Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26905
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林江珍(Jiang-Jen Lin)
dc.contributor.authorWen-Hsin Changen
dc.contributor.author張文馨zh_TW
dc.date.accessioned2021-06-08T07:31:37Z-
dc.date.copyright2008-07-24
dc.date.issued2008
dc.date.submitted2008-06-24
dc.identifier.citation(1) Smith, C. R. J. Am. Chem. Soc. 1934, 56, 1561-1563.
(2) Jordan, J. W. J. Phys. Chem. 1949, 53, 294-306.
(3) Barrer, R. M.; Macleod, D. M. Trans. Faraday Soc. 1954, 50, 980-989.
(4) Barrer, R. M.; Macleod, D. M. Trans. Faraday Soc. 1955, 51, 1290-1300.
(5) Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem. Mater. 1994, 6, 1017-1022.
(6) Zhu, Z.-k.; Yin, J.; Wang, X.-y.; Qi, Z.-e. Polymer 1999, 40, 4407-4414.
(7) Fu, X.; Qutubuddin, S. Materials Letters 2000, 42, 12-15.
(8) Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807-813.
(9) Zeng, C.; Lee, L. J. Macromolecules 2001, 34, 4098-4103.
(10) Hotta, S.; Paul, D. R. Polymer 2004, 45, 7639-7654.
(11) Maiti, M.; Bandyopadhyay, A.; Bhowmick, A. K. Journal of Applied Polymer Science 2006, 99, 1645-1656.
(12) Mahadevaiah, N.; Venkataramani, B.; JaiPrakash, B. S. Chem. Mater. 2007, 19, 4606-4612.
(13) Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832-8834.
(14) Chou, C. C.; Shieu, F. S.; Lin, J. J. Macromolecules 2003, 36, 2187-2189.
(15) Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J. Macromolecules 2004, 37, 473-477.
(16) Cornell, R. M.; Schwertmann, U. The iron oxides 2ed.; Wiley-VCH: Weinheim, 2003.
(17) Hu, S. H.; Liu, T. Y.; Huang, H. Y.; Liu, D. M.; Chen, S. Y. Langmuir 2008, 24, 239-244.
(18) Cheng, F.-Y.; Su, C.-H.; Yang, Y.-S.; Yeh, C.-S.; Tsai, C.-Y.; Wu, C.-L.; Wu, M.-T.; Shieh, D.-B. Biomaterials 2005, 26, 729-738.
(19) Lin, C.-L.; Lee, C.-F.; Chiu, W.-Y. Journal of Colloid and Interface Science 2005, 291, 411-420.
(20) Enzel, P.; Adelman, N. B.; Beckman, K. J.; Campbell, D. J.; Ellis, A. B.; Lisensky, G. C. J. Chem. Educ. 1999, 76, 943-948.
(21) Lin, Y.-J.; Wang, L.; Lin, J. G.; Huang, Y. Y.; Chiu, W.-Y. Synthetic Metals 2003, 135-136, 769-770.
(22) Liu, Z. L.; Wang, X.; Yao, K. L.; Du, G. H.; Lu, Q. H.; Ding, Z. H.; Tao, J.; Ning, Q.; Luo, X. P.; Tian, D. Y.; Xi, D. Journal of Materials Science 2004, 39, 2633-2636.
(23) Franger, S.; Berthet, P.; Berthon, J. Journal of Solid State Electrochemistry 2004, 8, 218-223.
(24) Yu, W. W.; Falkner, J. C.; Yavuz, C. T.; Colvin, V. L. Chemical Communications 2004, 2306-2307.
(25) Wu, M.; Xiong, Y.; Jia, Y.; Niu, H.; Qi, H.; Ye, J.; Chen, Q. Chemical Physics Letters 2005, 401, 374-379.
(26) Ma, K.; Pierre, A. C. Clays and Clay Minerals 1992, 40, 586-592.
(27) Zou, J.; Pierre, A. C. Journal of Materials Science Letters 1992, 11, 664-665.
(28) Pierre, A. C.; Ma, K.; Barker, C. Journal of Materials Science 1995, 30, 2176-2181.
(29) Pierre, A.; Ma, K. Journal of Materials Science 1997, 32, 2937-2947.
(30) Skoutelas, A. P.; Karakassides, M. A.; Petridis, D. Chem. Mater. 1999, 11, 2754-2759.
(31) Bourlinos, A. B.; Karakassides, M. A.; Simopoulos, A.; Petridis, D. Chem. Mater. 2000 12, 2640-2645.
(32) Bourlinos, A. B.; Devlin, E.; Boukos, N.; Simopoulos, A.; Petridis, D. Clay Minerals 2002, 37, 135-141.
(33) Galindo-Gonzalez, C.; deVicente, J.; Ramos-Tejada, M. M.; Lopez-Lopez, M. T.; Gonzalez-Caballero, F.; Duran, J. D. G. Langmuir 2005, 21, 4410-4419.
(34) Szabo, T.; Bakandritsos, A.; Tzitzios, V.; Papp, S.; Korosi, L.; Galbacs, G.; Musabekov, K.; Bolatova, D.; Petridis, D.; Dekany, I. Nanotechnology 2007, 18, 285602.
(35) Oliveira, L. C. A.; Rios, R. V. R. A.; Fabris, J. D.; Sapag, K.; Garg, V. K.; Lago, R. M. Applied Clay Science 2003, 22, 169-177.
(36) Booker, N. A.; Keir, D.; Priestley, A. J.; Ritchie, C. B.; Sudarmana, D. L.; Woods, M. A. Water Science and Technology 1991, 23, 1703-1712.
(37) Orbell, J. D.; Godhino, L.; Bigger, S. W.; Nguyen, T. M.; Ngeh, L. N. J. Chem. Educ. 1997, 74, 1446-1448.
(38) Lin, J. J.; Wei, J. C.; Juang, T. Y.; Tsai, W. C. Langmuir 2007, 23, 1995-1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26905-
dc.description.abstract利用有機黏土與鐵離子以共沈澱法製備磁性有機黏土複合材料,並探討氧化鐵粒子與有機黏土的機制及其在原油吸附上的應用。
一、將磁性氧化鐵粒子利用逐步插層法,插層於矽酸鹽層黏土中。鈉型蒙脫土經由一系列聚醚胺鹽插層改質(稱為有機黏土),可將層間距由12 Å最高提至91 Å。利用共沈澱法結合可在低溫下分散於水中的有機黏土及磁性氧化鐵,以製備有機黏土與磁性氧化鐵之複合材料,並探討磁性氧化鐵吸附或插層於有機黏土的機制。研究發現利用層間距最大之有機黏土D4000/MMT (91 Å),因其較大的層間距可提供氧化鐵在黏土層間生成。由TEM觀察可知,氧化鐵粒子生成於黏土層間(層間距約47 Å)。
二、為了使此複合材料可作為磁性有機吸附劑,具有高的有機含量是必需的。D4000-MMT/Iron oxide複合材料由TGA測量得知,其有機含量可高達51 wt %,並可分散於甲苯中(1 wt %),進而將其應用於原油吸附。相對於複合材料的重量,最大原油吸附量可高達4倍,並維持其磁性,且氧化鐵含量僅17 wt %。
關鍵詞:磁性有機黏土、層狀矽酸鹽黏土、氧化鐵、原油、吸附、插層。
zh_TW
dc.description.abstractMagnetic and organic layered composite was prepared by the co-precipitation of organoclay with Fe(II)/Fe(Ⅲ) salts. Interaction mechanism of iron oxide particles into organoclay interlayer and their application for crude oil adsorption are studied.
Part Ⅰ: The iron oxide particles were intercalated into the layered silicate clay by stepwise intercalation. The sodium montmorillonite (Na+–MMT) was modified by a series of poly(oxyalkylene)-amine salts to yield a spatially-expanded silicates (named as Organoclay) from the original 12 Å up to 91 Å. Combining the low-temperature-dispersible Organoclay with the iron-oxide particles ultimately produced a series of organoclay/iron oxide composite by the co-precipitation method. Two different mechanisms of adsorption and intercalation were found. The use of D4000 intercalated MMT at high d spacing (91 Å) allowed the incorporation of iron-oxide in the organoclay interlayer. As a result, the composite of Fe3O4/D4000/clay at 47 Å d spacing were obtained and observed the iron-oxide particles existed in the clay gallery by TEM.
Part Ⅱ: In order to prepare a magnetic composite with functions for absorbing organics, high organic content in the clay layers is prepared. The TGA data of D4000-MMT/iron oxide composite showed the organic fraction up to 51 wt % and consequently dispersible in toluene (1 wt %). When applied for oil adsorption, the result of adsorption capacity at 4-fold of crude oil weight absorbed by the composites (by weight) was achieved. Due to the presence of iron-oxide particles (ca. 17 wt %), the oil-adsorbed Organoclay still retained the magnetic property and the compounds were movable by an applied magnetic field.

Keywords: magnetic organoclay, layered silicate, iron oxide, crude oil, adsorption, intercalation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:31:37Z (GMT). No. of bitstreams: 1
ntu-97-R95549008-1.pdf: 1450067 bytes, checksum: 21bab8e268d4524afeeaa0668c577996 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
口試委員會審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
Chapter 1 Introduction 1
1.1 Organically Modified Layered Silicate (OLS) 1
1.2 Synthesis of Magnetite 3
1.3 The History of the Layered Silicate/Iron Oxide Composites 5
1.3.1 Preparation of the Layered Silicate/Iron Oxide Composites 5
1.3.2 Application of Magnetic Particles and Composites 7
Chapter 2 Experimental 9
2.1 Materials 9
2.1.1 Iron (II) Chloride Tetrahydrate (FeCl2 • 4H2O) 9
2.1.2 Iron (Ⅲ) Chloride Hexahydrate (FeCl3 • 6H2O) 9
2.1.3 Concentrated Ammonium Hydroxide (NH4OH) 9
2.1.4 Layered Silicates 9
2.1.5 Jeffamine® Poly(oxyalkylene)amines 10
2.2 Analytic Instruments 11
2.2.1 X-ray Diffractometry (XRD) 11
2.2.2 Thermal Gravimetric Analyzer (TGA) 12
2.2.3 Transmission Electron Microscopy (TEM) 12
2.3 Experimental Procedures 12
2.3.1 Intercalation of Montmorillonite by Jeffamine®amines 12
2.3.2 Synthesis of Pure Iron Oxide 13
2.3.3 Preparation of the Organoclay/Iron Oxide (Magnetite, Fe3O4) Composites 13
2.3.4 Mixtures of Iron Ion Added Stepwise to ED2001-MMT Dispersion 14
2.3.5 Oil Adsorption Application of Organoclay/Iron oxide Composites 17
Chapter 3 Results and Discussion 18
3.1 Preparation and Characterization of Poly(oxyalkylene)amines Intercalated Montmorillonite 18
3.2 Preparation of Organoclay/Iron Oxide Composites by Using the Property of Low Critical Dispersion Temperature 19
3.3 Effect of Acidification on Organic Fraction of D2000-MMT/Iron Oxide Composites 20
3.4 Preparation of Magnetic High-Organic-Fraction Composites by Using D4000-MMT with Spatially-Expanded Basal Spacing 23
3.5 Analysis of XRD Diffraction Patterns and the Crowding-Out Effect of Iron Ion on Organoclay Composites, including D2000-MMT/Iron Oxide and ED2001-MMT/Iron Oxide 24
3.6 The Morphologies of ED2001-MMT/Iron Oxide and D2000-MMT/Iron Oxide by Transmission Electron Microscopy 27
3.7 Unique Performances of D4000-MMT/Iron Oxide Composites 30
3.8 Dispersability and Oil Adsorption Capacity of D4000-MMT and Its Composites 35
Chapter 4 Conclusion 37
References and Notes: 39

List of Tables
Table 1.1 Basal Spacing and Properties of Na+–MMT Intercalated by POP– and POE–Diamines13 2
Table 1.2 Basal Spacing, Composition, and Solvophilicity of MMT Intercalated by Poly(oxyalkylene) Amines15 3
Table 1.3 The Iron Oxides16 4
Table 3.1 Basal Spacing and Properties of Na+-MMT Intercalated by POP-and POE-Amines 18
Table 3.2 Properties of D2000-MMT/Iron Oxide Composites Prepared by Method A and Method B 22
Table 3.3 Organic Fractions of D2000-MMT/Iron Oxide Composites Prepared by Method B and Method C 22
Table 3.4 Properties of D4000-MMT/Iron Oxide Composites 24
Table 3.5 Properties of ED2001-MMT/Iron Oxide Composites 25
Table 3.6 The Maximum Adsorption Capacity of Crude Oil on Organoclay and Organoclay/Iron Oxide Composites 36

List of Figures
Figure 1.1 XRD Patterns of the Samples Z-Na+ (a), Z-Na+/Mag (b) and Z-Na+/CoFe (c) Including Insets Showing the Characteristic Reflection at 35.58 Due to the Presence of Magnetite and Co Ferrite Particles in the Corresponding Magnetic Composites 32 6
Figure 1.2 TEM Micrographs and Particle Size Distributions (% in number of particles) of Fe-Mont2 Composite (Left) and Fe-Lap2 Composite (Right) 34 7
Figure 2.1 Chemical Structures of Jeffamine® Poly(oxyalkylene)amines. 11
Figure 3.1 XRD Patterns of the Magnetite Prepared from the Conditions of (a) Room Temperature and (b) Low Temperature 20
Figure 3.2 X-ray Diffraction Patterns of (a) D2000-MMT/Iron Oxide and (b) ED2001-MMT/Iron Oxide Composites with a Weight Ratio of 83/17. Insets Show the Peaks at the Range of 2–10° 26
Figure 3.3 The Variation of d Spacing when Iron Ion Mixtures Added Stepwise to ED2001-MMT Dispersion 27
Figure 3.4 TEM Micrographs of (a) ED2001-MMT/Iron oxide (w/w = 50/50) and (b) D2000-MMT/Iron Oxide (w/w = 50/50) Composites. Arrow A: clay/organoclay; Arrow B: iron oxide particles 28
Figure 3.5 TEM Micrographs of (a) ED2001-MMT/Iron Oxide (w/w = 50/50) and (b) D2000-MMT/Iron oxide (w/w = 50/50) Composites 29
Figure 3.6 X-ray Diffraction Patterns of D4000-MMT/Iron Oxide Composites with a Weight Ratio: (a) 50/50, (b) 71/29, and (c) 83/17 31
Figure 3.7 TEM Micrographs of (a) D4000-MMT/Iron Oxide Composite (w/w = 83/17) (b) Magnified at 2.5 times 32
Figure 3.8 Photographs of 1 wt % Toluene Dispersions of D4000-MMT/Iron Oxide Composites with Weight Ratio: (a) 50/50, (b) 71/29, and (c) 83/17 35
Figure 3.9 Photographs of 4-fold the Weight of Crude Oil Adsorption of D4000-MMT/Iron Oxide Composites (w/w = 83/17). Place the Magnet Bar Next to the Complex (a) in the Begin and (b) in 15 min 36
dc.language.isoen
dc.subject氧化鐵zh_TW
dc.subject磁性有機黏土zh_TW
dc.subject層狀矽酸鹽黏土zh_TW
dc.subject原油zh_TW
dc.subject吸附zh_TW
dc.subject插層zh_TW
dc.subjectadsorptionen
dc.subjectiron oxideen
dc.subjectcrude oilen
dc.subjectlayered silicateen
dc.subjectmagnetic organoclayen
dc.subjectintercalationen
dc.title磁性奈米氧化鐵與層狀黏土之插層及吸附zh_TW
dc.titleIntercalation and Adsorption of Magnetic Iron Oxide Nanoparticles onto Layered Silicate Claysen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川(Kuo-Chuan Ho),謝國煌(Kuo-Huang Hsieh)
dc.subject.keyword磁性有機黏土,層狀矽酸鹽黏土,氧化鐵,原油,吸附,插層,zh_TW
dc.subject.keywordmagnetic organoclay,layered silicate,iron oxide,crude oil,adsorption,intercalation,en
dc.relation.page42
dc.rights.note未授權
dc.date.accepted2008-06-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
Appears in Collections:高分子科學與工程學研究所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
1.42 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved