Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26917
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇永成
dc.contributor.authorHsin-I Lienen
dc.contributor.author連欣儀zh_TW
dc.date.accessioned2021-06-08T07:32:15Z-
dc.date.copyright2008-06-25
dc.date.issued2008
dc.date.submitted2008-06-23
dc.identifier.citation1. Andersen Torben G, Bollerslev ,Tim, Christoffersen. Peter F. and Peter F, Francis X., 2005, “Practical Volatility and Correlation Modeling for Financial Market Risk Management,” NBER Working Paper Series, 11069.
2. Angelidis, Timotheos, Benos, Alexandros and Stavros Degiannakis, 2003, “The Use of GARCH Models in VaR Estimation,” Statistical Methodology, Vol. 1, No. 2, pp.105-128
3. Bank for International Settlements: www.bis.org
4. Basak, S. and A. Shapiro, 2001, “Value-at-risk-based risk management: Optimal policies and asset prices,” Review of Financial Studies, 14, pp 371–405
5. Basel I International convergence of capital measurement and capital standards, 1988, Bank for International Settlement
6. Basel II International Convergence of Capital Measurement and Capital Standards a Revised Framework, 2004, Bank for International Settlement
7. Bender,T.S., 1995, ”VAR: Seductive but Dangerous,” Financial Analyst Journal, Sep-Oct, pp.12-24.
8. Berkowita Jeremy and Tames O’ Brien, 2002, “How Accurate Are Value-at-Risk Models at Commercial Banks ?” Journal of Finance, 57, pp. 1093-1112
9. Billio, Monica, Pelizzon, Loriana, 2000, “Value-at-Risk: a multivariate switching regime approach,” Journal of Empirical Finance, Vol.7, no.5, pp.531-554
10. Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, pp. 307–327
11. Boudoukh,J., M.Richardson and R. Whitelaw, 1997, “Investigation of a Class of Volatility Estimators,” Journal of Derivatives, 4, pp.63-71
12. Burns Patrick, October, 2002, “The Quality of Value at Risk via Univariate GARCH,” Burns Statistic Working Paper
13. Cassidy, C.and M. Gizycki, 1997, “Measuring Traded Market Risk :Value at Risk and Backtesting Techniques,” Reserve Bank of Australia Research Discussion Paper, no.9708
14. Changli He and Timo Teräsvirta, 1997, “Properties of Moments of a Family of GARCH Processes,” Working Paper Series in Economics and Finance, no 198
15. Chiang, 2004, “Modeling Value at Risk of Financial Companies- A Comparison of Symmetric and Asymmetric Models,” Master Thesis of Graduate Institute of Business Administration in National Taiwan University
16. Danielsson, J. and C. Vries, 1997, “Extreme Returns, Tail Estimation, and Value-at-Risk,” Institute of Economics Studies Working Paper Series, Iceland University,no.97-105
17. Engle, J. and M. Gizycki, 1999, “Conservatism, Accuracy and Efficiency: Comparing Value-at-Risk Models,” Working Paper 2, March.
18. Engle, R.F., 1982, “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation,” Econometrica,50, pp.987–1008
19. Engle, R.F., D.M. Lilien and R.P. Robins, 1987, “Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model,” Econometrica, 55, pp.391–407
20. Engle, R.F. and V.K. Ng, 1993, “Measuring and Testing the Impact of News on Volatility,” Journal of Finance, 48, pp.1749-1778
21. Engle, R.F and Manganelli Simone, 2001, “Value at Risk Models in Finance,” European Central Bank Working Paper Series, no. 75
22. Goorbergh, R.V.D. and P. Vlaar, 1999, “Value-at-Risk Analysis of Stock Returns Historical Simulation, Variance Techniques or Tail Index Estimation,” Econometric Research and Special Studies Dept. De Nederlandsche Bank
23. Guermat, C. and Richerd D.F. Harris, 2002, “Robust Conditional Variance Estimation and Value-at-Risk,” The Journal of Risk 2,4,pp.25-41.
24. Gupta, Anurag, and Liang, Bing, 2005, “Do hedge funds have enough capital? A value-at-risk approach,” Journal of Financial Economics, 77, pp.219-253
25. Hansen P. R. and A. Lunde, 2001, “A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1),” Brown University, Department of Economics, Working Paper No. 01-04
26. Harris, Richard D. F. and Shen, Jian, 2006, “Hedging and Value at Risk,” The Journal of Futures Markets, Vol. 26, no. 4, pp.369–390
27. Heikkinen, V. and A. Kanto, 2002, “Value-at-Risk Estimation Using Non-Integer Degrees of Freedom of Student’s Distribution,” Journal of Risk, 4, pp.77-84
28. Hentschel, Ludger, 1995, “All in the family Nesting symmetric and asymmetric GARCH models,” Journal of Financial Economics, 39, pp.71-104
29. Kevin Dowd, 1999, “A value at risk approach to risk-return analysis,” Journal of portfolio management,Vol.25 no.4, pp.60-67
30. Koji, I., M. Kijima, and A. Kitano, 2005, “VaR Is Subject to Significant Positive Bias,” Statistics & Probability Letters, 72, pp.299-311
31. Lin, Chu-Hsing and Shen, Shan-Shan, 2006, “Can the Student-t Distribution Provide Accurate Value at Risk?” The Journal of Risk Finance Vol. 7 no.3, pp.292-300
32. Nelson, D., 1991, “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica, 59, pp.347-370
33. Overview of the amendment to the capital accord to incorporate market risks, 1996, Bank for International Settlement
34. Paul H. Kupiec, 1998, “Stress Testing in a Value at Risk Framework,” Journal of derivatives, vol.6, no.1,pp.7-24
35. Peter A. Abken, 2000, “An empirical evaluation of value at risk by scenario simulation,” Journal of derivatives.Vol.7 no.4, pp.12-29
36. Platen, E. and G. Stahl, 2003, “A Structure of General and Specific Market Risk,” Working Paper, University of Technology, Sydney.
37. Schwert, G. William, 1999, “Why Does Stock Market Volatility Change Over Time,” Journal of Finance, 44, pp.1115-1153
38. So, Milk K.P. & Yu, Pilip L.H., 2006, “Empirical Analysis of GARCH Models in Value at Risk Estimation,” Journal of International Financial Markets, Institutions & Money 16, pp.180-197
39. State Street Global Advisor: https://www.ssgafunds.com/index.jsp
40. Supervisory framework for the use of back testing in conjunction with the internal models approach to market risk capital requirements, 1996, Bank for International Settlement
41. Wang, Serena, 2003, “Market Risk VaR Models for Financial Holding Company,” Master Thesis Graduate Institute of Business Administration in National Taiwan University
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26917-
dc.description.abstract市場風險值VaR 已是受到廣泛應用的風險控制工具。在近年VaR模型效果估計比較的多篇研究證實了GARCH 模型在估計市場風險值的有效性及精確性後,本研究檢驗包含旋轉效果的GJR GARCH及平移效果的NA GARCH兩種不對稱GARCH模型與對稱的GARCHM模型比較,在不同的報酬結構之下,找出對於SPY指數型基金的投資組合具有較佳VaR值預測表現的模型。研究作法主要為蒐集SPY較近期之1800筆日交易資料並將其分為兩個群組進行模型配置及市場風險值估算之用,依據不同信賴區間下估算出的市場風險值與實際報酬表現做比較,並另外運用其他穿透測試等項目檢驗模型的精確性。
本研究主要發現包含以下部分:首先除了由穿透數字的評估與巴塞爾協定的規定比較發現穿透次數皆能落入安全範圍而再次證實GARCH模型對於VaR皆具有良好且有效的預測效果之外,不對稱GARCH模型的預測表現更優於對稱模型。其中旋轉效果的GJR-GARCH模型在各種報酬結構及不同信賴水準下的穿透率皆低於平移效果的NA-GARCH,顯示旋轉效果的GARCH模型在預測VaR的功能上有較為顯著的效果。而其中ARMA(1,1)-GJR GARCHM(1,1)的穿透數字更遠低於其他模型,在同時利用其他指標進行分析之後,本研究獲得較客觀及全面性的發現顯示其為對於SPY指數型基金有良好預測效果的VaR市場風險模型。
zh_TW
dc.description.abstractVaR is more applicable as a financial management tool to control risk. Since the GARCH model is proved to be the useful and more accurate model in estimating VaR, in this paper, we employ the asymmetric GARCH models including the innovation-rotated GJR GARCH and the innovation-shifted NA GARCH models with different mean equations in comparison with symmetric GARCHM model to find out a more appropriate GARCH method in estimating VaR of SPY portfolio as the representative of the also popular investment tool, ETF. We gathered the latest 1800 daily information of SPY portfolio performance and divided into two groups to fit the models and get the VaR estimates under each confidence level we chose.
Our major findings contain several aspects that first we prove that GARCH model is useful and efficient since all VaR forecasts fall into the safe range in terms of the regulation by Basel Accord. Specifically, asymmetric GARCH model outperforms the symmetric one, and GJR-GARCH as the representative of rotated GARCH model has better performance than NA-GARCH as that of shifted GARCH model. Among GJR-GARCH model with different mean equations, ARMA(1,1)-GJR GARCHM(1,1) has the most outstanding result in risk control by the fewest violation number it has, and we also conduct analysis through indicators other than violation number used as a standard mainly employed by Basel Accord to have more objective and thorough confirmation that ARMA(1,1)-GJR GARCHM(1,1) is the best fitted model to SPY portfolio in estimating VaR.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:32:15Z (GMT). No. of bitstreams: 1
ntu-97-R95723041-1.pdf: 1302206 bytes, checksum: 9208026c5c1e12314faba555b2a4dafb (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Motivation and Purposes 1
1.2 Framework 2
Chapter 2 Basle accord and Market Risk 4
2.1 BIS and Basel Committee 4
2.2 1988 Basel Accord and Basel II 5
2.3 Market Risk and the Amendment from Basel Committee 7
Chapter 3 Literature Review 10
3.1 VaR 10
3.2 Related Literatures 11
Chapter 4 Data 16
4.1 Data History 16
4.1.1 ETF 16
4.1.2 SPY 16
4.2 Data Profile 19
4.3 Holding Period and Daily P&L 19
Chapter 5 Methodology 21
5.1 Symmetric GARCHM(1,1) 22
5.2 Innovation-shifted Asymmetric NA-GARCHM(1,1) 23
5.3 Innovation-rotated Asymmetric GJR-GARCHM(1,1) 24
Chapter 6 Empirical Results 26
6.1 Model Robustness Check -LR test 26
6.2 Symmetric GARCH model results-GARCHM(1,1) 27
6.3 Asymmetric GARCH models-NA-GARCH and GJR-GARCH 28
6.3.1 NA-GARCH models 28
6.3.2 GJR-GARCH models 29
6.4 Back and Forward Testing 30
6.5 Correlation coefficient analysis 34
Chapter 7 Conclusion 36
References 38
dc.language.isoen
dc.titleSPY之不對稱GARCH市場風險值之研究zh_TW
dc.titleAsymmetric GARCH Value-at-Risk of SPYen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝,黃漢青
dc.subject.keyword市場風險,不對稱GARCH,風險值,zh_TW
dc.subject.keywordValue-at-Risk,asymmetric GARCH,GJR-GARCH,NA-GARCH,en
dc.relation.page90
dc.rights.note未授權
dc.date.accepted2008-06-23
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved