Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27000
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳兆勛
dc.contributor.authorMing-Chi Huangen
dc.contributor.author黃明祺zh_TW
dc.date.accessioned2021-06-12T17:53:37Z-
dc.date.available2013-03-07
dc.date.copyright2008-03-07
dc.date.issued2008
dc.date.submitted2008-03-01
dc.identifier.citation1. D. M. Chapin, C. S. Fuller, G. L. Pearson, J Appl Phys 25, 676 (1954).
2. T. C. Chandler, R. B. Hilborn, J. W. Faust, J Electrochem Soc 124, 1409 (1977).
3. M. Stoger et al., Physica B 274, 540 (Dec, 1999).
4. A. S. Kindyak, V. V. Kindyak, V. F. Gremenok, Mater Lett 28, 273 (Oct, 1996).
5. T. Kojima et al., Sol Energ Mat Sol C 50, 87 (Jan, 1998).
6. K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, J. H. Werner, Prog Photovoltaics 10, 457 (Nov, 2002).
7. A. F. da Cunha, F. Kurdzesau, P. M. P. Salome, Mater Sci Forum 514-516, 93 (2006).
8. B. Oregan, M. Gratzel, Nature 353, 737 (Oct 24, 1991).
9. O. Kohle, S. Ruile, M. Gratzel, Inorg Chem 35, 4779 (Jul 31, 1996).
10. P. Homanen, M. Haukka, M. Ahlgren, T. A. Pakkanen, Inorg Chem 36, 3794 (Aug 13, 1997).
11. K. Westermark, H. Rensmo, A. C. Lees, J. G. Vos, H. Siegbahn, J Phys Chem B 106, 10108 (Oct 3, 2002).
12. A. Anthonysamy, S. Balasubramanian, B. Muthuraaman, P. Maruthamuthu, Nanotechnology 18, (Mar 7, 2007).
13. M. Gratzel, Nature 414, 338 (Nov 15, 2001).
14. D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, I. Riess, J Phys Chem B 104, 2053 (Mar 9, 2000).
15. M. Gratzel, Curr Opin Colloid In 4, 314 (Aug, 1999).
16. A. Hagfeldt, M. Gratzel, Chem Rev 95, 49 (Jan-Feb, 1995).
17. K. Kalyanasundaram, M. Gratzel, Coordin Chem Rev 177, 347 (Oct, 1998).
18. X. T. Zhang et al., Solar Energy Materials and Solar Cells 81, 197 (Feb 6, 2004).
19. A. Zaban, S. Ferrere, B. A. Gregg, J Phys Chem B 102, 452 (Jan 8, 1998).
20. P. Suri, R. M. Mehra, Solar Energy Materials and Solar Cells 91, 518 (Mar 23, 2007).
21. A. Zaban, A. Meier, B. A. Gregg, J Phys Chem B 101, 7985 (Oct 2, 1997).
22. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, A. J. Frank, J Phys Chem B 101, 2576 (Apr 3, 1997).
23. S. A. Haque, Y. Tachibana, D. R. Klug, J. R. Durrant, J Phys Chem B 102, 1745 (Mar 5, 1998).
24. J. Nelson, Phys Rev B 59, 15374 (Jun 15, 1999).
25. J. Nelson, S. A. Haque, D. R. Klug, J. R. Durrant, Phys Rev B 6320, (May 15, 2001).
26. J. Rabani et al., J Phys Chem B 101, 3136 (Apr 17, 1997).
27. K. Murakoshi et al., J Electroanal Chem 396, 27 (Oct 31, 1995).
28. F. Pichot, B. A. Gregg, J Phys Chem B 104, 6 (Jan 13, 2000).
29. J. Ferber, R. Stangl, J. Luther, Sol Energ Mat Sol C 53, 29 (May, 1998).
30. M. K. Nazeeruddin et al., J Am Chem Soc 115, 6382 (Jul 14, 1993).
31. F. Nour-Mohammadi, H. T. Nguyen, G. Boschloo, T. Lund, Journal of Photochemistry and Photobiology a-Chemistry 187, 348 (Apr 15, 2007).
32. P. Serp, P. Kalck, R. Feurer, Chem Rev 102, 3085 (Sep, 2002).
33. K. Hara et al., Langmuir 20, 4205 (May 11, 2004).
34. M. K. Nazeeruddin et al., Coordination Chemistry Reviews 248, 1317 (Jul, 2004).
35. A. Hagfeldt, M. Gratzel, Accounts Chem Res 33, 269 (May, 2000).
36. M. K. Nazeeruddin, M. Gratzel, J Photoch Photobio A 145, 79 (Nov 29, 2001).
37. M. K. Nazeeruddin et al., J Am Chem Soc 123, 1613 (Feb 28, 2001).
38. H. G. Agrell, J. Lindgren, A. Hagfeldt, Sol Energy 75, 169 (2003).
39. C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Int J Photoenergy 4, 17 (2002).
40. F. Aiga, T. Tada, J Mol Struct 658, 25 (Sep 30, 2003).
41. S. Cherian, C. C. Wamser, Journal of Physical Chemistry B 104, 3624 (Apr 20, 2000).
42. W. Jentzen, X. Z. Song, J. A. Shelnutt, J Phys Chem B 101, 1684 (Feb 27, 1997).
43. W. Jentzen et al., J Phys Chem A 101, 5789 (Aug 7, 1997).
44. T. Ma, K. Inoue, H. Noma, K. Yao, E. Abe, Journal of Materials Science Letters 21, 1013 (Jul 1, 2002).
45. W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, Coordination Chemistry Reviews 248, 1363 (Jul, 2004).
46. U. Bach et al., Nature 395, 583 (Oct 8, 1998).
47. S. Spiekermann, G. Smestad, J. Kowalik, L. M. Tolbert, M. Gratzel, Synthetic Metals 121, 1603 (Mar 15, 2001).
48. N. Yamanaka et al., J Phys Chem B 111, 4763 (May 10, 2007).
49. J. Hagen et al., Synthetic Met 89, 215 (Sep, 1997).
50. R. Knodler, J. Sopka, F. Harbach, H. W. Grunling, Sol Energ Mat Sol C 30, 277 (Aug, 1993).
51. T. L. Ma, K. Inoue, H. Noma, K. Yao, E. Abe, Journal of Photochemistry and Photobiology a-Chemistry 152, 207 (Sep 20, 2002).
52. A. Kay, M. Gratzel, Solar Energy Materials and Solar Cells 44, 99 (Oct 30, 1996).
53. M. Okuya, K. Nakade, S. Kaneko, Solar Energy Materials and Solar Cells 70, 425 (Jan 1, 2002).
54. Y. X. Li, J. Hagen, W. Schaffrath, P. Otschik, D. Haarer, Solar Energy Materials and Solar Cells 56, 167 (Jan 1, 1999).
55. B. J. Landi, R. P. Raffaelle, S. L. Castro, S. G. Bailey, Progress in Photovoltaics 13, 165 (Mar, 2005).
56. Z. Huang et al., Electrochemistry Communications 9, 596 (Apr, 2007).
57. E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song, Applied Physics Letters 90, (Apr 23, 2007).
58. 林盈助, 博士論文, (2005).
59. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, Sol Energ Mat Sol C 70, 151 (Dec, 2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27000-
dc.description.abstractThe objects of the work are to study the effects of the preparation conditions of the electrodes and the carbon nanotubes on the performance of the dye-sensitized titanium dioxide solar cells. By the analysis of the titanium dioxide and carbon nanotube thin film electrodes, the effects of the electrodes on the interfacial redox reaction were examined. By testing the processing and compositions of the dye-sensitized solar cells, the most efficiency processes were found in this study.
Apply the titanium dioxide photo electrodes on the dye-sensitized solar cells, it need to adsorb a layer of dyes to increase the conductivity of electrons. This research dips the TiO2 electrodes in TCPP solution with 0.2mM DCA in a long time. We are coating ITO counter electrodes with platinum about 50 nm and with silver about 100 nm, respectively.
The open circuit voltage increase because of isolation the titanium dioxide with iodide ions after addition of the ions liquids. Besides, added DCA into the TCPP solution let electrons easily excited to the LUMO level of the titanium dioxide therefore increase both of photo circuits and photo voltages. The counter electrodes with carbon nanotubes are more stable than metal counter electrodes due to the carbon nanotubes had an excellent chemical resistance although the efficiency did not higher than the cell with metal counter electrodes.
About the composition of the solar cell, the best performance solar cell was dips in TCPP solution with 0.2mM DCA, the electrolyte injected with 0.5M TBP . On an incident light intensity of 1.5 mW/cm2, it corresponds to an overall power efficiency of 2.15%.Finally we get a best efficiency about 7.63% with the best processing in silver counter electrode, and 2.34% in CNT counter electrode respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:53:37Z (GMT). No. of bitstreams: 1
ntu-97-R94549032-1.pdf: 2195898 bytes, checksum: 8801e34006c0c395a54a65e1ed1ac25e (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChinese abstract I
English abstract II
Contents IV
Figures VI
Tables VIII
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Type of the solar cell 3
1-2-1 Silicon solar cell 3
1-2-2 Membrane solar cell 4
1-2-3 Non-crystalline silicon solar cell 5
1-2-4 CuInGaSe2 solar cell (CIGS)(4) 6
1-2-5 Dye-sensitized solar cell 7
1-3 Research purpose 9
Chapter 2 The principle and review 11
2-1 Introduction of semiconductor 11
2-2 Principle of dye sensitized solar cell 18
2-3 The efficiency curve of solar cell 21
2-4 Dye 35
2-4-1 Polypyridyl 35
2-4-2 Porphyrin 41
2-5 Electrolyte 45
2-6 Carbon nanotube 47
Chapter 3 Instrument and experiment 51
3-1 Instrument and equipment 51
3-2 Medicines 52
3-3 Preparing titanium dioxide membrane electrode 53
3-4 Preparing the carbon nanotube electrode 54
3-5 Preparing the platinum and silver electrodes 58
3-6 Measure titanium dioxide membrane 59
3-7 Measure the wavelength of the dye 59
3-8 Produce the components of the dye sensitized solar cell 60
3-9 Test the value of resistance of conductive plate 60
3-10 Analysis on surface with SEM 61
3-11 Analysis on surface with AFM 62
3-12 Diffraction analysis of the X-rays 63
3-13 Surface analysis with TEM 65
Chapter 4 Result and discussion 66
4-1 Analysis of titanium dioxide powder 66
4-2 The influence of processing of the titanium dioxide membrane 70
4-3 The influence of dye that add DCA 73
4-4 The influence of the ionic solution adds in the electrolytic liquid 75
4-5 The influence on efficiency of different electrodes 77
4-6 Ultraviolet-visible light spectrum analysis (UV-VIS) 80
4-7 The influence under different light intensities 82
Chapter 5 Conclusion and suggestion 85
5-1 Conclusion 85
5-2 Suggestion 87
Chapter 6 References 88
dc.language.isoen
dc.title探討結構與製程對於染料敏化太陽能電池之研究zh_TW
dc.titleA study on processing and structure of the dye-sensitized solar cellen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝國煌,邱文英
dc.subject.keyword染料敏化,加熱噴霧,紫質衍生物,奈米碳管,zh_TW
dc.subject.keyworddye-sensitized,spray pyrolysis,porphyrin,carbon nanotube,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2008-03-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved