Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26905
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍(Jiang-Jen Lin)
dc.contributor.authorWen-Hsin Changen
dc.contributor.author張文馨zh_TW
dc.date.accessioned2021-06-08T07:31:37Z-
dc.date.copyright2008-07-24
dc.date.issued2008
dc.date.submitted2008-06-24
dc.identifier.citation(1) Smith, C. R. J. Am. Chem. Soc. 1934, 56, 1561-1563.
(2) Jordan, J. W. J. Phys. Chem. 1949, 53, 294-306.
(3) Barrer, R. M.; Macleod, D. M. Trans. Faraday Soc. 1954, 50, 980-989.
(4) Barrer, R. M.; Macleod, D. M. Trans. Faraday Soc. 1955, 51, 1290-1300.
(5) Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem. Mater. 1994, 6, 1017-1022.
(6) Zhu, Z.-k.; Yin, J.; Wang, X.-y.; Qi, Z.-e. Polymer 1999, 40, 4407-4414.
(7) Fu, X.; Qutubuddin, S. Materials Letters 2000, 42, 12-15.
(8) Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807-813.
(9) Zeng, C.; Lee, L. J. Macromolecules 2001, 34, 4098-4103.
(10) Hotta, S.; Paul, D. R. Polymer 2004, 45, 7639-7654.
(11) Maiti, M.; Bandyopadhyay, A.; Bhowmick, A. K. Journal of Applied Polymer Science 2006, 99, 1645-1656.
(12) Mahadevaiah, N.; Venkataramani, B.; JaiPrakash, B. S. Chem. Mater. 2007, 19, 4606-4612.
(13) Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832-8834.
(14) Chou, C. C.; Shieu, F. S.; Lin, J. J. Macromolecules 2003, 36, 2187-2189.
(15) Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J. Macromolecules 2004, 37, 473-477.
(16) Cornell, R. M.; Schwertmann, U. The iron oxides 2ed.; Wiley-VCH: Weinheim, 2003.
(17) Hu, S. H.; Liu, T. Y.; Huang, H. Y.; Liu, D. M.; Chen, S. Y. Langmuir 2008, 24, 239-244.
(18) Cheng, F.-Y.; Su, C.-H.; Yang, Y.-S.; Yeh, C.-S.; Tsai, C.-Y.; Wu, C.-L.; Wu, M.-T.; Shieh, D.-B. Biomaterials 2005, 26, 729-738.
(19) Lin, C.-L.; Lee, C.-F.; Chiu, W.-Y. Journal of Colloid and Interface Science 2005, 291, 411-420.
(20) Enzel, P.; Adelman, N. B.; Beckman, K. J.; Campbell, D. J.; Ellis, A. B.; Lisensky, G. C. J. Chem. Educ. 1999, 76, 943-948.
(21) Lin, Y.-J.; Wang, L.; Lin, J. G.; Huang, Y. Y.; Chiu, W.-Y. Synthetic Metals 2003, 135-136, 769-770.
(22) Liu, Z. L.; Wang, X.; Yao, K. L.; Du, G. H.; Lu, Q. H.; Ding, Z. H.; Tao, J.; Ning, Q.; Luo, X. P.; Tian, D. Y.; Xi, D. Journal of Materials Science 2004, 39, 2633-2636.
(23) Franger, S.; Berthet, P.; Berthon, J. Journal of Solid State Electrochemistry 2004, 8, 218-223.
(24) Yu, W. W.; Falkner, J. C.; Yavuz, C. T.; Colvin, V. L. Chemical Communications 2004, 2306-2307.
(25) Wu, M.; Xiong, Y.; Jia, Y.; Niu, H.; Qi, H.; Ye, J.; Chen, Q. Chemical Physics Letters 2005, 401, 374-379.
(26) Ma, K.; Pierre, A. C. Clays and Clay Minerals 1992, 40, 586-592.
(27) Zou, J.; Pierre, A. C. Journal of Materials Science Letters 1992, 11, 664-665.
(28) Pierre, A. C.; Ma, K.; Barker, C. Journal of Materials Science 1995, 30, 2176-2181.
(29) Pierre, A.; Ma, K. Journal of Materials Science 1997, 32, 2937-2947.
(30) Skoutelas, A. P.; Karakassides, M. A.; Petridis, D. Chem. Mater. 1999, 11, 2754-2759.
(31) Bourlinos, A. B.; Karakassides, M. A.; Simopoulos, A.; Petridis, D. Chem. Mater. 2000 12, 2640-2645.
(32) Bourlinos, A. B.; Devlin, E.; Boukos, N.; Simopoulos, A.; Petridis, D. Clay Minerals 2002, 37, 135-141.
(33) Galindo-Gonzalez, C.; deVicente, J.; Ramos-Tejada, M. M.; Lopez-Lopez, M. T.; Gonzalez-Caballero, F.; Duran, J. D. G. Langmuir 2005, 21, 4410-4419.
(34) Szabo, T.; Bakandritsos, A.; Tzitzios, V.; Papp, S.; Korosi, L.; Galbacs, G.; Musabekov, K.; Bolatova, D.; Petridis, D.; Dekany, I. Nanotechnology 2007, 18, 285602.
(35) Oliveira, L. C. A.; Rios, R. V. R. A.; Fabris, J. D.; Sapag, K.; Garg, V. K.; Lago, R. M. Applied Clay Science 2003, 22, 169-177.
(36) Booker, N. A.; Keir, D.; Priestley, A. J.; Ritchie, C. B.; Sudarmana, D. L.; Woods, M. A. Water Science and Technology 1991, 23, 1703-1712.
(37) Orbell, J. D.; Godhino, L.; Bigger, S. W.; Nguyen, T. M.; Ngeh, L. N. J. Chem. Educ. 1997, 74, 1446-1448.
(38) Lin, J. J.; Wei, J. C.; Juang, T. Y.; Tsai, W. C. Langmuir 2007, 23, 1995-1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26905-
dc.description.abstract利用有機黏土與鐵離子以共沈澱法製備磁性有機黏土複合材料,並探討氧化鐵粒子與有機黏土的機制及其在原油吸附上的應用。
一、將磁性氧化鐵粒子利用逐步插層法,插層於矽酸鹽層黏土中。鈉型蒙脫土經由一系列聚醚胺鹽插層改質(稱為有機黏土),可將層間距由12 Å最高提至91 Å。利用共沈澱法結合可在低溫下分散於水中的有機黏土及磁性氧化鐵,以製備有機黏土與磁性氧化鐵之複合材料,並探討磁性氧化鐵吸附或插層於有機黏土的機制。研究發現利用層間距最大之有機黏土D4000/MMT (91 Å),因其較大的層間距可提供氧化鐵在黏土層間生成。由TEM觀察可知,氧化鐵粒子生成於黏土層間(層間距約47 Å)。
二、為了使此複合材料可作為磁性有機吸附劑,具有高的有機含量是必需的。D4000-MMT/Iron oxide複合材料由TGA測量得知,其有機含量可高達51 wt %,並可分散於甲苯中(1 wt %),進而將其應用於原油吸附。相對於複合材料的重量,最大原油吸附量可高達4倍,並維持其磁性,且氧化鐵含量僅17 wt %。
關鍵詞:磁性有機黏土、層狀矽酸鹽黏土、氧化鐵、原油、吸附、插層。
zh_TW
dc.description.abstractMagnetic and organic layered composite was prepared by the co-precipitation of organoclay with Fe(II)/Fe(Ⅲ) salts. Interaction mechanism of iron oxide particles into organoclay interlayer and their application for crude oil adsorption are studied.
Part Ⅰ: The iron oxide particles were intercalated into the layered silicate clay by stepwise intercalation. The sodium montmorillonite (Na+–MMT) was modified by a series of poly(oxyalkylene)-amine salts to yield a spatially-expanded silicates (named as Organoclay) from the original 12 Å up to 91 Å. Combining the low-temperature-dispersible Organoclay with the iron-oxide particles ultimately produced a series of organoclay/iron oxide composite by the co-precipitation method. Two different mechanisms of adsorption and intercalation were found. The use of D4000 intercalated MMT at high d spacing (91 Å) allowed the incorporation of iron-oxide in the organoclay interlayer. As a result, the composite of Fe3O4/D4000/clay at 47 Å d spacing were obtained and observed the iron-oxide particles existed in the clay gallery by TEM.
Part Ⅱ: In order to prepare a magnetic composite with functions for absorbing organics, high organic content in the clay layers is prepared. The TGA data of D4000-MMT/iron oxide composite showed the organic fraction up to 51 wt % and consequently dispersible in toluene (1 wt %). When applied for oil adsorption, the result of adsorption capacity at 4-fold of crude oil weight absorbed by the composites (by weight) was achieved. Due to the presence of iron-oxide particles (ca. 17 wt %), the oil-adsorbed Organoclay still retained the magnetic property and the compounds were movable by an applied magnetic field.

Keywords: magnetic organoclay, layered silicate, iron oxide, crude oil, adsorption, intercalation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:31:37Z (GMT). No. of bitstreams: 1
ntu-97-R95549008-1.pdf: 1450067 bytes, checksum: 21bab8e268d4524afeeaa0668c577996 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
口試委員會審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
Chapter 1 Introduction 1
1.1 Organically Modified Layered Silicate (OLS) 1
1.2 Synthesis of Magnetite 3
1.3 The History of the Layered Silicate/Iron Oxide Composites 5
1.3.1 Preparation of the Layered Silicate/Iron Oxide Composites 5
1.3.2 Application of Magnetic Particles and Composites 7
Chapter 2 Experimental 9
2.1 Materials 9
2.1.1 Iron (II) Chloride Tetrahydrate (FeCl2 • 4H2O) 9
2.1.2 Iron (Ⅲ) Chloride Hexahydrate (FeCl3 • 6H2O) 9
2.1.3 Concentrated Ammonium Hydroxide (NH4OH) 9
2.1.4 Layered Silicates 9
2.1.5 Jeffamine® Poly(oxyalkylene)amines 10
2.2 Analytic Instruments 11
2.2.1 X-ray Diffractometry (XRD) 11
2.2.2 Thermal Gravimetric Analyzer (TGA) 12
2.2.3 Transmission Electron Microscopy (TEM) 12
2.3 Experimental Procedures 12
2.3.1 Intercalation of Montmorillonite by Jeffamine®amines 12
2.3.2 Synthesis of Pure Iron Oxide 13
2.3.3 Preparation of the Organoclay/Iron Oxide (Magnetite, Fe3O4) Composites 13
2.3.4 Mixtures of Iron Ion Added Stepwise to ED2001-MMT Dispersion 14
2.3.5 Oil Adsorption Application of Organoclay/Iron oxide Composites 17
Chapter 3 Results and Discussion 18
3.1 Preparation and Characterization of Poly(oxyalkylene)amines Intercalated Montmorillonite 18
3.2 Preparation of Organoclay/Iron Oxide Composites by Using the Property of Low Critical Dispersion Temperature 19
3.3 Effect of Acidification on Organic Fraction of D2000-MMT/Iron Oxide Composites 20
3.4 Preparation of Magnetic High-Organic-Fraction Composites by Using D4000-MMT with Spatially-Expanded Basal Spacing 23
3.5 Analysis of XRD Diffraction Patterns and the Crowding-Out Effect of Iron Ion on Organoclay Composites, including D2000-MMT/Iron Oxide and ED2001-MMT/Iron Oxide 24
3.6 The Morphologies of ED2001-MMT/Iron Oxide and D2000-MMT/Iron Oxide by Transmission Electron Microscopy 27
3.7 Unique Performances of D4000-MMT/Iron Oxide Composites 30
3.8 Dispersability and Oil Adsorption Capacity of D4000-MMT and Its Composites 35
Chapter 4 Conclusion 37
References and Notes: 39

List of Tables
Table 1.1 Basal Spacing and Properties of Na+–MMT Intercalated by POP– and POE–Diamines13 2
Table 1.2 Basal Spacing, Composition, and Solvophilicity of MMT Intercalated by Poly(oxyalkylene) Amines15 3
Table 1.3 The Iron Oxides16 4
Table 3.1 Basal Spacing and Properties of Na+-MMT Intercalated by POP-and POE-Amines 18
Table 3.2 Properties of D2000-MMT/Iron Oxide Composites Prepared by Method A and Method B 22
Table 3.3 Organic Fractions of D2000-MMT/Iron Oxide Composites Prepared by Method B and Method C 22
Table 3.4 Properties of D4000-MMT/Iron Oxide Composites 24
Table 3.5 Properties of ED2001-MMT/Iron Oxide Composites 25
Table 3.6 The Maximum Adsorption Capacity of Crude Oil on Organoclay and Organoclay/Iron Oxide Composites 36

List of Figures
Figure 1.1 XRD Patterns of the Samples Z-Na+ (a), Z-Na+/Mag (b) and Z-Na+/CoFe (c) Including Insets Showing the Characteristic Reflection at 35.58 Due to the Presence of Magnetite and Co Ferrite Particles in the Corresponding Magnetic Composites 32 6
Figure 1.2 TEM Micrographs and Particle Size Distributions (% in number of particles) of Fe-Mont2 Composite (Left) and Fe-Lap2 Composite (Right) 34 7
Figure 2.1 Chemical Structures of Jeffamine® Poly(oxyalkylene)amines. 11
Figure 3.1 XRD Patterns of the Magnetite Prepared from the Conditions of (a) Room Temperature and (b) Low Temperature 20
Figure 3.2 X-ray Diffraction Patterns of (a) D2000-MMT/Iron Oxide and (b) ED2001-MMT/Iron Oxide Composites with a Weight Ratio of 83/17. Insets Show the Peaks at the Range of 2–10° 26
Figure 3.3 The Variation of d Spacing when Iron Ion Mixtures Added Stepwise to ED2001-MMT Dispersion 27
Figure 3.4 TEM Micrographs of (a) ED2001-MMT/Iron oxide (w/w = 50/50) and (b) D2000-MMT/Iron Oxide (w/w = 50/50) Composites. Arrow A: clay/organoclay; Arrow B: iron oxide particles 28
Figure 3.5 TEM Micrographs of (a) ED2001-MMT/Iron Oxide (w/w = 50/50) and (b) D2000-MMT/Iron oxide (w/w = 50/50) Composites 29
Figure 3.6 X-ray Diffraction Patterns of D4000-MMT/Iron Oxide Composites with a Weight Ratio: (a) 50/50, (b) 71/29, and (c) 83/17 31
Figure 3.7 TEM Micrographs of (a) D4000-MMT/Iron Oxide Composite (w/w = 83/17) (b) Magnified at 2.5 times 32
Figure 3.8 Photographs of 1 wt % Toluene Dispersions of D4000-MMT/Iron Oxide Composites with Weight Ratio: (a) 50/50, (b) 71/29, and (c) 83/17 35
Figure 3.9 Photographs of 4-fold the Weight of Crude Oil Adsorption of D4000-MMT/Iron Oxide Composites (w/w = 83/17). Place the Magnet Bar Next to the Complex (a) in the Begin and (b) in 15 min 36
dc.language.isoen
dc.subject氧化鐵zh_TW
dc.subject磁性有機黏土zh_TW
dc.subject層狀矽酸鹽黏土zh_TW
dc.subject原油zh_TW
dc.subject吸附zh_TW
dc.subject插層zh_TW
dc.subjectadsorptionen
dc.subjectiron oxideen
dc.subjectcrude oilen
dc.subjectlayered silicateen
dc.subjectmagnetic organoclayen
dc.subjectintercalationen
dc.title磁性奈米氧化鐵與層狀黏土之插層及吸附zh_TW
dc.titleIntercalation and Adsorption of Magnetic Iron Oxide Nanoparticles onto Layered Silicate Claysen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川(Kuo-Chuan Ho),謝國煌(Kuo-Huang Hsieh)
dc.subject.keyword磁性有機黏土,層狀矽酸鹽黏土,氧化鐵,原油,吸附,插層,zh_TW
dc.subject.keywordmagnetic organoclay,layered silicate,iron oxide,crude oil,adsorption,intercalation,en
dc.relation.page42
dc.rights.note未授權
dc.date.accepted2008-06-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved