
蔡平里。1997。蔬果芬芳錄-千言萬語榴香。豐年社豐年叢書。192:29-38。
謝進來,1991,番荔枝(釋迦)主要生理障礙性之病害發生與防治。農業世界。95: 32-38.
謝鴻業、黃和炎、鄭安秀。2001。番石榴栽培管理。臺南區農業改良場技術專刊。90-8 (No. 117)。
謝鴻業。1998。臺灣番石榴品種的演進與發展。農業世界 174:23-45。
Abdelrahim, S., Almagboul, A. Z., Omer, M. E. A. and Elegami, A. 2002. Antimicrobial activity of Psidium guajava L. Fitoterapia. 73: 713-715.
Abeles, F. B., Morgan, P. W. and Jr. M. E. Saltveit. 1992. Ethylene in plant biology. New York: Academic Press.
Abu-Goukh, A. A. and H. A. Bashir. 2003. Changes in pectic enzymes and cellulose activity during guava fruit ripening. Food Chemistry. 83: 213-218.
Advisory Committee on Technology Innovation. 1983. Firewood crops. Vol. 2. National Academy of Sciences, National Academy Press, Washongton, D. C. 92 p.
Alexander, L. and D. Grierson. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53: 2039-2055.
Allaby, R. G. and T. A. Brown. 2000. Identification of a 5S rDNA spacer type specific to Triticum urartu and wheats containing the T. urartu genome. Genome 43: 250-254.
Allard, R. W., Saghai Maroof, M. A., Zhang, Q. and R. A. Jorgensen. 1990. Genetic and molecular organization of ribosomal DNA (rDNA) variants in wild and cultivated barley. Genetic. 126(3): 743-751.
Anjos, R. M., Mosquera, B., Carvalho, C., Sanches, N., Bastos, J., Gomes, P. R. S. and Macario, K. 2007. Accumulation and long-term decline of radiocaesium contamination in tropical fruit trees. Nuclear Ins. & Methods in Phys. Res. A. 580: 625-628.
Barnavon, I., Doco, T., Terrier, N., Ageorges, A., Romieu, C. and P. Pellerin. 2001. Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall. Phytochemiistry, 58: 693-701.
Barry, C. S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A. J. and D. Gierson. 1996. Differential expression of the 1-aminocyclopropane- 1-carboxylate oxidase gene family of tomato. Plant J. 9: 525-535.
Batick, M. J. 1984. Ethnobotany of palms in the neotropics. In: Prance, G. T., Kallunki, J. A. (Eds), Advances in Economic Botany: Ethnobotany in the Neotropics. New York Botanical Garden, New York, pp. 9-23.
Beckmann, J. S. and M. Soller. 1983. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. Appl. Genet. 67: 36-43.
Botstein, D., White, R. L., Skolnick, M. and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
Brichacek, B. and M. Stevenson. 1997. Quantitative competitive RNA PCR for quantitation of Virion-Associated HIV-1 RNA. Methods, 12: 294-299.
Brummell, D. A. and M.H. Harpster. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47:311–340.
Callahan, A.M., Scorza, R., Bassett, C., Nickerson, M. and F.B. Abeles. 2004. Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Funct. Plant Biol. 31: 159-168.
Campentout, S. V., Aert, R. and G. Volckaert. 1998. Orthologous DNA sequence variation among 5S ribosomal RNA gene spacer sequences on homoeologous chromosomes 1B, 1D and 1R of wheat and rye. Genome 41: 244-245.
Carillo-López, A., Cruz-Hernandz, A., Cárabez-Trejo, A., Guevara-Lara, F. and O. Paredes-López. 2002. Hydrolytic activity and ultrastructural changes in fruit skins from two prickly pear (Opuntia sp.) varieties during storage. J. Agric. Food Chem. 50: 1681-1685.
Chen, H. Y. and G. C. Yen. 2007. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem. 101 (2): 686-694.
Chen, H. Y., Lin, Y. C. and C. L. Hsieh. 2007. Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs. Food Chem. 104: 1418-1424.
Chen, Y. T., Lee, Y. R., Yang, C. Y., Wang, Y. T., Yang, S. F. and J. F. Shaw. 2003. A novel papaya ACC oxidase gene (CP-ACO2) associated with late stage fruit ripening and leaf senescence. Plant Sci. 164: 531-540.
Cheng, J. Y. and Yang, R. S. 1983. Hypoglycemic effect of guava juice in mice and human subjects. Am. J. Chin. Med. 11(1-4): 74-6.
Chiou, S.J., Yen, J. H., Fang, C. L., Chen, H. L. and T. Y. Lin. 2007. Authentication of Medicinal Herbs using PCR-Amplified ITS2 with Specific Primers. Planta Med. 73(13): 1421-1426.
Cox, A. V., Pridgeon, A. M., Albert, V. A. and M. W. Chase. 1997. Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): nuclear rDNA ITS sequence. Plant Syst. Evol. 208: 197-223.
Cros, J., Combes, M. C., Trouslot, P., Anthony, F., Hamon, S. Charrier, A. and P. Lashermes. 1998. Phylogenetic analysis of chlororplast DNA variation in Coffea L. Mol. Phylogenet. Evo. 9 (1): 109-117.
DellaPenna, D., Alexander, D. C. and A. B. Bennett. 1986. Molecular cloning of tomato fruit polygalacturonase: Analysis of ploygalacturonase mRNA levels during ripening. Proc. Natl. Acad. Sci. USA. 83: 6420-6424.
Dong, J. G., Kim, W. T., Yip, W. K., Thompson, G. A., Li, L., Bennett, A. B. and S. F. Yang 1991. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta, 185: 38-45.
Douzery, E. J. P., Pridgeon, A. M., Kores, P., Linder, H. P., Kurzwell, H. and M. W. Chase. 1999. Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequence. Am. J. Bot. 86: 887-899.
Fischer, R. L. and A. B. Bennett. 1991. Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 675-703.
Giovannoni, J. J. 2004. Genetic regulation of fruit development and ripening. Plant Cell, 16: 170-80.
Gnan, S. O. and Demello, M. T. 1999. Inhibition of Staphylococcus aureus by aqueous Goiaba extracts. J. Ethnopharm. 68: 103-108.
Goel, S. Raina, S. N. and Y. Ogihara., Hillis, D. M., Allard, M. W. and M. M. Miyamoto. 2002. Analysis of DNA sequence data: phylogenetic inference. P. 456-487 in Zimmer, E. A., White, T. J., Cann, R. L. & Wilson, A. C. (eds) Molecular Evolution: Producing the Biochemical Data. San Diego, Academic Press.
Goodfellow, M. and A. G. O’Donnell. 1983. Handbook of New Bacterial Systematics. London, Academic Press.
Hadfiel, K. A. and A. B. Bennett. 1998. Polygalacturonase: many genes in search of a fuction. Plant. Physiol. 117: 337-343.
Hadfield, K. A. and A. B. Bennett. 1998. Polygalacturonase: Many gene in search of a function. Plant Physiol. 117: 337-343.
Hadfield, K. A., Rose, J. K. C., Yaver, D. S., Berka, R. M. and A. B. Bennett. 1998. Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiol. 117: 363-373.
Hiratsuka, J., Shimada, H., Whittier, R., Ishibassi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Hirai, A., Shinozaka, K. and M. Sugiura. 1989. The complete sequence fo the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plasted DNA inversion during the evolution of cereals. Mol. Gen. Genet. 217: 185-194.
Hiwasa, K., Kinugasa, K., Amano, S., Hashimoto, A., Nakano, R., Inaba, A. and Y. Kubo. 2003. Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J. Exp. Bot. 54; 771–779.
Hobson, G. E. and J. N. Davies. 1971. in The Biochemistry of fruits and Their Products, ed. Hulme, A. C. (Academic, London). Vol. 2. pp. 437-482.
Holland, P. M., Abramson, R. D., Watson, R. and D. H. Gelfand. 1991. Detection of specific polymerase chain reaction product by utilizing the 5’ to 3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Nat. Acad. Sci. USA. 88: 7276-7280.
Hon-Ning, L. 1988. Chinese Medicinal Herbs of Hong Kong, Vol. 2. Hang Chiewing Sa Kwang, Hong Kong. pp. 104-105.
Howard, R. A. 1989. Flora of the Lesser Antilles, Leeward and Windward Islands. Vol. 5. Arnold Arboretum, Harvard University, Jamaica Plain, MA. 604 p.
Hsieh, C. L., Huang, C. N. and R. Y. Peng. 2007. Molecular action mechanism against apoptosis by aqueous extract from guava budding leaves elucidated with human umbilical vein endothelial cell (HUVEC) model. J. Agric. Food Chem. 55 (21): 8523-8533.
Hsieh, C. L., Lin, Y. C., Yen, G. C. and H. Y. Chen. 2007. Preventive effects of guava (Psidium guajava L.) leaves and its active compounds against α-dicarbonyl compounds-induced blood coagulation. Food chemistry. 103 (2): 528-535.
Huang, P. L., Parks, J. E., Rottmann, W. H. and A. Theologis. 1991. Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar but differentially regulated. Proc. Natl. Acad. Sci. USA. 88: 7021-7025.
Iglesias-Fernández, R., Matilla, A. J., Rodríguez-Gacio, M. C., Fernández-Otero, C. and F. de la Torre. 2007. The polygalacturonase gene PdPG1 is developmentally regulated in reproductive organs of Prunus domestica L. subsp. Insititia. Plant Sci. 172: 763-772.
Jaiarj, P., Khoohaswan, P., Wongkrajang, Y., Peungvicha, P., Suriyawong, P., Saraya, M. L. and Ruangsomboon, O. 1999. Anticough and antimicrobial activities of Psidium guajava Linn. Leaf extract. J. Ethnopharm. 67: 203-212.
Jiménez-Escrig, A., Rincón, M., Pulido, R. and Saura-Calixto, F. 2001. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agri. Food Chem. 49: 5489-5493.
Kaileh, M., Berghe, M. V., Boone, E., Essawi, T. and G. Haegeman. 2007. Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J. Ethnopharm. 113 (3): 510-516.
Kellogg, E. A. and R. Appels. 1995. Intraspecific and Interspecific variation is 5S RNA genes are decoupled in diploid wheat relative. Genetics 140: 325-343.
Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 283-307.
Khan, M. A., Latif, N., Petrobelli, P., Yacoub, M. H. and M. J. Dunn. 1996. Construction of an internal standard for semi-quantitative polymerase chain reaction analysis of heat shock proteins. Electrophoresis, 17: 40-43.
Khan, M. I. H., Ahmad, J. 1985. A pharmacognostic study of Psidium guajava L. Int. J. Crude Drug Res. 23 (2): 95-103.
Kramer, M., Sanders, R., Bolkan, H., Waters, C., Cheehly, R. E. and W. R. Hiatt. 1992. Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Post. Biol. Tech. 1: 241-255.
Kwee, L. T. and K. K. Chong. 1990. Guava in Malaysia production, pests and diseases. Tropical press SDN. BHO. pp. 260.
Lasserre, E., Bouquin, T., Hernandez, J. A., Bull, J., Pech, J-C. and C. Balague. 1996. Structure and expression of three genes encoding ACC oxdase homologs from melon (Cucumis melo L.) Mol. Gen. Genet. 251: 81-90.
Lasserre, E., Bouquin, T., Hernandez, J. A., Pech, J. C. and C. Balague. 1996. Structure and expression of three genes encoding ACC oxidsae homologs from melon (Cucumis melo L.). Mol. Gen. Genet. 251: 1-90.
Lelie`vre, J. M., Tichit, L., Doa, P., Filliion, L., Nam, Y. W., Peach, J. C. and A. Latche. 1997. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits. Plant Mol. Biol. 33: 847-855.
Liang, X, Oono, Y., Shen, N. F., Köhler, C., Li, K., Scolnik, P. A. and Athanasios Theologis. 1995. Characterization of two members (ACS1 and ACS3) of the 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Gene, 167; 17-24.
Limsong, J., Benjavongkulchai, E. and Kuvatanasuchati, J. 2004. Inhibitory effect of some herbal extracts on adherence of Streptococcus mutans. J. Ethnopharm. 92: 281-289.
Lin, J., Puckree, T. and Mvelase, T. P. 2002. Anti-diarrhoeal evaluation of some medicinal plants used by Zulu traditional healers. J. Ethnopharm. 79: 53-56.
Lin, Y. Y. 1973. Studies on the hypoglycemic activity of guava, sugar cane fibers and pig’s pancreas on diabetic patients. Hu Li Za Zhi. 20 (4): 53-64.
Liu, X., Shiomi, S., Nakatsuka, A., Kubo, Y., Nakamura, R. and A. Inaba. 1999. Characterization of ethylene biosynthesis associated with ripening in banana fruit, Plant Physiol. 121: 1257-1266.
Lozoya, X. Reyes-Morales, H., Chávez-Soto, Marco A., Martínez-García, María del Carmen, Soto-González, Y. and Doubova, Svetlana V. 2002. Intestinal anti-spasmodic effect of a phytodrug of Psidium guajava folia in the treatment of acute diarrheic disease. J. Ethnopharm. 83: 19-24.
Lozoya, X., 1999. Xiuhpatli, Herba officinalis. SSA/UNAM, Mexico. 127 p.
Lutterodt, G. D. 1989. Inhibition of gastrointestinal release of acetylcholine by quercetin as a possible mode of action of Psidium guajava leaf extracts in the treatment of acute diarrhoeal disease. J. Ethnopharm. 25 (3): 235-247.
Market, C. L., F. Moller. 1995. Multiple forms of enzymes: tissue, ontogenetic, and species-specific patterns. Proc. Natl. Acad. Sci. USA. 45: 753-763.
McCarroll, R., Olsen, G. J., Stahl, Y. D., Woese, C. R. and Sogin, M. L. 1983. Nucleotide sequence of the Dictyostelium discoideum small-subunit ribosomal ribonucleic acid inferred from the gene sequence: evolutionary implications [Slime molds]. Biochemistry, 22 (25): 5858-5868.
McCollum, T. G., Huber, D. J. and D. J. Cantliffe. 1989 Modification of polyuronides and hemicellulose during muskmelon fruit softening. Physiol. Plant. 76: 303-308.
McMurchie, E. J., McGlasson, W. B. and I. L. Eake. 1972. Treatmentof fruit with propylene gives information about the biogenesis of ethylene. Nature, 237: 235-236.
Messmer, M. M., Melchinger, A. E., Hermann, R. G. and J. Boppenmeier. 1993. Relationship among early European maize inbrids. II. Comparison of pedigree and RFLP data. Crop Sci. 33: 944-950.
Mogensen, H. L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 118: 9-17.
Monib, M., Abd-el-Malek, Y., Zayed, M.N. and M. S. Saber. 1971. The antibacterial effect of dry tomato plants, onion peels, and guava leaves on soil microorganisms. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 126 (6): 630-639.
Moraes, R. M., Klumpp, A., Furlan, C. M., Klumpp, G., Domingos, M., Rinaldi, M. C. S. and Modesto, I. F. 2002. Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil. Environ. Int. 28: 367-374.
Mukhtar, H. M., Ansari, S. H., Bhat, Z. A., Naved, T. and P. Singh. 2006. Antidiabetic activity of an ethanol extract obtained from the stem bark of Psidium guajava (Myrtaceae). Pharmazie, 96 (3): 259-268.
Nagaoka, T. and Y. Ogihara. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94: 597-602.
Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y. and A. Inaba. 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-acarboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 118: 1295-1305.
Nunan, K. J., Davies, C, Robinson, S. P. and Fincher, G. B. 2001. Expression patterns of cell wall-modifying enzymes during grapeberry development. Planta, 214: 257-264.
Oetiker, J. H., and S. F. Yang. 1995. The role of ethylene in fruit ripening. Acta. Hortic. 398: 167-178.
Ojewole, J. A. Antiinflammatory and analgesic effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rats and mice. Methods Find Exp. Clin. Pharmacol. 28 (7): 441-446.
Olajide, O. A., Awe, S. O. and Makinde, J. M. 1999. Pharmacological studies on the leaf of Psidium guajava. Fitoterapia, 70: 25-31.
Olatunji-Bello, I. I., Ousanya, A. J., Raji, I. and C. O. Ladipo. 2007. Contractile effect of the aqueous extract of Psidium guajava leaves on aortic rings in rat. Fitoterapia, 78 (3): 241-243.
Olmsted, R. G. and J. D. Palmer. 1994. Chloroplast DNA systematics: a review of methods and data analysis. Am. J. Bot. 81: 1205-1224.
Ordon, F., Schiemann, A. and W. Friedt. 1997. Assessment of the genetic relatedness of barley accessions (Hordeum vulgare s. l.) resistant to soil-borne mosaic-inducing viruses (BaMMV, BaYMV, BaYMV-2) using RAPDs. Theor. Appl. Genet. 94: 325-330.
Pal, D. K. and P. S. Kumar. 1995. Change in the physicochemical and biochemical composition of custard (Annona squamosa L.) fruit during growth, development and ripening. J. Hort. Sci. 70 (4): 567-572.
Palmer, J. D. Jansen, R. K., Michaels, H. J., Chase, M. W. and J. R. Manhart. 1988. Chloroplast DNA variation and plant phylogeny. Am. Missouri. Bot. Garden. 75: 1180-1206.
Parducci, L. and A. E. Szmidt. 1999. PCR/RFLP analysis of cpDNA in the genus Abies. Thero. Appl. Genet. 98: 802-808.
Peirce, L. C. and J. L. Brewbaker. 1973. Application of isozyme analysis in horticultural science. Hort. Science, 8: 17-22.
Persson, C. 2000. Phylogeny of the Neotropical Alibertia group (Rubiaceae), with emphasis on the genus Alibertia, inferred from ITS and 5S ribosomal DNA sequences. Am. J. Bot. 87: 1018-1028.
Piatak, M. J., Saag, M. S., Yang, L. C., Clark, S. J., Kappes, J. C., Luk, K. C., Hahn, B. H., Shaw, G. M. and J. C. Lifson. 1993. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science, 259: 1749-1754.
Pickersgill, R., Smith, D., Worboys, K. and J. Jenkins. 1998. Crystal Structure of Polygalacturonase from Erwinia carotovora ssp. carotovora. J. Biol. Chem. 273: 24660-24664.
Pierre, T., Ludovic G., Guy P and Jean B. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109.
Poewll, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and A. Rafalski. 1996. Mol. Breed. 2: 225-238.
Qian, H. and Nihorimbere, V. 2004. Antioxidant power of phytochemicals from Psidium guajava leaf. J. Zhejiang Univ. Sci. 5 (6): 676-683.
Raeymaekers, L. 1993. Quantitative PCR: theoretical considerations with practical implications. Anal. Biochem. 214: 582-585.
Ranwala, A. P., Suematsu, C. and H. Masuda. 1992. The role of β-galactosidase in the modification of the cell wall components during muskmelon fruit ripening. Plant Physiol. 100: 1318-1325.
Rattanachaikunsopon, P. and P. Phumkhachorn. 2007. Bacteriostatic effect of flavonoids isolated from leaves of Psidium guajava on fish pathogens. Fitoterapia, 78 (6): 434-436.
Redgwell, R. J., Melton, L.D. and D.J. Brasch. 1992. Cell wall dissolution in ripening kiwifruit (Actinidia delicosa): solubilisation of pectic polymers. Plant Physiol. 98: 71–81.
Redondo-Necado, J., Moyano, E., Medina-Escobar, N., Caballero, I. L. and J. Muñoz-Blanco. 2001. A fruit-specific and developmentally regulated endopolygalacturonase gene from strawberry (Fragaria × anaassa cv. Chandler). J. Exp. Bot. 52: 1941-1945.
Rosas-Cárdenas, F. F., Valderrama-Cháirez, M. L., Cruz-Hernández, A. and O. Paredes-López. 2007. Prickly pear polygalacturonase gene: cDNA cloning and transcript accumulation during ethylene treatment, cold storage and wounding. Postharv. Biol. Tech. 44: 254-259.
Rose, J. C. K., Hadfield, K. A. and A. B. Bennett. 1998. Temporal sequence fo call wall disassembly in rapidly ripening melon fruit. Plant Physiol. 117: 345-361.
Ross, G. S., Knighton, M. L. and M. Lay-Yee. An ethylene-related cDNA from ripening apples. Plant Mol. Biol. 19: 231-238.
Rottmann, W. H., Peter, G. F., Oeller, P. W., Keller, J. A., Shen, N. F., Nagy, B. P., Taylor, L. P., Campbell, A. D. and A. Theologis. 1991. 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J. Mol. Biol. 22: 937-961.
Roy, C. K., Kamath, J. V. and M. Asad. 2006. Hepatoprotective activity of Psidium guajava Linn. Leaf extract. Indian J. Exp. Biol. 44 (4): 305-311.
Schuch, W., Kanczler, J., Robertson, D., Hobson, G., Tucker, G., Grierson, D., Bright, S. and C. Bird. 1991. Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. Hortsci. 26: 1517-1520.
Senior, M. L. and M. Heun. 1993. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36: 884-889.
Shimada, H. and M. Sugiura. 1991. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes Nucleic Acids Res. 19: 983-995.
Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokada, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T.,Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. and M. Sugiura. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 5: 2043-2049.
Taiz, L. and E. Zeiger. 1991. Plant Physiology. The Benjamin/Cumming Publishing Company.
Taylor, J. E. 1993. Annona species, p. 166-169. In: Seymour, G. B., J. E. Taylor and G. A. Tucker eds. Biochemistry of fruit ripening. Chapman and Hall Press, London.
Tingey, S. V. and J. P. del Tufo. 1993. Genetic Analysis with RAPD markers. Plant Physiol. 101: 349-352.
Tinker, N. A., Fortin, M. G. and D. E. Mather. 1993. Random amplified polymorphic DNA and pedigree relationship in spring barley. Theor. Appl. Genet. 85: 976-984.
Tucker, G. A. 1993. Introduction. In: Biochemistry of fruit ripening. Seymour, G. B., Taylor, J. E. and G. A. Tucker. Eds. Chapman & Hall. London. pp. 1-51.
Vaïtilingom, M., Pijnenburg, H., Gendre, F. and P. Brignon. 1999. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods. J. Agric. Food Chem. 47: 5261-5266.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414.
Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D. and R. Drake. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 296: 343-6.
Wakasa, Y., Kudo, H., Ishikawa, R., Akada, S., Senda, M., Niizeki, M. and T. Harada. 2006. Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Posthav. Biol. Tech. 39: 193-198.
Wang, B., Jiao, S., Liu, H. and J. Hong. 2007. Study on antioxidative activities of Psidium guajava Linn leaves extracts. J. Hygiene Res. 36 (3): 298-300.
Wang, B., Liu, H. C., Hong, J. R., Li, H. G. and C. Y. Huang. Effect of Psidium guajava leaf extract on alpha-glucosidase activity in small intestine of diabetic mouse. J. Sichuan Univ. 38 (2): 298-301.
Watt, J. M., Branehwizk, M. G. 1969. The medicinal and poisonous plants of Southern and Eastern Africa. E. & S. Livingstone, London. pp. 789-799.
Waugh, R. and W. Powell. 1992. Using RAPD markers for crop improvement. Trends in Biotech. 10: 186-191.
Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218.
White, M. F., Vasquez, J., Yang, S. F. and J. F. Kirsch. 1994. Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: Kinetic characterization of wild-type and active-site mutant forms. Pro. Natl. Acad. Sci. USA. 91: 12428-12432.
White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., New York.©W°
Whittaker, D. J., Smith, G. S. and R. C. Gardner. 1997Expression of ethylene biosynthetic genes in Actinidia chinensis fruit. Plant Mol. Biol. 34: 45-55.
Wilde, J., Waugh, R. and W. Powell. 1992. Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic DNA markers. Theor. Appl. Genet. 83: 871-877.
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalsky, J. A. and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
Woese, C. R., Gutell, R., Gupta, R. and H. Noller. 1983. Detailed analysis of the higher order structure of 16S like ribosomal ribonucleic acids. Microbiol. Rev. 47: 621-669.
Wolfe, K. H., Li, W. H. and P. M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc. Natl. Acad. Sci. USA. 84: 9054-9058.
Yip, W. K., Dong, J. G., Kenny, J. W., Thompson, G. A. and S. F. Yang. 1990. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl. Acad. Sci. USA. 87: 7930-7934.
Yokoyama, J. Koizumi, Y., Yokota, M. and H. Tsukaya. 2007. Phylogenetic position of Oxygyne shinzatoi (Burmanniaceae) inferred from 18S rDNA sequences. J. Plant Res. [Published online: 20. Dec. 2007].
Zarembinski, T. I. and A. Theologis. 1994. Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26: 1579-1597.
Zheng, Q. L., Nakatsuka, A., Taira, S. And H. Itamura. 2005. Enzymatic activities and gene expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in persimmon fruit. Postharv. Biol. Tech. 37: 286-290.
Zhou, H. Q., Wang, H. W., Zhu, K., Sui, S. F., Xu, P. L., Yang, S. F. and N. Li. 1999. The multiple roles of conserved arginine 286 of 1-aminocyclopropane-1-carboxylate synthase. Coenzyme binding, substrate binding and beyond. Plant Physiol. 121: 1-7.
Zuckerandi, E. and L. Pauling. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8: 357-366.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27016-
dc.description.abstract番石榴 (Psidium guajava L.) 與番荔枝 (Annona squamosa) 為台灣重要的果樹,除一般作鮮食外,尚具有高加工和傳統醫學的利用性。台灣野生芭樂之中,紅心芭樂在民俗醫學上最具價值,常見於台灣原住民部落。但由於紅心芭樂並無大量栽種,年產量不定,常有以其他芭樂摻假的情況發生。本研究利用遺傳分子鑑定技術,蒐集台灣原住民各部落之土芭樂進行遺傳物質分析,以建立摻假之辨識系統,並了解各品種土芭樂在原住民部落分佈之情形。番荔枝果實在台灣因改良品種繁多,以果實之外觀形態作為品種區分的依據有者亦不易區分,本研究以分子標誌技術,建立快速鑑別各品種番荔枝之方法,加速果實品種的改良和優良性狀之篩選。
本研究第一部份分別針對土芭樂及番荔枝核糖體DNA之18S與ITS1、葉綠體DNA之trnL intron與trnL-trnF IGS等區域進行分析,並以NJ、PA、ML及UPGMA演算法計算各區域之演化樹狀圖。結果發現,以18S rRNA可明確的將各部落之土芭樂依地緣之相近性作區分,在各演算結果均一致;以RAPD方法分析,不但可區分紅、白心芭樂,亦可將經濟品種番石榴與土芭樂作區隔,以及不同海拔與緯度環境之土芭樂作區分。在番荔枝的親緣關係分析方面,葉綠體DNA之trnL-trnF IGS序列分析、演算法計算所得之結果,均印證過去以形態作為分類的基礎,可節省果樹生長的時間,適合作為不同品種番荔枝親緣關係分析之鑑定方法。
第二部份的研究則是探討兩種果樹之果實軟化相關之聚半乳糖醛酶 (polygalacturonase, PG)、乙烯合成關鍵酵素ACC合成酶 (ACC synthase, acs) 與ACC氧化酶 (ACC oxidase, aco) 等後熟基因。紅心芭樂的PG基因 (P. guajava PG, PgPG) 與鳳梨釋迦的PG基因 (Atemoya PG, AtPG) 部分序列之大小分別為346 與351 bp,所推衍之胺基酸序列分別為115及116個胺基酸;此兩段胺基酸序列與其他物種之PG進行排列分析,PgPG與AtPG含有不完整之open reading frame (ORF) 以及有四個高度保守性區域,含有和前人相同之三個胺基酸Gly-His-Gly (GHG) 與保守之Tyr殘基,為PG催化活性部位,具有endo-PG之活性。紅心芭樂ACC氧化酶基因 (P. guajava ACC oxidase gene, PgACO)之部分序列長度為729 bp,推衍出242 bp個胺基酸,經排列比對、結構分析與ORF預測等,PgACO之胺基酸序列有七個保守性的區域,其中高保守性的七個胺基酸殘基為dioxygenase的Fe (II) ascorbate family;後熟過程PgACO因受到乙烯的誘導而表現。鳳梨釋迦ACC合成酶基因 (Atmoya ACC synthase gene, AtACS) 之部分序列長度為990 bp,推衍出323個胺基酸,根據序列經排列比對、結構預測等結果,具有七個高度保守性區域,序列中八個保守胺基酸與aminotransferase有關,且含有決定ACC synthase活性之TNP domain,故證實本研究之AtACS具備ACC synthase的活性。
第三部分使用real-time PCR分析兩種果樹後熟基因之表現。紅心芭樂之PgPG受到乙烯的誘導,在後熟第三天PG酵素活性增加,果實軟化速度加快;PgACO 在果實未後熟時有些微的表現,經乙烯誘導第二至四天的表現量最高,此時紅心芭樂果實之顏色由綠轉黃,並持續表現至後熟末期。鳳梨釋迦之AtPG基因的表現與果實軟化速率相關,後熟第二天AtPG有最高表現量,此階段鳳梨釋迦果肉軟化速率最高。而由AtACS的表現得知ACC synthase活性增加,乙烯在整個後熟期間持續生成。本研究所建立之分子遺傳鑑別系統和果實軟化與乙烯合成之關鍵的基因對栽培、採收後和加工的利用上都將有實質更進一步開發和應用潛力。
zh_TW
dc.description.abstractGuava and sugar apple are important fruit trees in Taiwan. Red-flesh guava is mostly distributed in indigenous tribes in Taiwan and has valuable application in traditional medicine. Due to the various varieties of red-flesh guava and adulteration problems in fruit materials, a systematic way for classification using molecular marker is necessary to guarantee materials’ reliability and safety. Same manner in sugar apple, there are numerous cultivars and species due to breeding for fruit improvement, thus, reliable molecular detection method is urged for rapidly screening and maintenance of species quality.
In the first part, ribosomal DNA 18S, ITS1 and chloroplast DNA trnL intron and trnL-trnF IGS were used for the identification of guava and sugar apple samples. The results were calculated by algorithm NJ, PA, ML and UPGMA. The results showed similarity in each DNA regions. Analysis of uncultivated guavas’ rDNA 18S marker revealed a correlation with their geographical distribution in tribes. In addition, molecular marker of indigenous guava was found different from commercial cultivars, it also reflect differences on altitude and latitude, and red and white-flesh guava. In term of sugar apple, the results showed that cpDNA trnL-trnF IGS was agreeable to morphological classification and suitable for identifying different species and cultivars sugar apples.
In the second part, the ripening gene of red-flesh guava and atemoya were identified and characterized. The partial cell wall degradation related genes, PgPG of guava and AtPG of atemoya, were 346 and 351 bp and the deduced amino acid sequences were 115 and 116 in length, respectively. The PgPG and AtPG deduced amino acid aligned with others have an uncompleted OFR and four highly conserved regions that with catalytic sites Gly-His-Gly (GHG) and Tyr residue. On the other hand, PgACO, a ACC oxidase gene from red-flesh guava was 729 bp with 242 deduced amino acids. The alignment of PgACO showed seven conserved regions. There are 9 conserved amino acid residues belongs to dioxygenase, Fe (II) ascorbate family. The expression of PgACO was induced by ethylene. ACC synthase gene (AtACS) of atemoya was 990 bp with a 323 deduced amino acids. Eight amino acid residues in seven conserved regions were correlated with aminotransferase. TNP domain of conserved region was a key site for activity of ACC synthase.
In the third part, the ripening-related gene expression of red-flesh guava and atemoya were studied by real-time PCR. PgPG and PgACO were induced by ethylene and firmness loss rate of fruit increased while PG activity was high. The skin color of Red-flesh guava turned yellow as high transcription level of PgACO was detected during ripening from 2nd day to 4th day. AtPG was correlated with the rate of fruit soften, and AtACS induced ACC synthase for ethylene production during fruit ripening. The established molecular detection system, and identified ripening-related gene of guava and sugar apple would be useful for further application in cultivation, postharvest and processing.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:53:54Z (GMT). No. of bitstreams: 1
ntu-97-D92628008-1.pdf: 7783400 bytes, checksum: aeb9260e471ce3d8ed88213280306f30 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
誌謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
第一章 研究背景與動機 1
第一節 番石榴植物介紹 1
ㄧ、番石榴之起源與栽培 1
二、形態與特性 1
三、番石榴之品種 2
四、番石榴之營養成分 3
五、番石榴的好處 4
六、番石榴的栽培管理 4
七、番石榴於臺灣經濟產業概況 5
第二節 番荔枝植物介紹 10
ㄧ、番荔枝之起源與栽培 10
二、形態與特性 11
三、番荔枝之品種 11
四、番荔枝的栽培管理 14
五、番荔枝於臺灣經濟產業概況 14
第三節 國內外番石榴相關研究報告之現況 17
ㄧ、緣由 17
二、初步統計結果 17
三、深入分析探討 18
第四節、主要研究目的 23
第二章 番荔枝與臺灣原住民部落土芭樂之分子多樣性與親緣分析 25
第一節、前言 25
ㄧ、傳統植物分類法 26
二、近代常用之分子標誌 26
1. 同功異構酶(Isozyme) 26
2. 逢機擴增多型性 27
3. 限制酵素片段長度多型性 27
4. 增殖片段長度多型性 27
5. 簡單序列重複 29
6. 定性序列擴增區 29
三、核糖體基因與葉綠體基因之研究 29
1. 核糖體基因 (Ribosomal DNA, rDNA) 30
2. 葉綠體基因 (Chloroplast DNA, cpDNA) 31
第二節、材料與方法 33
ㄧ、實驗材料 33
二、實驗方法 36
1. 葉片DNA的萃取 36
2. DNA濃度測定 36
3. 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 36
4. 電泳分析 37
5. 反應引子(Primer) 38
6. DNA序列定序 41
7. 序列排序及親緣關係分析 41
第三節、結果與討論 42
一、原住民部落土芭樂之親緣關係分析 42
1. 土芭樂核糖體DNA上18S之序列與親緣關係分析 42
2. 土芭樂核糖體DNA上ITS1之序列與親緣關係分析 51
3. 土芭樂葉綠體DNA上trnL之序列與親緣關係分析 60
4. 以RAPD方法進行土芭樂親緣關係之分析 68
二、荔枝核之親緣關係分析 76
1. 番荔枝核糖體DNA上18S區域之親緣分析 76
2. 番荔枝核糖體DNA上ITS區域之親緣分析 77
3. 番荔枝葉綠體DNA上trnL-trnF IGS區域之親緣分析 85
第四節、結論 93
第三章、紅心芭樂與鳳梨釋迦果實後熟功能性基因之研究 95
第一節、前言 95
第二節、前人研究 96
ㄧ、果實之後熟 (Fruit ripening) 96
二、後熟相關基因之研究 97
1. 果實軟化相關基因之研究 97
2. 乙烯與果實後熟 98
(1)乙烯的生合成 98
(2)相關之研究報告 99
三、基因表現量之測定 100
1. 定量競爭聚合酶連鎖反應(QC-PCR) 100
2. 即時定量聚合酶連鎖反應(Real-time quantitative PCR, QPCR) 101
第三節、材料與方法 104
ㄧ、樣品採集 104
二、乙稀(Ethylene)催熟處理 104
三、果實Total RNA萃取及cDNA之合成 104
四、DNA濃度測定 104
五、果實硬度與糖度測試 105
六、反應引子 105
七、聚合酶連鎖反應 107
八、即時定量聚合酶連鎖反應 (Lightcycler定量分析) 107
九、電泳分析 108
十、DNA定序 108
十一、序列排序及親緣關係分析 108
第四節、結果與討論 109
一、後熟期間果實外觀之變化 109
二、後熟期間果實之硬度變化與糖度之測定 109
1. 紅心芭樂與鳳梨釋迦果實硬度之測定 109
2. 紅心芭樂與鳳梨釋迦果實糖度之測定 112
三、果實後熟相關基因之研究 112
1. 果實細胞壁軟化基因之分析 112
2. 後熟期間紅心芭樂ACC氧化酶之分析 120
3. 後熟期間鳳梨釋迦ACC合成酶之分析 126
四、果實後熟相關基因表現量之測定 132
1. 後熟期間紅心芭樂PG與ACC oxidase基因之表現量之測定 132
2. 後熟期間鳳梨釋迦PG與ACC synthase基因之表現量之測定 135
第五節、結論 137
參考文獻 139
附錄 155

表目錄
表一、臺灣常見水果營養成份表 7
表二、2006年各縣市番石榴產量排序表 8
表三、95年臺灣各水果栽種面積 9
表四、2006年各縣市番荔枝栽種面積與產量 16
表五、植物傳統之分類法 28
表六、臺灣各縣市原住民部落數目 33
表七、各縣市原住民部落之土芭樂 34
表八、非原住民地區採集之土芭樂樣品 34
表九、鳳山熱帶植物試驗所採集之芭樂經濟品種 35
表十、本研究使用13種不同之番荔枝品種 35
表十一、PCR反應引子 38
表十二、十組10-mer之RAPD之逢機擴增引子 39
表十三、10個原住民部落之土芭樂核糖體DNA 18S序列相似矩陣 45
表十四、不同原住民部落土芭樂rDNA 18S區域之各分析法分群對照表 50
表十五、10個原住民部落土芭樂核糖體DNA之ITS1序列相似矩陣 54
表十六、不同原住民部落土芭樂rDNA ITS1區域之各分析法分群對照表 59
表十七、10個原住民部落土芭樂葉綠體DNA之trnL intron與trnL-trnF IGS序列相似矩陣 62
表十八、不同原住民部落土芭樂cpDNA trnL與trnL-trnF IGS區域之各分析法分群對照表 67
表十九、根據32個番石榴RAPD之DNA多型性片段製成之遺傳相似矩陣表 73
表二十、不同原住民部落土芭樂各分析法之分群對照表 75
表二十一、臺灣番荔枝核糖體DNA之18S序列相似矩陣 78
表二十二、臺灣番荔枝核糖體DNA之ITS1序列相似矩陣 83
表二十三、臺灣番荔枝葉綠體DNA之trnL-trnF IGS序列相似矩陣 86
表二十四、番荔枝rDNA與cpDNA各區域分析結果之分群對照表 91
表二十五、後熟相關酵素基因進行擴增反應之引子 106
表二十六、紅心芭樂與鳳梨釋迦PG、ACS、ACO基因之專一引子 106
表二十七、PG基因推衍之胺基酸序列之相似矩陣表 118
表二十八、ACO基因推演之胺基酸序列之相似矩陣表 124
表二十九、ACS基因推演之胺基酸序列之相似矩陣表 128









圖目錄
圖一、各品種番石榴果實 6
圖二、2006年各縣市番石榴產量比例圖 8
圖三、2006年各縣市番荔枝產量比例圖 16
圖四、全球相關番石榴研究期刊報告統計圖 21
圖五、國內相關番石榴研究報告統計圖 21
圖六、相關番石榴報告各項類別研究統計圖 22
圖七、真核核糖體DNA結構之組成 40
圖八、葉綠體DNA上trnL intron與trnL-trnF區域之結構圖 40
圖九、以NS1及NS4引子組對各部落土芭樂進行擴增之電泳分析圖 44
圖十、不同部落土芭樂核糖體基因之18S區域,以NJ計算之親緣關係圖 46
圖十一、不同部落土芭樂核糖體基因之18S區域,以PA計算之親緣關係圖 47
圖十二、不同部落土芭樂核糖體基因之18S區域,以ML計算之親緣關係圖 48
圖十三、不同原住民部落土芭樂之核糖體基因之18S區域,以UPGMA計算之親緣關係圖 49
圖十四、以ITS1及ITS2引子組對各部落之土芭樂進行擴增之電泳分析圖 53
圖十五、不同部落土芭樂之核糖體基因之ITS1區域,以NJ計算之親緣關係圖 55
圖十六、不同部落土芭樂之核糖體基因之ITS1區域,以PA計算之親緣關係圖 56
圖十七、不同部落土芭樂之核糖體基因之ITS1區域,以ML計算之親緣關係圖 57
圖十八、不同部落土芭樂之核糖體基因之ITS1區域,以UPGMA計算之親緣關係圖 58
圖十九、以B49317及A50272引子組對各部落之土芭樂進行擴增之電泳分析圖 61
圖二十、不同部落土芭樂葉綠體基因之trnL intron與trnL-trnF IGS區域,以NJ計算之親緣關係圖 63
圖二十一、不同部落土芭樂葉綠體基因之trnL intron與trnL-trnF IGS區域,以PA計算之親緣關係圖 64
圖二十二、不同部落土芭樂葉綠體基因之trnL intron與trnL-trnF IGS區域,以ML計算之親緣關係圖 65
圖二十三、不同部落土芭樂葉綠體基因之trnL intron與trnL-trnF IGS區域,以UPGMA計算之親緣關係圖 66
圖二十四、土芭樂及經濟品種芭樂進行逢機引子擴增反應之電泳圖 72
圖二十五、20個不同原住民部落與12個經濟品種番石榴之RAPD分析結果,經UPGMA方法進行演算之樹狀圖 74
圖二十六、番荔枝核糖體基因之18S區域,以NJ計算之親緣關係圖 79
圖二十七、番荔枝核糖體基因之18S區域,以PA計算之親緣關係圖 80
圖二十八、番荔枝葉綠體基因18S區域,以ML計算之親緣關係圖 81
圖二十九、番荔枝葉綠體基因18S區域,以UPGMA計算之親緣關係圖 82
圖三十、番荔枝葉綠體基因ITS1區域,以PA計算之親緣關係圖 84
圖三十一、番荔枝葉綠體基因trnL-trnF IGS區域,以NJ計算之親緣關係圖 87
圖三十二、番荔枝葉綠體基因trnL-trnF IGS區域,以PA計算之親緣關係圖 88
圖三十三、番荔枝葉綠體基因trnL-trnF IGS區域,以ML計算之親緣關係圖 89
圖三十四、番荔枝葉綠體基因trnL-trnF IGS區域,以UPGMA計算親緣關係圖 90
圖三十五、定量競爭聚合酶鏈反應 (QC-PCR) 之原理 102
圖三十六、即時定量聚合酶連鎖反應 SYBR Green I 螢光偵測系統示意圖 103
圖三十七、紅心芭樂與鳳梨釋迦在後熟期間果實外觀顏色之變化 110
圖三十八、紅心芭樂與鳳梨釋迦果實後熟期間果肉硬度之變化 111
圖三十九、紅心芭樂與鳳梨釋迦果實後熟期間糖度之變化 113
圖四十、紅心芭樂與鳳梨釋迦後熟相關基因電泳分析圖 116
圖四十一、紅心芭樂與鳳梨釋迦之PG胺基酸與其他物種之PG序列排列圖示 117
圖四十二、紅心芭樂與鳳梨釋迦之PG與其他物種之PGs之樹狀圖 119
圖四十三、紅心芭樂之ACO胺基酸序列與其他物種之ACO胺基酸之排列圖示 121
圖四十四、紅心芭樂ACO胺基酸序列與其他物種ACO胺基酸序列之樹狀圖 125
圖四十五、推衍之ACC synthase胺基酸序列之排列圖示 129
圖四十六、鳳梨釋迦ACC synthase與其他物種之樹狀圖 131
圖四十七、後熟期間紅心芭樂後熟相關基因PgPG與PgACO表現量之測定 134
圖四十八、後熟期間鳳梨釋迦後熟相關基因AtPG與AtACO表現量之測定 136
附錄一、以紅心芭樂total RNA合成之cDNA經系列稀釋建立即時聚合酶連鎖反應回歸曲線 155
附錄二、後熟期間鳳梨釋迦AtPG基因表現量測定裂解溫度之曲線 156
dc.language.isozh-TW
dc.subject後熟zh_TW
dc.subject番石榴zh_TW
dc.subject番荔枝zh_TW
dc.subject乙烯合成&#37238zh_TW
dc.subject分子標誌zh_TW
dc.subject聚半乳糖醛&#37238zh_TW
dc.subjectACC oxidaseen
dc.subjectguavaen
dc.subjectACC synthaseen
dc.subjectsugar appleen
dc.subjectpolygalacturonaseen
dc.subjectRAPDen
dc.title臺灣番石榴/番荔枝之親緣關係與果實後熟相關基因之研究zh_TW
dc.titleStudies on phylogenetic and fruit ripening-related genes of guava and sugar apple in Taiwanen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee何國傑(Kuo-Chieh Ho),陳昭瑩(Chao-Ying Chen),許輔(Fuu Sheu),曾文聖(Wen-Shong Tzeng)
dc.subject.keyword番石榴,番荔枝,後熟,分子標誌,聚半乳糖醛&#37238,乙烯合成&#37238,zh_TW
dc.subject.keywordguava,sugar apple,RAPD,polygalacturonase,ACC synthase,ACC oxidase,en
dc.relation.page171
dc.rights.note有償授權
dc.date.accepted2008-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
7.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved