Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26962
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金傳春(Chwan-Chuen King)
dc.contributor.authorShiou-Pin Linen
dc.contributor.author林秀品zh_TW
dc.date.accessioned2021-06-12T17:52:46Z-
dc.date.available2021-09-13
dc.date.copyright2011-10-03
dc.date.issued2011
dc.date.submitted2011-09-13
dc.identifier.citation1. Chen W-J, Chen S-L, Chien L-J, Chen C-C, King C-C, et al. (1996) Silent Transmission of the Dengue Virus in Southern Taiwan. The American Journal of Tropical Medicine and Hygiene 55: 12-16.
2. Chadee DD, Williams FLR, Kitron UD (2005) Impact of vector control on a dengue fever outbreak in Trinidad, West Indies, in 1998. Tropical Medicine & International Health 10: 748-754.
3. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, et al. Dengue: a continuing global threat. Nat Rev Micro.
4. Sabin AB (1952) Research on Dengue during World War II. The American Journal of Tropical Medicine and Hygiene 1: 30-50.
5. Day-Yu Chao T-HL, Kao-Pin Hwang, Jyh-Hsiung Huang, Ching-Chuan Liu, and Chwan-Chuen King (2004) 1998 Dengue Hemorrhagic Fever Epidemic in Taiwan. Emerg Infect Dis 10.
6. Gubler DJ (1989) Aedes aegypti and Aedes aegypti-Borne Disease Control in the 1990s: Top Down or Bottom Up. The American Journal of Tropical Medicine and Hygiene 40: 571-578.
7. Figueiredo MAA, Rodrigues LC, Barreto ML, Lima JWO, Costa MCN, et al. (2010) Allergies and Diabetes as Risk Factors for Dengue Hemorrhagic Fever: Results of a Case Control Study. PLoS Negl Trop Dis 4: e699.
8. Istúriz RE, Gubler DJ, Castillo JBd (2000) DENGUE AND DENGUE HEMORRHAGIC FEVER IN LATIN AMERICA AND THE CARIBBEAN. Infectious disease clinics of North America 14: 121-140.
9. Monath TP (1994) Dengue: the risk to developed and developing countries. Proceedings of the National Academy of Sciences 91: 2395-2400.
10. Farrar J, Focks D, Gubler D, Barrera R, Guzman MG, et al. (2007) Editorial: Towards a global dengue research agenda. Tropical Medicine & International Health 12: 695-699.
11. Gubler DJ TD (1993) Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect Agents Dis 2.
12. Gubler DJ CG (1995) Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1: 55-57.
13. Morens DM (1994) Antibody-Dependent Enhancement of Infection and the Pathogenesis of Viral Disease. Clinical Infectious Diseases 19: 500-512.
14. Fransisco P. Pinheiroa SJC (1997) Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. World Health Stat Q 50: 161-169.
15. Kuno G (2007) Research on dengue and dengue-like illness in East Asia and the Western Pacific during the First Half of the 20th century. Reviews in Medical Virology 17: 327-341.
16. Setiati T, Mairuhu A, Koraka P, Supriatna M, Mac Gillavry M, et al. (2007) Dengue disease severity in Indonesian children: an evaluation of the World Health Organization classification system. BMC Infectious Diseases 7: 22.
17. Wilder-Smith A, Lover A, Kittayapong P, Burnham G (2011) Hypothesis: Impregnated school uniforms reduce the incidence of dengue infections in school children. Medical hypotheses 76: 861-862.
18. Wichmann O, Yoon I-K, Vong S, Limkittikul K, Gibbons RV, et al. (2011) Dengue in Thailand and Cambodia: An Assessment of the Degree of Underrecognized Disease Burden Based on Reported Cases. PLoS Negl Trop Dis 5: e996.
19. Nalaka Kanakaratne WMPBW, William B. Messer, Hasitha A. Tissera, Aruna Shahani, Nihal Abeysinghe, Aravinda M. de Silva, and Maya Gunasekera (2009) Severe Dengue Epidemics in Sri Lanka, 2003–2006. Emerging Infectious Disease 15: 192-199.
20. Alexander N BA, Coelho IC, Dimaano E, Hien TT, Hung NT, Jänisch T, Kroeger A, Lum LC, Martinez E, Siqueira JB, Thuy TT, Villalobos I, Villegas E, Wills B; on behalf of the European Union, World Health Organization (WHO-TDR) supported DENCO Study Group. (2011) Multicentre prospective study on dengue classification in four South-east Asian and three Latin American countries. Trop Med Int Health.
21. Ballenger-Browning KK, Elder JP (2009) Multi-modal Aedes aegypti mosquito reduction interventions and dengue fever prevention. Tropical Medicine & International Health 14: 1542-1551.
22. dos Reis IC, Honório NA, Codeço CT, Magalhães MdAFM, Lourenço-de-Oliveira R, et al. (2010) Relevance of differentiating between residential and non-residential premises for surveillance and control of Aedes aegypti in Rio de Janeiro, Brazil. Acta Tropica 114: 37-43.
23. Jensenius M, Berild D, Ormaasen V, Mæhlen J, Lindegren G, et al. (2007) Fatal subarachnoidal haemorrhage in a Norwegian traveller with dengue virus infection. Scandinavian Journal of Infectious Diseases 39: 272-274.
24. Ko YC CJ, Chang IC (1989) Attack rate of dengue-like illness among teachers in Kaohsiung City, 1988. Gaoxiong Yi Xue Ke Xue Za Zhi 5: 129-131.
25. Wang C-C, Lee I-K, Su M-C, Lin H-I, Huang Y-C, et al. (2009) Differences in clinical and laboratory characteristics and disease severity between children and adults with dengue virus infection in Taiwan, 2002. Transactions of the Royal Society of Tropical Medicine and Hygiene 103: 871-877.
26. Lee I-K, Liu J-W, Yang KD (2008) Clinical and Laboratory Characteristics and Risk Factors for Fatality in Elderly Patients with Dengue Hemorrhagic Fever. The American Journal of Tropical Medicine and Hygiene 79: 149-153.
27. Kan C-C, Lee P-F, Wen T-H, Chao D-Y, Wu M-H, et al. (2008) Two Clustering Diffusion Patterns Identified from the 2001–2003 Dengue Epidemic, Kaohsiung, Taiwan. The American Journal of Tropical Medicine and Hygiene 79: 344-352.
28. Chen S-C, Liao C-M, Chio C-P, Chou H-H, You S-H, et al. (2010) Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Science of The Total Environment 408: 4069-4075.
29. Wu P-C, Lay J-G, Guo H-R, Lin C-Y, Lung S-C, et al. (2009) Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Science of The Total Environment 407: 2224-2233.
30. Rudnick A (1978) Ecology of dengue virus. Asian journal of infectious diseases 2: 156-160.
31. Gubler DJ (1998) Dengue and Dengue Hemorrhagic Fever. Clinical Microbiology Review 11: 480-496.
32. Jansen CC, Beebe NW (2010) The dengue vector Aedes aegypti: what comes next. Microbes and Infection 12: 272-279.
33. LUN-HSIEN CHANG E-LH, HWA-JEN TENG, , HO AC-M (2007) Differential Survival of Aedes aegypti and Aedes albopictus (Diptera:Culicidae) Larvae Exposed to Low Temperatures in Taiwan. Journal of Medical Entomology 44: 205-210.
34. Tsuda YT, Masahiro (2001) Survival and Development of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Larvae Under a Seasonally Changing Environment in Nagasaki, Japan. Environmental Entomology 30: 855-860.
35. Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med.
36. Christophe Paupy BO, Basile Kamgang,Sara Moutailler,Dominique Rousset,Maurice Demanou,Jean-Pierre Herve´ ,Eric Leroy,Fre´ de´ ric Simard (2010) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector-Borne and Zoonotic Diseases 10: 259-266.
37. Foote RH (1961) Aedes Aegypti (L.), the Yellow Fever Mosquito. Its life history, bionomics, and structure. Sir S. Rickard Christophers. Cambridge University Press, New York, 1960. xii + 739 pp. Illus. $14.50. Science 133: 1473-1474.
38. VAZEILLE M, ROSEN L, MOUSSON L, FAILLOUX A-B (2003) LOW ORAL RECEPTIVITY FOR DENGUE TYPE 2 VIRUSES OF AEDES ALBOPICTUS FROM SOUTHEAST ASIA COMPARED WITH THAT OF AEDES AEGYPTI. The American Journal of Tropical Medicine and Hygiene 68: 203-208.
39. WW. M (1956) Aëdes aegypti in Malaya. I. Distribution and dispersal. Ann Trop Med Parasitol 50: 385-398.
40. Gilotra SK RL, Bhattacharya NC. (1967) Observations on possible competitive displacement between populations of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Calcutta. Bull World Health Organ 37: 437-446.
41. Chan KL HB, Chan YC. (1971) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 2. Larval habitats. Bull World Health Organ 44: 629-633.
42. Ho BC CY, Chan KL. (1973) Field and laboratory observations on landing and biting periodicities of Aedes albopictus (Skuse). Southeast Asian J Trop Med Public Health 4: 238-244.
43. Chan YC CK, Ho BC. (1971) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 1. Distribution and density. Bull World Health Organ 44: 617-627.
44. Niebylski ML SH, Nasci RS, Craig GB Jr. (1994) Blood hosts of Aedes albopictus in the United States. J Am Mosq Control Assoc 10.
45. Platt KB, Linthicum KJ, Myint KSA, Innis BL, Lerdthusnee K, et al. (1997) Impact of dengue virus infection on feeding behavior of Aedes aegypti. AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE 57: 119-125.
46. Ponlawat A, Harrington LC (2005) Blood Feeding Patterns of Aedes aegypti and Aedes albopictus in Thailand. Journal of Medical Entomology 42: 844-849.
47. Laura Valerio FM, Gioia Bongiorno, Luca Facchinelli, Marco Pombi, Beniamino Caputo, Michele Maroli and Alessandra della Torre. (2010) Host-Feeding Patterns of Aedes albopictus (Diptera: Culicidae) in Urban and Rural Contexts within Rome Province, Italy. Vector-Borne and Zoonotic Diseases 10: 291-294.
48. Richards SL PL, Unnasch TR, Hassan HK, Apperson CS. (2006) Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. Journal of Medical Entomology 43: 543-551.
49. Helene Delatte AD, Anthony Bouétard, Séverine Bord, Geoffrey Gimonneau, Gwenaël Vourc'h and Didier Fontenille. (2010) Blood-Feeding Behavior of Aedes albopictus, a Vector of Chikungunya on La Réunion. Vector-Borne and Zoonotic Diseases 10: 249-258.
50. Halstead SB (2008) Dengue Virus–Mosquito Interactions. Annual Review of Entomology 53: 273-291.
51. Van Benthem BH VS, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Lambin EF, Somboon P. (2005) Spatial patterns of and risk factors for seropositivity for dengue infection. American Journal of Tropical Medicine and Hygiene 72: 201-208.
52. Teixeira MdG, Barreto ML, Costa MdCN, Ferreira LDA, Vasconcelos PFC, et al. (2002) Dynamics of dengue virus circulation: a silent epidemic in a complex urban area. Tropical Medicine & International Health 7: 757-762.
53. Whitehead SS, Blaney JE, Durbin AP, Murphy BR (2007) Prospects for a dengue virus vaccine. Nat Rev Micro 5: 518-528.
54. Regis L, Monteiro AM, Melo-Santos MAVd, Silveira Jr JC, Furtado AF, et al. (2008) Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system. Memórias do Instituto Oswaldo Cruz 103: 50-59.
55. Ríos-Velásquez CM, Codeço CT, Honório NA, Sabroza PS, Moresco M, et al. (2007) Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil. Memórias do Instituto Oswaldo Cruz 102: 617-623.
56. Braga C, Luna CF, Martelli CM, Souza WVd, Cordeiro MT, et al. (2010) Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Tropica 113: 234-240.
57. Honório NA, Nogueira RMR, Codeço CT, Carvalho MS, Cruz OG, et al. (2009) Spatial Evaluation and Modeling of Dengue Seroprevalence and Vector Density in Rio de Janeiro, Brazil. PLoS Negl Trop Dis 3: e545.
58. Aldstadt J, Koenraadt CJM, Fansiri T, Kijchalao U, Richardson J, et al. (2011) Ecological Modeling of <italic>Aedes aegypti</italic> (L.) Pupal Production in Rural Kamphaeng Phet, Thailand. PLoS Negl Trop Dis 5: e940.
59. Tun-Lin W, Kay BH, Barnes A (1995) Understanding Productivity, A Key to Aedes aegypti Surveillance. The American Journal of Tropical Medicine and Hygiene 53: 595-601.
60. Maciel-de-Freitas R, Louren&ccedil;o-de-Oliveira R (2011) Does targeting key-containers effectively reduce Aedes aegypti population density?
Le ciblage des conteneurs cl&eacute;s r&eacute;duit-il efficacement la densit&eacute; de la population d’Aedes aegypti? Tropical Medicine & International Health 16: 965-973.
61. Russell BM, Muir LE, Weinstein P, Kay BH (1996) Surveillance of the mosquito Aedes aegypti and its biocontrol with the copepod Mesocyclops aspericornis in Australian wells and gold mines. Medical and Veterinary Entomology 10: 155-160.
62. Barrera R AJ, Gonz&aacute;lez-T&eacute;llez S. (1993) Unreliable supply of potable water and elevated Aedes aegypti larval indexes-a causal relationship
Journal of the American Mosquito Control Association 9: 189-195.
63. Maciel-de-Freitas R, Marques WA, Peres RC, Cunha SP, Louren&ccedil;o-de-Oliveira R (2007) Variation in Aedes aegypti(Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons. Mem&oacute;rias do Instituto Oswaldo Cruz 102: 489-496.
64. Lopes J dSM, Borsato AM, de Oliveira VD, Oliveira FJ (1993) Aedes (Stegomyia) aegypti L. and associated culicidae fauna in a urban area of southern Brazil. Rev Saude Publica 27: 326-333.
65. Vezzani D, Vel&aacute;zquez SM, Soto S, Schweigmann NJ (2001) Environmental characteristics of the cemeteries of Buenos Aires City (Argentina) and infestation levels of Aedes aegypti (Diptera: Culicidae). Mem&oacute;rias do Instituto Oswaldo Cruz 96: 467-471.
66. Chiaravalloti-Neto FC (1997) Descric&cedil; &atilde;o da colonizac&cedil; &atilde;o de Aedes aegypti na regi&atilde;o
de S&atilde;o Jos&eacute; do Rio Preto, S&atilde;o Paulo. Rev Soc Bras Med Trop 30.
67. Lagrotta MTF, Silva WdC, Souza-Santos R (2008) Identification of key areas for Aedes aegypti control through geoprocessing in Nova Igua&ccedil;u, Rio de Janeiro State, Brazil. Cadernos de Sa&uacute;de P&uacute;blica 24: 70-80.
68. Tauil PL (2002) Aspectos cr&iacute;ticos do controle do dengue no Brasil. Cadernos de Sa&uacute;de P&uacute;blica 18: 867-871.
69. Edelman R (2007) Dengue Vaccines Approach the Finish Line. Clinical Infectious Diseases 45: S56-S60.
70. Guy B, Almond JW (2008) Towards a dengue vaccine: Progress to date and remaining challenges. Comparative Immunology, Microbiology and Infectious Diseases 31: 239-252.
71. Igarashi A (1997) Impact of dengue virus infection and its control. FEMS Immunology & Medical Microbiology 18: 291-300.
72. Reiter P, Cordellier R, Ouma JO, Cropp CB, Savage HM, et al. (1998) First recorded outbreak of yellow fever in Kenya, 1992-1993. II. Entomologic investigations. The American Journal of Tropical Medicine and Hygiene 59: 650-656.
73. Mouchet J CP (1997) Impact of changes in the environment on vector-transmitted diseases. Sante 7: 263-269.
74. Chan AST, Sherman C, Lozano RC, Fernandez EA, Winch PJ, et al. (1998) Development of an indicator to evaluate the impact, on a community based Aedes aegypti control intervention, of improved cleaning of water storage containers by householders. Annals of Tropical Medicine and Parasitology 92: 317-329.
75. Annis B KS, Atmosoedjono S, Supardi P (1989) Suppression of larval Aedes aegypti populations in household water storage containers in Jakarta, Indonesia, through releases of first-instar Toxorhynchites splendens larvae. J Am Mosq Control Assoc 5.
76. Phuanukoonnon S, Mueller I, Bryan JH (2005) Effectiveness of dengue control practices in household water containers in Northeast Thailand. Tropical Medicine & International Health 10: 755-763.
77. Teng HJ WY, Lin TH (1999) Mosquito fauna in water-holding containers with emphasis on dengue vectors (Diptera: Culicidae) in Chungho, Taipei County, Taiwan. J Med Entomol 36: 468-472.
78. Mu&ntilde;oz-Arnanz J, Jim&eacute;nez B New DDT inputs after 30 years of prohibition in Spain. A case study in agricultural soils from south-western Spain. Environmental Pollution.
79. Yap HH CN, Foo AE, Lee CY (1994) Dengue vector control: present status and future prospects. Gaoxiong Yi Xue Ke Xue Za Zhi: 102-108.
80. Focks DA, Brenner RJ, Hayes J, Daniels E (2000) Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. The American Journal of Tropical Medicine and Hygiene 62: 11-18.
81. Williams NGW, G.B. (1994) Actellic&reg; (pirimiphos-methyl) for the control of Aedes vectors in dengue control programmes. 113-117.
82. Chung YK, Lam-Phua SG, Chua YT, Yatiman R (2001) Evaluation of biological and chemical insecticide mixture against Aedes aegypti larvae and adults by thermal fogging in Singapore. Medical and Veterinary Entomology 15: 321-327.
83. CS L (1970) Ultralow volume applications of concentrated insecticides in medical and veterinary entomology. Annu Rev Entomol 15: 321-342.
84. Itoh T MJ, Keto AJ, Matsushita T (1988) Control of Anopheles mosquitoes by ultra-low volume applications of d-allethrin and d-phenothrin in combination with larvicidings of fenitrothion in Tanzania. J Am Mosq Control Assoc 4: 563-564.
85. Harburguer L, Seccacini E, Licastro S, Zerba E, Masuh H (2011) Droplet size and efficacy of an adulticide–larvicide ultralow-volume formulation on Aedes aegypti using different solvents and spray application methods. Pest Management Science: n/a-n/a.
86. Focks DA, Kloter KO, Carmichael GT (1987) The Impact of Sequential Ultra-Low Volume Ground Aerosol Applications of Malathion on the Population Dynamics of Aedes aegypti (L.). The American Journal of Tropical Medicine and Hygiene 36: 639-647.
87. Eldridge BF WR, Henneberger D (1985) Control of snow pool mosquitoes with Bacillus thuringiensis serotype H-14 in mountain environments in California and Oregon. J Am Mosq Control Assoc 1985: 1.
88. BA F (1995) The future of microbial insecticides as vector control agents. J Am Mosq Control Assoc 11: 260-268.
89. Cavalcanti ESB, Morais SMd, Lima MAA, Santana EWP (2004) Larvicidal Activity of essential oils from Brazilian plants against Aedes aegypti L. Mem&oacute;rias do Instituto Oswaldo Cruz 99: 541-544.
90. Wong J, Stoddard ST, Astete H, Morrison AC, Scott TW (2011) Oviposition Site Selection by the Dengue Vector <italic>Aedes aegypti</italic> and Its Implications for Dengue Control. PLoS Negl Trop Dis 5: e1015.
91. Lima EP PM, de Ara&uacute;jo AP, da Silva EV, da Silva UM, de Oliveira LN, Santana AE, Barbosa CN, de Paiva Neto CC, Goulart MO, Wilding CS, Ayres CF, de Melo Santos MA (2011) Insecticide resistance in Aedes aegypti populations from Cear&aacute;, Brazil. Parasit Vectors 4.
92. Lucia A, Gonzalez Audino P, Seccacini E, Licastro S, Zerba E, et al. (2007) LARVICIDAL EFFECT OF EUCALYPTUS GRANDIS ESSENTIAL OIL AND TURPENTINE AND THEIR MAJOR COMPONENTS ON AEDES AEGYPTI LARVAE. Journal of the American Mosquito Control Association 23: 299-303.
93. Rodr&iacute;guez MM BJ, De Armas Y, Ramos F (2005) Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection. J Am Mosq Control Assoc 21.
94. Ataru Tsuzuki VDT, Motoi Suzuki, Hideki Yanai, Toru Matsubayashi, Lay-Myint Yoshida, Le Huu Tho, Truong Tan Minh, Dang Duc Anh, Paul E. Kilgore, Masahiro Takagi, and Koya Ariyoshi (2010) Can Daytime Use of Bed Nets Not Treated with Insecticide Reduce the Risk of Dengue Hemorrhagic Fever Among Children in Vietnam? AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE 82: 1157-1159.
95. Shuaib F TD, Campbell-Stennett D, Ehiri J, Jolly PE (2010) Knowledge, attitudes and practices regarding dengue infection in Westmoreland, Jamaica. West Indian Med J 59: 139-146.
96. Mansotte F RF, Carlisi R, Caudal J, Pinchon S, Maison D (2010) Operation to promote use of long-lasting insecticidal nets (LLIN) in French Guiana in 2006: design, implementation and results. Med Trop (Mars) 70: 249-254.
97. Jaramillo GI, Robledo PC, Mina NJ, Mu&ntilde;oz JA, Ocampo CB (2011) Comparison of the efficacy of long-lasting insecticidal nets PermaNet&reg; 2.0 and Olyset&reg; against Anopheles albimanus under laboratory conditions. Mem&oacute;rias do Instituto Oswaldo Cruz 106: 606-612.
98. Newton EAC, Reiter P (1992) A Model of the Transmission of Dengue Fever with an Evaluation of the Impact of Ultra-Low Volume (ULV) Insecticide Applications on Dengue Epidemics. The American Journal of Tropical Medicine and Hygiene 47: 709-720.
99. Knudsen AB SR (1992) Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bull World Health Organ 70: 1-6.
100. Ghosh S, Chakaravarthy P, Panch S, Krishnappa P, Tiwari S, et al. (2011) Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India. BMC Public Health 11: 599.
101. De Oliveira Lima JW, De G&oacute;es Cavalcanti LP, Pontes RJS, Heukelbach J (2010) Survival of Betta splendens fish (Regan, 1910) in domestic water containers and its effectiveness in controlling Aedes aegypti larvae (Linnaeus, 1762) in Northeast Brazil. Tropical Medicine & International Health 15: 1525-1532.
102. Paris M, David J-P, Despres L (2011) Fitness costs of resistance to <i>Bti toxins in the dengue vector <i>Aedes aegypti</i>. Ecotoxicology 20: 1184-1194.
103. Federici BA, Park H-W, Bideshi DK, Wirth MC, Johnson JJ (2003) Recombinant bacteria for mosquito control. Journal of Experimental Biology 206: 3877-3885.
104. Tabashnik BE (1994) Evolution of Resistance to Bacillus Thuringiensis. Annual Review of Entomology 39: 47-79.
105. Marianne PUSZTAI PF, Larry GRINGORTEN, Harvey KAPLAN,Timothy LESSARD and Paul R. CAREY (1991) The mechanism of sunlight-mediated inactivation of
Bacillus thuringiensis crystals. Biochem J 273: 43-47.
106. NAM VS, YEN NT, PHONG TV, NINH TU, MAI LQ, et al. (2005) ELIMINATION OF DENGUE BY COMMUNITY PROGRAMS USING MESOCYCLOPS(COPEPODA) AGAINST AEDES AEGYPTI IN CENTRAL VIETNAM. The American Journal of Tropical Medicine and Hygiene 72: 67-73.
107. Kay BH, Tuyet Hanh TT, Le NH, Quy TM, Nam VS, et al. (2010) Sustainability and Cost of a Community-Based Strategy Against Aedes aegypti in Northern and Central Vietnam. The American Journal of Tropical Medicine and Hygiene 82: 822-830.
108. Toledo Romani ME, Vanlerberghe V, Perez D, Lefevre P, Ceballos E, et al. (2007) Achieving sustainability of community-based dengue control in Santiago de Cuba. Social Science & Medicine 64: 976-988.
109. Spearman C (1904) The Proof and Measurement of Association between Two Things. The American Journal of Psychology 15: 72-101.
110. Brown A (1974) World wide surveillance of Aedes aegypti. . Proceedings and Papers Annual Conference of the California Mosquito Control Association 42: 20-25.
111. Brown A (1977) Yellow fever, dengue and dengue haemorrhagic fever. In Howe, GM ed A world geography of human diseases, London, Academic Press: 271-316.
112. Anselin L, Syabri I, Kho Y (2006) GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis 38: 5-22.
113. Anselin L (1995) Local Indicators of Spatial Association—LISA. Geographical Analysis 27: 93-115.
114. Wartenberg D (1985) Multivariate Spatial Correlation: A Method for Exploratory Geographical Analysis. Geographical Analysis 17: 263-283.
115. Teixeira MdG, Costa MdCN, Barreto ML, Barreto FR (2001) Epidemiologia do dengue em Salvador-Bahia,1995-1999. Revista da Sociedade Brasileira de Medicina Tropical 34: 269-274.
116. Dave D. Chadee FLRW, Uriel D. Kitron (2005) Impact of vector control on a dengue fever outbreak in Trinidad, West Indies, in 1998. Tropical Medicine & International Health 10: 748-754.
117. Souza ICAd, Vianna RPdT, Moraes RMd (2007) Modelagem da incid&ecirc;ncia do dengue na Para&iacute;ba, Brasil, por modelos de defasagem distribu&iacute;da. Cadernos de Sa&uacute;de P&uacute;blica 23: 2623-2630.
118. C&acirc;mara FP, Theophilo RLG, Santos GTd, Pereira SRFG, C&acirc;mara DCP, et al. (2007) Estudo retrospectivo (hist&oacute;rico) da dengue no Brasil: caracter&iacute;sticas regionais e din&acirc;micas. Revista da Sociedade Brasileira de Medicina Tropical 40: 192-196.
119. Focks DA CD (1997) Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. American Journal of Tropical Medicine and Hygiene 56: 159-167.
120. Hammon WM, Tigertt WD, Sather GE, Berge TO, Meiklejohn G (1958) Epidemiologic Studies of Concurrent “Virgin” Epidemics of Japanese B Encephalitis and of Mumps on Guam, 1947–1948, with Subsequent Observations Including Dengue, through 1957. The American Journal of Tropical Medicine and Hygiene 7: 441-467.
121. ASHFORD DA, SAVAGE HM, HAJJEH RA, MCREADY J, BARTHOLOMEW DM, et al. (2003) OUTBREAK OF DENGUE FEVER IN PALAU, WESTERN PACIFIC: RISK FACTORS FOR INFECTION. The American Journal of Tropical Medicine and Hygiene 69: 135-140.
122. Savage HM, Fritz CL, Rutstein D, Yolwa A, Vorndam V, et al. (1998) Epidemic of dengue-4 virus in Yap State, Federated States of Micronesia, and implication of Aedes hensilli as an epidemic vector. The American Journal of Tropical Medicine and Hygiene 58: 519-524.
123. Durand MA BM, Ruwey I, Marfel M, Yug L, Ngaden V. (2005) An outbreak of dengue fever in Yap State. Pac Health Dialog 12: 99-102.
124. Girod R, Gaborit P, Marrama L, Etienne M, Ramdini C, et al. (2011) Viewpoint: High susceptibility to Chikungunya virus of Aedes aegypti from the French West Indies and French Guiana
Sensibilit&eacute;&eacute;lev&eacute;e d’Aedes aegypti au virus Chikungunya dans les Antilles et en Guyane fran&ccedil;aise
Alta susceptibilidad de Aedes aegypti al virus Chikungunya en las Indias Francesas Occidentales y la Guyana Francesa. Tropical Medicine & International Health 16: 134-139.
125. Nyamah MA SS, Omar B (2010) Categorization of potential breeding sites of dengue vectors in Johor, Malaysia. Trop Biomed 27: 33-40.
130. Tran Vu Phong ,Vu Sinh Nam (1999) Key breeding Sites of Dengue Vectors in Hanoi, Vietnam,1994-1997. WHO Dengue Bulletin Volume 23, December-1999 http://www.searo.who.int/en/Section10/Section332/Section521_2436.htm
131. Focks D, Alexander N (2006) Multicountry Study of Aedes aegypti Pupal Productivity Survey Methodology: Findings and Recommendations. Geneva: World Health Organization, WHO/TDR, 48.
132. Teixeira MG, Barreto ML, Costa MCN, Ferreira LDA, Vasconcelos PFC (2002) Avalia&ccedil;&atilde;o de impacto de a&ccedil;&otilde;es de combate ao Aedes aegypti na cidade de Salvador, Bahia. Rev Bras Epidemiol 5: 108-115.
133. WHO (2003) Dengue and dengue hemorrhagic fever. In: MKKindhauser, ed.
Communicable Diseases (2002): Global Defense against the Infectious Disease
Threat WHO/CDS/2003.15. Geneva. pp 140–143.
134. Center for Disease Control, R.O.C (Tw-CDC):
http://www.cdc.gov.tw/public/data/1389324671.pdf
135. Pinheiro FP, Corber SJ: Global situation of de- ngue and dengue hemorrhagic
fever and its emergence in the Americas. World Health Statist Quart 1997;50:161-8
136. 行政院衛年署疾病管制局: 漫談登革熱防治。疫情報導2006;22:589-95.
137. 行政院衛年署疾病管制局: 2006年高雄市登革熱緊急防治成效。疫情報導2008;24(1): 22-37
138. WHO Regional Publication, Prevention and control of Dengue and Dengue Haemorrhagic Fever. SEARO NO.29
139. WHO Representative Office in the South Pacific. http://www.wpro.who.int/southpacific/sites/ccd/mvp/global_regional_situation.htm
140. Indonesian Department of Health. Development of dengue fever, early 2007. 15 February 2007. Available (in Indonesian) from: http://www.depkes.go.id/index.php?
141. Pan American Health Organization. EID Updates: Emerging and Reemerging Infectious Diseases, Region of the Americas, Vol. 4, No. 8 (16 April 2007). Dengue Outbreak Continues to Subside in Paraguay. Available from: http://www.paho.org/english/AD/DPC/CD/eid-eer-2007-04-16.htm
142. 行政院衛生署疾病管制局九十二年度自行研究計畫:登革熱病媒蚊藥效試驗及緊急噴藥標準作業規範。http://www.cdc.gov.tw/public/data/DOH92-DC-2036
143. Becker, N. (2004). Microbial Control of Mosquito Vectors. 1st Asean Congress of Parasitology and Tropical Medicine &40th Annual Scientific Seminar of MSPTM. 23-25 March 2004. In symposium 10: Bti/Bsp bg.80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26962-
dc.description.abstract2009年7月高雄市爆發第三型登革病毒的跨年流行,此波流行延燒至次年12月,共1,602本土登革確定病例。有鑑於往昔室內空間噴灑成效不彰,自2010年1月起,衛生局以藥劑噴霧罐取代之,並自3月進行全市目標60萬戶孳生源普查暨病媒蚊密度及大型孳生源調查。本研究目的是結合流行病學與空間統計,探查2009至2010年高雄市登革熱/登革出血熱的流行病學、環境條件及影響登革發生率的重要危險因子,並評估公共衛生介入對疫情控制之成效。
作法上,以2009至2010年高雄市的登革本土確定病例、大型孳生源控管及家戶病媒密度調查資料,藉由斯皮爾曼等級相關係數(Spearman’s rank correlation coefficient)、獨立樣本t檢定(independent Student’s t test)及邏輯斯迴歸(logistic regression)等統計模型分析登革發生率與其環境條件之關連性,再配合單/多變項的全域與區域空間自相關分析(univariate/multivariate global and local Moran’s I statistic),找出與登革發生率及空間群聚相關之危險因子,以明瞭高雄市登革病例有、無里間不同的衛生環境條件對於登革發生率之影響。至於公共衛生介入的影響,是以皮爾森相關係數(Pearson’s correlation coefficient)及斯皮爾曼等級相關係數評估介入後多久(時間延遲)造成登革發生率與病媒密度之負相關。
自2009年1月至2010年12月,高雄市共有兩波流行,第一波自2009年7月31日至次年3月1日,共646例本土登革確定病例(包括9例登革出血熱,3例死亡),其登革病例總發生率為萬分之4.23,而登革出血熱發生率為萬分之0.06,登革出血熱之致死率為33.3%(3/9);第二波自2010年3月1日至12月31日止,共956位本土登革確定病例(包括6例登革出血熱,1例死亡),其登革病例總發生率為萬分之6.25,登革出血熱發生率為萬分之0.04,登革出血熱之致死率為16.7 % (1/6)。
在環境因子、病媒蚊密度分析中,發現小型孳生源密度(以容器密度為度量) 較大型孳生源密度對登革發生率之相關性更大(rs= 0.52 vs. 0.16, p<0.01);而容器指數較布氏指數、住戶指數及成蚊指數更能貼近流行現況(rs=0.49 vs. 0.37, 0.35, 0.20, p<0.01),進一步單變項空間自相關分析後,發現登革發生率、人口密度及大、小型孳生源蚊密度、容器指數共四項因子不僅具有空間上的群聚現象(p<0.01),且其熱點(hotspots)均在鼓山區及三民區重疊,顯示當地的高登革發生率,與環境因子息息相關。非屬於已知的大型孳生源(大型積水/誘蚊產卵地、以前列管地、空調停機冷卻水塔、破損髒亂空屋、資源/輪胎回收場)之病媒蚊其他孳生處,如雜草處等,與登革發生率具統計顯著相關(rs=0.188, p<0.01)。而13種小型孳生源和登革發生率均具有顯著正相關,且依序為馬桶水箱、桶缸甕盆、底盤、水塔表(rs=0.53, 0.45, 0.40, 0.40);而和登革發生率最高者為無論室內外均為桶缸甕盆[rs=0.57(室內), 0.42(室外), p<0.01],其次分別為室內花瓶(rs=0.44, p<001)及室外底盤(rs=0.30 p<0.01)。
比較各里有、無登革病例的環境差異,發現有病例的里在人口密度(25.95 vs. 18.44, p<0.01)、大型孳生源密度(59.85 vs. 47.94, p=0.02)、被清除孳生源的家戶比例(96.31 vs. 47.82, p<0.01)、小型孳生源密度(35.17 vs. 20.55, p<0.01)、容器指數(7.91/4.92, p<0.01)及埃及斑蚊成蚊比例(94.01 vs. 74.06, p<0.01)均較無病例的里高。利用多變項邏輯斯迴歸分析人口密度、小型孳生源密度、容器級數及大型孳生源密度後,得知人口密度高[校正後的勝算比(Adjusted Odds Ratio, ORadj) =9.70, 95%信賴區間(Confidence Interval, CI)=4.65-20.24, p<0.01]、小型孳生源密度高(ORadj=6.33, 95% CI=2.83-14.16, p<0.01)及容器級數高(ORadj=12.65, 95% CI= 6.11 ~ 26.29, p<0.01)三項均為登革的具統計差異之重要危險因子。最後,評估公共衛生介入,清除家戶孳生源在當週即與容器指數有負相關(-0.2),且在四週後更具統計負相關 (-0.32, p<0.05),且相關性在第五週達高峰(-0.52, p<0.01)。
本研究的結論是,環境因子(人口密度、大/小孳生源密度)和病媒密度(家戶指數、布氏指數、容器指數及埃及斑蚊比例)為登革發生率的重要危險因子,且具空間聚集。其中家戶小型孳生源與登革發生率的相關性較大型孳生源為高,然而大型孳生源具積水面積大、且不易清除的特性,對登革之影響不容小覷。人口密度高、小型孳生源密度多及容器級數高的地區較易發生登革流行。而在評估病媒密度時,容器指數較其他指數更能反映流行狀況。此外,日常的清除家戶孳生源及噴藥確實可控制病媒密度,但無法立竿見影。
埃及斑蚊比例與年俱增,未來應整合家戶與大型孳生源的兩種病媒監測系統,以徹底掌控當地病媒密度、提升介入實效、降低病媒抗藥性的機會,並配合強化病例監測系統及病例通報、診斷時效,構築完整的登革風險地圖,以因地制宜實施不同的公共衛生介入,有助於登革防治更能收事半功倍之成效。為預防高雄成為登革地方性流行地區,可將本研究結果與過去同為流行登革第三型病毒之2006及2009做比較、配合血清流行病學調查,以了解高雄市登革不顯性感染者比例及其空間分佈,並分析病毒流行模式與環境、宿主三者間之關聯性,建立登革預警指標,以及早阻斷傳播及登革出血熱的死亡病例。
zh_TW
dc.description.abstractAn outbreak of dengue virus serotype 3 (DENV-3) occurred from July 2009 and extended to December 2010, with a total of 1,602 indigenous laboratory-confirmed dengue cases. In 2010, Public Health Bureau of Kaohsiung City Government in Taiwan firstly applied the aerosol cans to residents’ houses in January, conducted a large-breeding sites survey and a city-wide program of removing most containers aiming at 600,000 households since March. The overall objectives of this study were to integrate epidemiology and spatial statistics to understand the epidemiology of dengue/dengue hemorrhagic fever (DHF) in Kaohsiung City from January 2009 to December, to find out the environmental risk/protection factors contributing to increasing/decreasing dengue cases, and to evaluate the effectiveness of different intervention strategies and their time lags.
We collected the information of large-breeding sites, all data of different mosquito indices and numbers of laboratory-confirmed dengue cases from 2009 to 2010, and used general statistic (Speraman’s rank correlation coefficient, independent Student’s t-test, logistic regression) to find out the risk factors of dengue in order to understand the impact of different environment situation in Lis with or without dengue cases. Then, spatial statistic methods (univariate/ multivariate global Moran’s I, univariate/ multivariate Anselin Local Moran's I) were conducted to understand the distributions of risk factors of dengue, the spatial autocorrelations and the hot/cold spots of environmental factors, vectors and dengue incidence Furthermore, we evaluated the time lags between different public health interventions and dengue incidence by Spearman’s rank correlation coefficient (eg. negative correlation between dengue incidence and mosquito density).
From January 2009 to December 2010, an epidemic of dengue occurred with two waves in Kaohsiung City. The first wave was from July 31st 2009 to March 1st 2010, with totally 646 confirmed indigenous dengue cases [including 9 DHF cases and 3 deaths, case fatality rate (CFR) of 33% (3/9), dengue incidence of 4.23 per 10,000 persons, DHF incidence of 0.06 per 10,000 persons]. The second wave was from March 1st 2010 to December 31st 2010, with totally 956 confirmed indigenous dengue cases [including 6 DHF cases and 1 deaths, case fatality rate (CFR) of 16.7% (1/6), dengue incidence of 6.24 per 10,000 persons, DHF incidence of 0.04 per 10,000 persons].
Data analysis between mosquito density and environment showed that the density of small-breeding sites (measured as “container density”) had higher correlation with dengue incidence than the density of large-breeding sites (rs= 0.52 vs. 0.16, p<0.01), and container index was more sensitive to dengue incidence than house index, Breteau index and adult mosquito index (rs= 0.49 vs. 0.37, 0.35, 0.20, p<0.01). In univariate spatial autocorrelation analyses (univariate Moran’s I and univariate Local Indicator Spatial Analysis), dengue incidence, population density, and the density of large/small-breeding sites, and container index had spatial clusters and their hotspots overlapped in Gushan and SanMin Districts. It indicated that environmental factors were closely correlated to high dengue incidence. The other types of large-breeding sites excluding basements with cumulated water, ovitrap-ponds, past listed locations with mosquito breeding sites , air-conditioning cooling water towers, vacant and dirty houses waiting for repairing, resource/tire recycle factories), such as wasteland, was significantly correlated to dengue incidence (rs=0.188, p<0.01). In contrast with large-breeding sites, totally 13 types of containers had significantly positive correlations with dengue incidence, the ranking of the first four high correlation coefficients were toilet tanks, jars, pots and water gauges (rs= 0.53, 0.45, 0.40, 0.40). In addition, indoor and outdoor jars had the highest correlations with dengue incidence (indoor: rs= 0.57, p<0.01; outdoor: rs= 0.42, p<0.01), indoor flower vases (rs= 0.44, p<0.01) and outdoor pots (rs= 0.304, p<0.01) ranked the second, respectively.
The comparisons between Lis with/without dengue cases, the Lis with dengue cases had higher means of population density (25.95 vs. 18.44, p<0.01), density of large-breeding sites (59.85 vs. 47.94, p=0.02), the proportion of households with removing containers (96.31 vs. 47.82, p<0.01), density of small-breeding sites (35.17 vs. 20.55, p<0.01), container index (7.91 vs. 4.92, p<0.01) and the proportion of field adult Aedes aegypti (94.01 vs. 74.06, p<0.01) than the Lis without dengue cases. In multiple logistic regression analyses, the adjusted odds ratios (ORadj) of high population density (ORadj= 9.70, 95%CI=4.65-20.24, p<0.01), high small-breeding sites (ORadj= 6.33, 95%CI=2.83-14.16, p<0.01) and high levels of container index (ORadj= 12.65, 95%CI= 6.11-26.29, p<0.01) were the important risk factors of dengue with statistical significance. Finally, evaluations of public health interventions demonstrated that the week with removing household containers had a timely negative correlation with container index in that week. The negative correlation became statistically significant after 4 weeks (-0.32, p<0.05) and such a correlation peaked at 5 weeks after the removal household breeding sites (-0.52, p<0.01).
In summary, environmental factors (population density, the densities of large-/small-breeding sites) and vector density (house index, Breteau index, container index and the proportion of field adult Aedes aegypti) were the important risk factors of dengue with spatial clusters in particular areas. In addition, density of small-breeding sites had higher correlation with dengue incidence but cannot neglect the impact of large-breeding sites covering large areas with difficulties in removal. The areas with higher population density, more density of small-breeding sites, and greater container index had higher likelihood to have dengue epidemics. Container index was the most sensitive to reflect epidemic status among all available mosquito indices studied. In fact, the routine activities of removing containers and spraying did control vector density certainly, but their effectiveness cannot be observed immediately.
With the trends in increasing proportion of Aedes aegypti in Kaohsiung City, future efforts should target at integrating two vector surveillance systems (household container and large-breeding sites) to control the vector density, elevate public health effectiveness and reduce insecticide resistance. With the aid from strengthening surveillance system and timely reporting/diagnosis, we will be able to construct the risk maps of dengue for better effectiveness in control. In order to prevent dengue become endemic in Kaohsiung City, future efforts should involve: (1) the comparison of this study with the past DENV-3 epidemics in 2006 and 2009, (2) investigating the spatial distributions of asymptomatically infected dengue cases through seroepidemiological studies, and (3) establishment of pre-epidemic warning index to interrupt dengue transmission and minimize DHF cases, after fully understanding the triad interrelationships between agent, host and environment.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:52:46Z (GMT). No. of bitstreams: 1
ntu-100-R98842020-1.pdf: 3659905 bytes, checksum: 99df348613911a4d2902f028d332c7d5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAcknowlegements 致謝 i
中文摘要(Chinese Abstract) ii
English Abstract v
Contents viii
Table Contents xii
Figure Contents xiv
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Epidemiology of Dengue 3
2.1.1 Global Perspective 3
2.1.2 Dengue Status in Taiwan 5
2.2 Transmission and Environmental Factors for Dengue 6
2.2.1 Mosquitoes 6
2.2.2 Transmission Cycle 8
2.2.3 Environmental Factors for Dengue 9
2.3 Public Health Interventions for Dengue 11
2.3.1 Physical Strategies 11
2.3.2 Chemical Strategies 12
2.3.3 Biological Strategies 14
Chapter 3 Objectives, Specific Aims and Hypotheses 17
3.1 Objectives 17
3.2 Specific Aims 17
3.3 Hypotheses 17
3.3.1 Epidemiology of Dengue 17
3.3.2 Spatial Epidemiology of Dengue and Environmental Factors 18
3.3.3 Public Health Interventions 18
Chapter 4 Materials and Methods 19
4.1 Study area 19
4.2 Data Source 19
4.2.1 Laboratory-confirmed Indigenous Dengue Cases 19
4.2.2 Large-breeding Site Survey 20
4.2.3 Household Container and Mosquito Density Survey 20
4.3 Data Analyses 21
4.3.1 General Statistical analysis 21
4.3.2 Spatial analyses 26
Chapter 5 Results 31
5.1 The Epidemiology of Dengue in Kaohsiung City 31
5.1.1 The overall epidemiology of dengue/DHF from Jan. 2009 to Feb. 2011 31
5.1.2 The Epidemic of Dengue from Mar. 2010 to Dec. 2010 32
5.2 The Correlations between Environmental Factors and Dengue Incidences 32
5.2.1 Environmental Factors, Mosquito Densities and Dengue Incidences 32
5.2.2 Density of Different Types of Large-breeding Sites VS. Containers 33
5.2.3 Different Types of Indoor Container VS. Outdoor Containers 34
5.3 The Spatial Autocorrelations of Risk Factors and Dengue Incidence 35
5.3.1 Univariate Spatial Autocorrelation 35
5.3.2 Multivariate Analyses of Spatial Autocorrelation 37
5.4 Comparisons between Lis with dengue cases and Lis without dengue cases 39
5.4.1 Different Situations in Case Group vs. Control Group 39
5.4.2 The Odds Ratio of Different Risk Factors of Dengue 40
5.5 Impact of Public Health interventions 41
5.5.1 Interventions and Dengue Incidence 42
5.5.2 Interventions and Container Index 42
5.5.3 Interventions and Indoor/Outdoor Container Index 43
Chapter 6 Discussion 45
6.1 Surveillance Measures for Mosquito density 45
6.1.1 Mosquito Indices 45
6.1.2 The Burden of Aedes aegypti and Aedes albopicus 48
6.2 The Impact of Environmental Factors- Types of Mosquito Breeding sites for Dengue 49
6.2.1 Containers 49
6.2.2 Large-breeding sites 50
6.3 Impact of Different Public Health Interventions for Dengue 51
6.4 Limitations 52
6.4.1 Quality and Representativeness of Mosquito Data 52
6.4.2 Spatial Analysis 53
6.4.3 Cross-sectional Study vs. Longitudinal study 53
6.5 Recommendations and Future Perspectives 54
6.5.1 Recommendations 54
6.5.2 Future Perspectives 55
Reference 57
Table 76
Figure 88
89
Appendix A 105
Appendix B 106
Appdendix C 107
Appendix D 109
Appendix E 112
Appendix F 113
Appendix G 114
Appendix H 115

Table Contents
TABLE 1. THE SOURCES AND CONTENTS OF DATA ON CONFIRMED DENGUE CASES, MOSQUITO INDICES AND ENVIRONMENTAL CONDITIONS IN KAOHSIUNG CITY, FEBRUARY – DECEMBER, 2010. 76
TABLE 2. THE SPEARMAN’S CORRELATIONS AMONG ENVIRONMENTAL FACTORS, VECTORS AND PUBLIC HEALTH INTERVENTIONS IN KAOHSIUNG CITY OF TAIWAN, MAR.-DEC. 2010. 77
TABLE 3. THE CORRELATIONS BETWEEN DENSITY OF DIFFERENT LARGE-BREEDING SITES /CONTAINERS AND DENGUE INCIDENCE , FEB.- DEC. 2010. 78
TABLE 4. THE CORRELATIONS BETWEEN DIFFERENT TYPES OF INDOOR/OUTDOOR CONTAINERS AND DENGUE INCIDENCE , FEB.- DEC. 2010. 79
TABLE 5. THE DIFFERENT MEANS BETWEEN LIS WITH DENGUE CASE AND LIS WITHOUT DENGUE CASES, FEB.-DEC 2010. 80
TABLE 6. TO COMPARE THE DENSITY OF DIFFERENT KINDS OF LARGE-BREEDING SITE BETWEEN LIS WITH DENGUE CASE AND LIS WITHOUT DENGUE CASES, MAR.-DEC. 2010. 81
TABLE 7. THE MEANS OF DIFFERENT TYPES OF INDOOR CONTAINER BETWEEN LIS WITH DENGUE CASE AND LIS WITHOUT DENGUE CASES, FEB.-DEC. 2010. 82
TABLE 8. THE MEANS OF DIFFERENT TYPES OF OUTDOOR CONTAINER BETWEEN LIS WITH DENGUE CASE AND LIS WITHOUT DENGUE CASES, FEB.-DEC. 2010. 83
TABLE 9. UNIVARIATE ANALYSIS SHOWS ODDS RATIOS AND 95% CONFIDENCE INTERVAL FOR ENVIRONMENTAL FACTORS, MOSQUITO FACTORS AND POPULATION DENSITY, FEB.-DEC. 2010. 84
TABLE 10. MULTIVARIATE ANALYSIS SHOWS ODDS RATIOS AND 95% CONFIDENCE INTERVAL FOR ENVIRONMENTAL FACTORS, MOSQUITO FACTORS AND POPULATION DENSITY, FEB.-DEC. 2010. 85
TABLE 11. THE CORRELATIONS AMONG SPRAYING, REMOVING HOUSEHOLD CONTAINERS AND DENGUE INCIDENCE WITH TIME LAGS FROM 0 TO 8 WEEKS IN KAOHSIUNG CITY, 9TH WEEK- 53RD WEEK OF 2010. 86
TABLE 12. THE CORRELATIONS AMONG SPRAYING, REMOVING HOUSEHOLD CONTAINERS AND THE CONTAINER INDEX WITH TIME LAGS FROM 0 TO 8 WEEKS IN KAOHSIUNG CITY, 9TH WEEK- 53RD WEEK OF 2010. 86
TABLE 13. THE CORRELATIONS AMONG SPRAYING, REMOVING HOUSEHOLD CONTAINERS AND INDOOR/OUTDOOR CONTAINER INDEX IN KAOHSIUNG CITY WITH TIME LAGS FROM 0 TO 8 WEEKS, 9TH WEEK- 53RD WEEK OF 2010. 87
Figure Contents
FIGURE 1. THE TIME SCHEDULE OF DATA COLLECTION. 88
FIGURE 2. THE FLOW CHART OF DATA ANALYSES. 89
FIGURE 3. THE WEEKLY NUMBERS OF IMPORTED DENGUE CASES AND INDIGENOUS DENGUE CASES IN KAOHSIUNG CITY, JAN. 2009- DEC. 2010. 90
FIGURE 4. THE WEEKLY NUMBER OF DF/DHF INDIGENOUS CASES IN KAOHSIUNG CITY, 2010. 91
FIGURE 5. THE DISTRIBUTION OF DENGUE CASES BY AGE AND GENDER IN KAOHSIUNG CITY, 2010. 92
FIGURE 6. THE DISTRIBUTION OF POPULATION BY AGE AND GENDER IN KAOHSIUNG CITY, 2010. 93
FIGURE 7. THE SPATIAL DISTRIBUTIONS OF (A) DENGUE INCIDENCE, (B) POPULATION DENSITY, (C) DENSITY OF LARGE-BREEDING SITES, (D) THE PROPORTION OF HOUSEHOLD WITH REMOVING CONTAINERS, (E) CONTAINER DENSITY, (F) CONTAINER INDEX, (G)ADULT MOSQUITO INDEX;(H) THE PROPORTION OF AEDES AEGYPTI FROM THE FIELD-CAUGHT ADULT MOSQUITOES. THIS FIGURE SHOWS MORAN’S AUTOCORRELATION COEFFICIENT AND P-VALUE. 95
FIGURE 8. THE WEEKLY NUMBER OF ADULT AEDES MOSQUITOS (AEDES AEGYPTI AND AEDES ALBOPICTUS ) AND WEEKLY PROPORTION OF ADULT AEDES AEGYPTI FROM 9TH WEEK TO 53RD IN 2010. 96
FIGURE 9. THE WEEKLY NUMBER OF AEDES LARVAE (AEDES AEGYPTI AND AEDES ALBOPICTUS ) AND WEEKLY PROPORTION OF AEDES AEGYPTI LARVAE FROM 9TH WEEK TO 53RD IN 2010. 97
FIGURE 10. THE SPATIAL HOT SPOTS/COLD SPOTS OF (A) DENGUE INCIDENCE, (B) POPULATION DENSITY, (C) DENSITY OF LARGE-MOSQUITO BREEDING SITES, (D) THE PROPORTION OF HOUSEHOLD WITH REMOVING BREEDING SITES, (E) CONTAINER DENSITY, (F) CONTAINER INDEX, (G) ADULT MOSQUITO DENSITY, (H) THE PROPORTION OF AEDES AEGYPTI FROM THE FIELD-CAUGHT ADULT MOSQUITOES. 99
FIGURE 11. MULTIVARIATE MORAN’S I FOR TESTING THE ASSOCIATION BETWEEN THE RISK FACTORS OF DENGUE IN LOCAL AREA AND THE DENGUE INCIDENCE IN NEIGHBORING LOCATIONS. 101
FIGURE 12. MULTIVARIATE MORAN’S I FOR TESTING THE ASSOCIATION BETWEEN THE RISK FACTORS OF DENGUE IN LOCAL AREA AND THE CONTAINER INDEX IN NEIGHBORING LOCATIONS. 101
FIGURE 13. THE MAP OF MULTIVARIATE LOCAL INDICATOR OF SPATIAL ASSOCIATION (LISA) FOR UNDERSTANDING THE ASSOCIATION BETWEEN THE RISK FACTORS OF DENGUE IN LOCAL AREA AND THE DENGUE INCIDENCE IN NEIGHBORING LOCATIONS:(A)POPULATION DENSITY VS. DENGUE INCIDENCE; (B) DENSITY OF LARGE-BREEDING SITE VS. DENGUE INCIDENCE; (C) CONTAINER DENSITY VS. DENGUE INCIDENCE; (D) CONTAINER INDEX VS. DENGUE INCIDENCE; (E) THE PROPORTION OF AEDES AEGYPTI FROM THE FIELD-CAUGHT ADULT MOSQUITOES VS. DENGUE INCIDENCE. 102
FIGURE 14. THE MAP OF MULTIVARIATE LOCAL INDICATOR OF SPATIAL ASSOCIATION (LISA) FOR UNDERSTANDING THE ASSOCIATION BETWEEN THE RISK FACTORS OF DENGUE IN LOCAL AREA AND THE CONTAINER INDEX IN NEIGHBORING LOCATIONS:(A) DENSITY OF LARGE-BREEDING SITE VS. CONTAINER INDEX; (B) CONTAINER DENSITY VS. CONTAINER INDEX. 104
dc.language.isoen
dc.title由2009-2010年高雄市登革熱/登革出血熱流行病學探討環境、病媒蚊密度及公共衛生介入之影響zh_TW
dc.titleThe Epidemiology of Dengue/Dengue Hemorrhagic Fever and Investigations on Environment, Mosquito Densities and the Impact of Different Public Health Interventions in Kaohsiung City, 2009-2010.en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor溫在弘(Tzai-Hung Wen)
dc.contributor.oralexamcommittee何啟功(Chi-Kung Ho),陳維鈞(Wei-June Chen),蕭朱杏(Chuhsiung Kate Hsiao),蔡坤憲(Kun-Hsien Tsai),趙黛瑜(Day-Yu Chao)
dc.subject.keyword登革熱/登革出血熱,公共衛生介入,流行病學,病媒蚊防治,環境監測,高雄,臺灣,zh_TW
dc.subject.keyworddengue/dengue hemorrhagic fever,public health intervention,environmental surveillance,epidemiology,spatial analysis,Kaohsiung,Taiwan,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2011-09-13
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
3.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved