Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26988
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭正勇
dc.contributor.authorSzu-Chin Pengen
dc.contributor.author彭思錦zh_TW
dc.date.accessioned2021-06-12T17:53:22Z-
dc.date.available2013-07-01
dc.date.copyright2008-04-15
dc.date.issued2008
dc.date.submitted2008-03-18
dc.identifier.citation甘偉松. 1978. p.491-498. 臺灣藥用植物誌. 國立中國醫藥研究所.台中.
宋秉欣. 2006. 細本山葡萄(Vitis thunbergii Sieb. et Zucc.)根部化學成分之研究. 中國醫藥大學藥學研究所碩士論文.
吳天鳴、朱延和. 2003. 細菌的抗藥性. 科學發展 364: 64-73.
李民凱. 2005. 繖花龍吐珠對綠膿桿菌之抗菌活性研究. 臺北醫學大學藥學研究所碩士論文.
林煥哲. 1997. 小本山葡萄及羅氏鹽膚木蟲癭成份之研究. 臺北醫學大學藥學研究所碩士論文.
林義恭、劉新裕、賴瑞聲、胡敏夫、高瑞隆、徐原田. 2002. 臺灣原生細本山葡萄的選種與栽培(Ⅰ)細本山葡萄的外表型變異.中華農業研究 51(2): 24-31.
林嘉興、張林仁. 1994. 不同棚架對葡萄生長及作業勞力之影響. 台中區農業改良場研究彙報 42: 53-61.
柯勇. 2002. 植物生理學. 藝軒圖書出版社. 台北.
康有德. 2002. 世界果樹種類—葡萄科的果樹. 科學農業 51(1,2): 43-49.
許芳華. 2000. 黃芩抑菌性質及抑菌成分分離純化之研究. 國立中興大學食品科學所碩士論文.
莊美淑. 2004. 側柏葉對抗藥性葡萄球菌之抗菌活性研究. 臺北醫學大學生藥學研究所碩士論文.
陳立峰、陳莉萍、徐琳本、王曉洪、胡建中. 2003. 顯齒蛇葡萄總黃酮對口腔常見致病菌抑菌作用的研究. 中南藥學 1(2): 83-85.
陳泓云. 2001. 小本山葡萄萃取之resveratrol聚合物在兔子血小板的作用機轉.陽明大學藥理學研究所碩士論文.
張銘文. 1998. 苗栗地區保健植物栽培之望. 苗栗區農業專訊 87(6): 10-12.
張致盛、林嘉興、張林仁. 1996. 不同棚架對巨峰葡萄生長與光合成速率之影響. 台中區農業改良場研究彙報 53:41-49.
鄭正勇. 1982. 葡萄品種與栽培管理. 農友 33(7): 21-22.
鄭正勇. 1980. 坡地加工用葡萄栽培法. 臺灣農村 16(10): 24-32.
黃翠萍. 2000. 土產蔬菜之抗菌活性調查及苦瓜抗菌活性成分之研究. 國立臺灣大學農業化學研究所碩士論文.
黃惠曼. 2002. 五倍子對Methicillin與Penicillin抗藥性金黃葡萄球菌與表皮葡萄球菌之抗菌活性研究. 臺北醫學大學生藥學研究所碩士論文.
楊松峻. 2006. 細本山葡萄(Vitis thunbergii Sieb. et Zucc.)莖部化學成分之研究. 中國醫藥大學藥學研究所碩士論文.
蔡佳宏、王子慶、吳明昌. 2001. 細葉山葡萄及香茹草抗至突變性之研究. 科學農業 49: 186-191.
蔡國良.2003. 台灣細本山葡萄之遺傳多樣性. 中興大學農藝學研究所碩士論文.
臺灣植物編輯協會. 2003. 葡萄科. p.696-710. 刊於:臺灣植物誌. 臺灣植物編輯協會. 台北.
譚思濰. 2003. 廣東山葡萄之藥理學研究–對鎮痛、抗炎、乙醯轉移酵素及人類 血癌細胞株方面之研究. 中國醫藥大學藥學研究所碩士論文.
Bavaresco, L.; Pezzutto, S.; Ragga, A.; Ferrari, F.; and Trevisan M. 2001. Effect of nitrogen supply on trans-resveratrol concentration in berries of Vitis vinifera L. cv. Cabernet Sauvignon. Vitis 40(4): 229-230.
Baydar, N.G.; Ozkan, G.; and Sagdic, O. 2004. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control 15: 335-339.
Brown, M.N.; Moore, J. N.; P. Fenn, J. N.; and McNew, W. 1999. Evalution of grape gerplasm for downy mildew resistance. Fruit var. J. 53(1):22-29.
Bonilla,P. E.; Akch, C. C.; Sellappan, S.; and Krewers, G. 2003. Phenolic content and antioxidant capacity of muscadine grapes. J. Agric. Food Chem.51:5497-5503.
Cantos, E.; Espin, J.C.; and Tomas-Barberan, F.A. 2002. Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. J. Agric. Food Chem. 50: 6322-6329.
Castillo-Munoz N.; Gomez-Alonso S.; Garcia-Romero E.; and Hermosin-gutierrez, I. 2007. Flavonol profiles of Vitis vinifera red grapes and their single cultivar wines. J. Agric. Food Chem. 55: 992-1002.
Chidambara-Murthy, K.N.; Singh, R.P.; and Jayaprakasha, G.K. 2002. Antioxidant activities of grape (Vitis vinifera) pomace extracts. J. Agric. Food Chem. 50: 5909-5914.
Christiane, A.K.; Martin, A.K.; Jiri, K.; Gerhard, Z.; Markus, R.; and Erhard, E.P. 2001. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiology 127: 863-875.
Dai, J.R.; Hallock, T.F.; Cardellina, J.H.; and Boyd, M.R. 1998. HIV-inhibitory and cytotoxic oligostilbenes from the leaves of Hopea malibato. J. Nat. Prod. 61: 351-353.
Daniel, M. 1995. Stilbene phytoalexins and disease resistance in Vitis. p. 287-316. In: Handbook of phytoalexin metabolism and action. Marcel Dekker, inc., New York.
Ector, B.J.; Magee, J.B.; Hegwood, C.P.; and Coign, M.J. 1996. Resveratrol concentration in muscadine berries, juice, pomace, purees, seeds, and wines. Am. J. Enol. Vitic. 47(1): 57-62.
Falchi, M.; Bertell, A.; Scalzo, R. L.; Morassut, M.; Morelli, R.; Das, S.; Cui, J.; and Das, D. K. 2006. Comparison of cardioprotective abilities between the flesh and skin of grapes. J. Agric. Food Chem. 54: 6613-6622.
FAOSTAT-FAO Statistical Database, hattp://www.fao.org.
Frankel, E.N.; Waterhouse, A.L.; and Teissedre, P.L. 1995. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 43: 890-894.
Fregoni, C.; Bavaresco, L.; Cantu, E.; Petegolli, D.; Vizzon, D.; Chiusa, G.; and Trevisan, M. 2000. Advances in understanding stilbene (resveratrol, є-viniferin) – grapevine relationships. Acta Hort. 526: 467-477.
Gibbons, S. 2004. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 21: 263-277.
Hertog, M.G.L.; Hollman, P.C.H.; and Putte, B. 1993. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J. Agric. Food Chem. 41: 1242-1246.
Huang, K.S.; Lin, M.; and Cheng, G.F. 2001. Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some oligostilbenes. Phytochemistry 58: 357-362.
Huang, Y.L.; Loke, S.H.; Hsu, C.C.; and Chiou, W.F. 2008. (+)-Vitisin A Inhibits Influenza A Virus-Induced RANTES Production in A549 Alveolar Epithelial Cells through Interference with Akt and STAT1 Phosphorylation. Planta. Med. 74:156-162.
Huang, Y.L.; Tsai, W.J.; Shen, C.C.; and Chen C.C. 2005. Resveratrol derivatives from the roots of Vitis thunbergii. J. Nat. Prod. 68: 217-220.
Huang, L.M.; Su, M.J.; Chu, W.K.; Chiao, C.W.; Chan, W.F.; and Chen. J.K. 2002. The protective effect of resveratrol on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy. British J. Pharm.135: 1627-1633.
Jang, M.; Cai, L.; Udeana, O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H. H.S.; Famworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; and Pezzuto, J.M. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220.
Jayaprakasha G.K.; Selvi, T.; and Sakaria K.K. 2003. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 36: 117-122.
Jeandet, P.; Douillet-Breuil, A.C.; Bessis, R.; Debord, S.; Sbaghi, M.; and Adrian, M. 2002. Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50: 2731-2741.
Kammerer, D.; Claus A.; Carle R.; and Schieber, A. 2004. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 52: 4360-4267.
Kris-Etherton, P.M.; Hecker, K.D.; Bonanome A.; Coval S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; and Etherton, T.D. 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine 113(9B): 71-88.
Lamikanra, O.; Grimm, C.C.; Rodin, J.B.; and Inyang, I.D. 1996. Hydroxylated stilbenes in selected American wines. J. Agric. Food Chem. 44: 1111-1115.
Lana, E.J.L.; Carazza, F.; and Takahashi, J.A. 2006. Antibacterial evaluation of 1,4-benzoquinone derivatives. J. Agric. Food Chem. 54: 2053-2056.
LaPlante, K.L. and Rybak, M.J. 2004. Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro phatmacodynamic model. Antimicrob. Agents Chemother. 48: 4665-4672.
Larronde, F.; Gaudillere, J.P.; Krisa, S.; Decendit, A.; Deffieux, G.; and Merillon, J.M. 2003. Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants. Am. J. Enol. Vitic. 54(1): 63-66.
Lee, E.O.; Lee, H.J.; Hwang, H.S.; Ahn, K.S.; Chae, C.; Kang, K.S.; Lu, J.; and Kim, S.H. 2006. Potent inhibition of Lewis lung cancer growth by Heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities. Carcinogenesis 27: 2059-2069.
Lee, E.O., Kwon, B.M., Song, G.Y., Chae, C.H., Kim, H.M., Shin, I.S., Ahn, K.S. and Kim, S.H. 2004. Heyneanol A induces apotosis via cytochrome c release and caspase activation in human leukemic U937 cells. Life Sci. 74, 2313-2326.
Li, W.W.; Ding, L.S.; Li, B.G.; and Chen, Y.Z. 1996. Oligostilbenes from Vitis Heyneana. Phytochemistry 42: 1163-1165.
Magee, J.B. and Smith, B.J. 2002. Resveratrol content of muscadine berries is affected by disease control spray program. Hortscience 37(2): 358-361.
Mattivi, F.; Reniero, F.; and Korhammer, F. 1995. Isolation, characterization and evaluation in red wine vinification of resveratrol monomers. J. Agric. Food Chem. 43: 1820-1823.
Meetens-Talcott S.U. and Percival S.S. 2005. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cell. Cancer Lett. 218: 141-151.
Monagas, M.; Hernandez-Ledesma, B.; Gomez-Cordoves, C.; and Bartolome, B. 2005. Commercial dietary ingredients from Vitis vinifera L. leaves and grape skins: antioxidant and chemical characterization. J. Agric. Food Chem. 54: 319-327.
Nitta, T.; Arai, T.; Takamatsu, H.; Inatomi, Y.; Murata, H.; Iinuma, M.; Tanaka, T.; Ito, T.; Asai, F.; Ibrahim, I.; Nakanishi, T.; and Watabe, K. 2002. Antibacterial activity of extracts prepared from tropical and subtropical plants on methicillin-resistant Staphycoccus aureus. J. Heal. Sci. 48: 273-276.
Ohyama, M.; Tanaka, T.; Ito, T.; Iinuma, M.; Bastow, K. F.; and Lee, K. H. 1999. Cytotoxicity of naturally occurring resveratrol oligomers and their acetate derivates. Bioorg. Med. Chem. Let. 9: 3057-3060.
Oshima, Y.; Kamijou, A.; Ohizumi, Y.; Niwa, M; Ito, J.; Hisamichi, K.; and Takeshita, M. 1995. Novel oligostilbenes from Vitis coignetiae. Tetrahedron 51:11979-11986.
Parry, J.; Su, L.; Moore, J.; Cheng, Z.; Luther, M.; Rao, J.-N.; Wang, J.-Y.; and Yu, L.-L. 2006. Chemical compositions, antioxidant capacities, and antiproliferative activities of selected fruit seed flours. J. Agric. Food Chem. 54: 3773-3778.
Peterson, J. and Dwyer, J. 1998. Flavonoids: dietary occurrence and biochemical activity. Nutr. Res. 18:1995-2018.
Price, S.F., Breen, P.J.; Valladao, M.; and Watson, B.T. 1995. Cluster sun exposure and quercetin in pinot noir grapes and wine. Am. J. Enol. Vitic. 46(2): 187-194.
Renaud, S. and De Lorgeril, M. 1992. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339: 153-1526.
Russell, A.D. 2002. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J. Appl. Microbiol. 92: 121-135.
Sabir, A.; Kara, Z.; Kucukbasmact, F.; and Yucel, N.K. 2004. Effects of different rooting media and auxin treatments on the rooting ability of Rupestris du Lot (Vitis rupestris) rootstock cuttings. J. Food Agr. Environ. 2: 307-309.
Sakagami, Y.; Sawabe, A.; Komemushi, S.; All, Z.; Tanaka, T.; Iliya, I.; and Iinuma, M. 2007. Antibacterial activity of stilbene oligomers against vancomycin-resistant Enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) and their synergism with antibiotics. Biocontrol Sci. 12: 7-14.
Shoko, T.; Soichi, T.; Megumi, M.M.; Eri, F.; Jun, K.; and Michiko, W. 1999. Isolation and identification of an antibacterial compound from grape and its application to foods. Nippon Nogeikagaku Kaishi 73: 125-128.
Soleas, G.J.; Diamandis, E.P.; and Goldberg, D.M. 1997. Resveratrol: a molecule whose time has come and gone. Clinical Biochem. 30(2): 91-113.
ST-Leger, A.S.; Cochrane, A.L.; and Moore, F. 1979. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1: 1017-1020.
Taiz, L. and Zeiger, E. 2002. Secondary Metabolites and Plant defense. p. 283-306. In: Plant Physiology. Sinauer Associates, Inc., Sunderland, MA.
Tussedre, P.L.; Frankel, E.N.; Waterhouse, A.L.; Peleg, H.; and German, J.B. 1996. Inhibition of in vitro human LDL oxidation by phenolic antioxidants form grapes and wines. J. Sci. Food Agric. 70: 55-61.
Yilmaz, Y. and Toledo, R.T. 2004. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 52: 255-260.
Zgoda-Plos, J.R.; Freyer, A.J.; Killmer, L.B.; and Porter, J.R. 2002. Antimicrobial resveratrol tetramers from the stem bark of Vatica oblongifolia ssp. oblongifolia. J. Nat. Prod. 65: 1554-1559.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26988-
dc.description.abstract本研究之目的為分離及鑑定野生葡萄中所含之抑菌物質,並探討其生產與應用。首先以濾紙片擴散法(disc diffusion method)對細本山葡萄(Vitis thunbergii Sieb. et Zucc.)、漢氏山葡萄(Ampelopsis brevipedunculata var. hancei)、厚皮葡萄(V. rotundifolia var. jumbo)和基隆葡萄(V. kelungensis)等野生葡萄之葉、枝及根萃取物進行抑菌能力篩選試驗,結果顯示葡萄屬(Vitis)葡萄之根萃取物對於枯草桿菌(Bacillus subtilis)、金黃色葡萄球菌(Staphylococcus aureus)和抗藥性金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)等格蘭氏陽性菌(Gram-positive bacteria)具有抑制效果,最小抑菌濃度(minimum inhibitory concentration, MIC)為64-256 μg/mL。試驗進一步則將抑菌能力最佳之小葉葡萄(Vitis thunbergii var. taiwaniana)根萃取物中之主要活性成分以製備型薄層層析(preparative thin layer chromatography, PTLC)及再結晶法(recrystallization)分離純化,並將純化所得之化合物進行紫外光譜(ultraviolet spectroscopy)、質譜(mass spectroscopy)及核磁共振(nuclear magnetic resonance)分析;鑑定發現其主要活性成分為Heyneanol A。進一步試驗以液體微量稀釋法(liquid microdilution method)分析純化所得之Heyneanol A之抑菌能力,結果顯示Heyneanol A對於腸球菌(Enterococcus faecium)、枯草桿菌、金黃色葡萄球菌和抗藥性金黃色葡萄球菌具有抑制效果,最小抑菌濃度為2 μg/mL。此外其對於表皮葡萄球菌(Staphylococcus epidermidis)、無乳鏈球菌(Streptococcus agalactiae)、釀膿鏈球菌(Streptococcus pyogenes)和馬鏈球菌(Streptococcus equinus)亦具抑制效果,最小抑菌濃度為4-8 μg/mL。本研究第二部份再以高效液相層析(high performance liquid chromatoghraphy, HPLC)法分析葡萄屬六種葡萄之葉、枝及根萃取物中之Heyneanol A之含量,結果僅於根萃取物中檢出含有Heyneanol A;在試驗葡萄種類之乾燥根中,Heyneanol A含量以細本山葡萄含量的37 mg/g為最高,其次為基隆葡萄的25 mg/g、巨峰葡萄(V. vinifera X V. labrusca cv. Kyoho)的16 mg/g、5C葡萄(V. berlandieri X V. riparia cv. 5C)的14 mg/g及厚皮葡萄的5 mg/g,此結果顯示葡萄屬葡萄根中富含抑菌活性成分Heyneanol A,可作為抑菌植物材料之應用。有鑑於臺灣小葉葡萄以往栽培系統多採水平棚架,普遍存在根採收操作不便利之問題,本研究試驗以天溝系統(trough system)對小葉葡萄之植株進行整根處理,並探討處理年數對其植株根系生長分佈及抑菌活性成分Heyneanol A含量之影響,結果為整根處理植株較對照植株之主根長而生長集中、離軸根數顯著較少且採收操作時間顯著較短;整根處理植株乾燥根之Heyneanol A含量為39.9 mg/g,則與對照植株(36.5 mg/g)無顯著差異,此結果顯示整根處理有利於以收穫根為目的之葡萄栽培。zh_TW
dc.description.abstractThe aim of this study was to determine the antimicrobial compounds against pathogenic bacteria from grapevines and to product these active compounds from Vitis plants. We first analyzed the antimicrobial activity of leaf, vine, and root extracts from five wild grape species such as taiwan wild grape (Vitis thunbergii Sieb. et Zucc.), hancei wild grape (Ampelopsis brevipedunculata var. hancei), muscadine grape (V. rotundifolia var. jumbo), and kelung wild grape (V. kelungensis) using the disc diffusion method. The result showed that root extracts of Vitis species all inhibited Gram-positive bacteria such as Bacillus subtilis, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The root extracts of taiwan wild grape (Vitis thunbergii var. taiwaniana), which showed markedly antimicrobial activities (minimum inhibitory concentration, MIC value of 64 μg/mL toward S. aureus), and contained three possible active compounds were further collected using preparative thin layer chromatography with recrystallization methods. One of these three purified compounds was confirmed as Heyneanol A using ultraviolet, mass spectroscopy and nuclear magnetic resonance analyses. Heyneanol A showed an MIC value of 2 μg/mL toward MRSA, S. aureus, Enterococcus faecium, and B. subtilis and that of 4 to 8 μg/mL for S. epidermidis, Streptococcus agalactiae, Str. pyogenes, and Str. equines. Moreover, the contents of Heyneanol A in root extracts were determined as 37 mg/g dry weight (DW) of taiwan wild grape, 25 mg/g DW of kelung wild grape, 16 mg/g DW of kyoho grape (V. vinifera X V. labrusca cv. Kyoho), 14 mg/g DW of 5C grape (V. berlandieri X V. riparia cv. 5C), and 5 mg/g DW of muscadine grape using high-performance liquid chromatography. Furthermore, to product roots of grapevines in a convenient way, we used the trough system to cultivate taiwan wild grape and analyzed the effects of root training on the growth, distribution, and Heyneanol A content of roots of taiwan wild grape. After three years of training, the roots of treated grapevines were significantly longer than those roots of untreated vines and the distribution of treated roots was more concentrated, which made the harvest work much easier and time-saving. In addition, the content of Heyneanol A within the roots of treated vines was 39.9 mg/g DW, and showed no significant difference with 36.5 mg/g DW of the content of untreated vines. These results suggest that the trough system could be used for root production of taiwan wild grape.en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:53:22Z (GMT). No. of bitstreams: 1
ntu-97-F91628102-1.pdf: 4853775 bytes, checksum: c80a994d71a1edcdb135d0590ecb9e57 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 1
英文摘要 3
第一章 緒論 5
第二章 研究背景 7
2.1 小葉葡萄之相關研究 7
2.1.1 分類 7
2.1.2 栽培 12
2.1.3生理活性成分 13
2.2 抗生素之相關研究 21
2.2.1 發展歷史 21
2.2.2 抑菌機制 23
2.2.3 抗藥性菌株 25
2.2.4 葡萄之抑菌研究 27
第三章 野生葡萄萃取物抑菌活性之研究 29
3.1 摘要 29
3.2 前言 30
3.3 材料與方法 31
3.4 結果 34
3.5 討論 36
第四章 小葉葡萄抑菌成分之分離及鑑定 45
4.1 摘要 45
4.2 前言 46
4.3 材料與方法 46
4.4 結果 50
4.5 討論 52
第五章 Heyneanol A抑菌活性之研究 75
5.1 摘要 75
5.2 前言 76
5.3 材料與方法 76
5.4 結果 78
5.5 討論 79
第六章 品種及收穫部位對葡萄植株Heyneanol A含量之影響 83
6.1 摘要 83
6.2 前言 84
6.3 材料與方法 84
6.4 結果 86
6.5 討論 87
第七章 整根處理對於小葉葡萄根系生長分佈及Heyneanol A含量之影響 101
7.1 摘要 101
7.2 前言 102
7.3 材料與方法 102
7.4 結果 104
7.5 討論 105
第八章 結論 113
第九章 參考文獻 115
dc.language.isozh-TW
dc.title小葉葡萄抑菌成分Heyneanol A分離、鑑定及生產之研究zh_TW
dc.titleStudies on Isolation, Identification, and Production of Antimicrobial Compound Heyneanol A from Taiwan Wild Grape (Vitis thunbergii var. taiwaniana)en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee蘇慶華,吳明哲,陳右人,許輔
dc.subject.keyword細本山葡萄,厚皮葡萄,基隆葡萄,抑菌能力,抗藥性金黃色葡萄球菌,葡萄根,天溝系統,Heyneanol A,zh_TW
dc.subject.keywordVitis thunbergii,Vitis rotundifolia,Vitis kelungensis,antimicrobial activity,methicillin-resistant Staphylococcus aureus (MRSA),grape root,trough system,Heyneanol A,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2008-03-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved