請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26827完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰 | |
| dc.contributor.author | Meng-Ju Yang | en |
| dc.contributor.author | 楊孟儒 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:27:38Z | - |
| dc.date.copyright | 2008-07-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-09 | |
| dc.identifier.citation | Chapter 1
1. Klabunde, K. J. Free Atoms, Clusters, and Nanoscale Particles, Academic Press, San Diego, 1994, pp.2, 36. 2. Klabunde, K. J.; Mohs, C. Chemistry of Advanced Materials: An Overview, Wiley-VCH, New York, 1998, p.271. 3. (a) Ekimov, A. I.; Onuschenko, A. A. Sov. Phys. Semicond. 1982, 16, 775. (b) Rossetti , R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086. 4. (a) Alivisatos, A. P. Science 1996, 271, 933. (b) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. 5. (a) Henglein, A. Chem. Rev. 1989, 89, 1861. (b) Steigerwald, M. L.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183. (c) Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. Annu. Rev. Phys. Chem. 1990, 41, 477. (d) Weller, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 41. (e) Weller, H. Adv. Mater. 1993, 5, 88. (f) Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49. (g) Fendler, J. H.; Meldrum, F. C. Adv. Mater. 1995, 7, 607. 6. (a) Stroscio, J. A.; Eigler, D. M. Science 1991, 254, 1319. (b) Lieber, C. M.; Liu, J.; Sheehan, P. Angew. Chem., Int. Ed. Engl. 1996, 35, 687. 7. Rao, C. N. R.; Muller, A.; Cheetham, A. K. The Chemistry of Nanomaterials : synthesis, properties and applications , Wiley-VCH, 2004, p. 2 8. Trindade, T.; O’Brien, P.; Pickett, N. L. Chem. Mater. 2001, 13, 3843. 9. Haug, H.; Koch, S. W. Quantum theory of the optical and electronic properties of semiconductors; World Scientific Publishing Co. Pte. Ltd.: London, 1990, p. 333. 10. (a) Éfros, Al. L.; Éfros, A. L. Sov. Phys. Semicond. 1982, 16, 772. (b) Brus, L. E. J. Chem. Phys. 1983, 79, 5566. (c) Brus, L. E. J. Chem. Phys. 1984, 80, 4403. (d) Brus, L. J. Phys. Chem. 1986, 90, 2555. 11. Pankove, J. I. Optical processes in semiconductors; Dover Publications Inc.: New York, 1970. 12. Murphy, C. J. Anal. Chem. A-Pages 2002, 74, 520 A. 13. Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. 14. Surek, T. J. Cryst. Growth 2005, 275, 292. 15. Nozik, A. J. Annu. Rev. Phys. Chem. 2001, 52, 193. 16. (a)Landsberg, P. T.; Nussbaumer, H.; Willeke, G. J. Appl. Phys. 1993, 74, 1451. (b) Kolodinski, S.; Werner, J. H.; Wittchen, T.; Queisser, H. J. Appl. Phys. Lett. 1993 , 63, 2405. 17. Nozik, A. J. Inorg. Chem. 2005, 44, 6893. 18. (a) Williams, F. E.; Nozik, A. J. Nature 1984, 311, 21. (b) Benisty, H.; Sotomayor -Torres, C. M.; Weisbuch, C. Phys. Rev. B 1991, 44, 10945. (c) Bockelmann, U. ; Bastard, G. Phys. Rev. B 1990, 42, 8947. (d) Benisty, H. Phys. Rev. B 1995, 51 , 13281. (e) Boudreaux, D. S.; Williams, F.; Nozik, A. J. J. Appl. Phys. 1980, 51, 2158. (f) Williams, F.; Nozik, A. J. Nature 1978, 271, 137. 19. Nozik, A. J. Physica E 2002, 14, 115. 20. Schaller, R.; Klimov, V. Phys. Rev. Lett. 2004, 92, 186601. 21. Norris, D. J. et. al. Nano Lett. 2007, 7, 1793. 22. Klimov, V. I. Los Alomas Science 2003, 28, 214. 23. Klimov, V. I. Semiconductor and metal nanocrystals : synthesis and electronic and optical properties; Marcel Dekker, Inc., New York, 2004. 24. Kang, C. C.; Lai, C. W.; Peng, H. C. Shyue, J. J.; Chou, P. T. ACS Nano 2008, 2, 750. 25. Vandyshev, Y. V.; Dneprovskii, V. S.; Klimov, V. I.; Okorokov, D. K. JETP Lett. 1991, 54, 442. 26. Ledentsov, N. N.; Ustinov, V. M.; Egorov, A. Y.; Zhukov,A. E.; Maksimov, M. V.; Tabatadze, I. G.; Koplev, P. S. Semicond. 1994, 28, 832. 27. Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C .A.; Bawendi , M. G. Science 2000, 287, 1011. 28. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A. Science 2000, 290, 314. 29. Malko, A. V.; Mikhailovsky, A. A.; Petruska, M. A.; Hollingsworth, J. A.; Htoon, H.; Bawendi, M. G.; Klimov, V. I. Appl. Phys Lett. 2002, 81, 1303. Chapter 2 1. Murry, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. 2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. 3. (a) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183. (b) Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333 4. Yu, W.; Peng, X. Angew. Chem., Int. Ed. Engl. 2002, 41, 2368. 5. (a) Rogach, A. L.; Kornowski, A.; Gao, M.; Eychmüller, A.; Weller, H. J. Phys. Chem. B 1999, 103, 3065. (b) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. J. Phys. Chem. B 2002, 106, 7177. (c) Zang, H.; Zhou, Z.; Yang, B.; Gao, M. J. Phys. Chem. B 2003, 107, 8. 6. Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. J. Phys. Chem. B 2001, 105, 436. 7. (a) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019. (b) Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463. 8. Cao, Y. W.; Banin, U. J. Am. Chem. Soc. 2000, 122, 9692. 9. (a) Eychmuller, A.; Mews, A.; Weller, H. Chem. Phys. Lett. 1993, 208, 59. (b) Mews, A.; Eychmuller, A.; Giersig, M.; Schoos, D.; Weller, H. J. Phys. Chem. 1994, 98, 934. (c) Mews, A.; Kadavanich, A. V.; Banin, U.; Alivisatos, A. P. Phys. Rev. B 1996, 53, R13242. 10. Little, R. B.; El-Sayed, M. A.; Bryant, G. W.; Burke, S. J. Chem. Phys. 2001, 114, 1813. 11. Kim, S.; Fisher, B.; Eisler, H.-J.; Bawendi, M. J. Am. Chem. Soc. 2003, 125, 11466. 12. (a) Klimov, V. I. Semiconductor and metal nanocrystals : synthesis and electronic and optical properties; Marcel Dekker, Inc., New York, 2004. (b) Manna, L.; Scher, E. C. Alivisatos, A. P. J. Cluster Sci. 2002, 13, 521. 13. (a) Kroutvar, M.; Ducommun, Y.; Heiss, D.; Bichler, M.; Schuh, D.; Abstreiter, G.; Finley, J. J. Nature 2004, 432, 81. (b) Lee, S.; Allmen, P. V.; Oyafuso, F.; Klimeck, G. J. Appl. Phys. 2005, 97, 043706. (C) Kawabata, S. Sci. Tech. Adv. Mater. 2004, 5, 295. (d) Loss, D.; Divincenzo, D. P. Phys. Rev. A 1998, 57, 120. 14. (a) Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, O.; Rubner, M. F. Appl. Phys. Lett. 1995, 66, 1316. (b) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354. (c) Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Science 2002, 295, 1506. 15. (a) Kumar, S.; Nann, T. J. Mater. Res. 2004, 19, 1990. (b) Sun, B.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3, 961. (c) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. 16. (a) Sunder, V. C.; Eisler, H. J.; Deng, T.; Chan, Y.; Thomas, E. L.; Bawendi, M. G. Adv. Mater. 2004, 16, 2137. (b) Eisler, H. J.; Sunder, V. C.; Bawendi, M. G.; Walsh, M.; Smith, H. I.; Klimov, V. I. Appl. Phys. Lett. 2002, 80, 4614. (c) Chan , Y.; Steckel, J. S.; Snee, P. T.; Caruge, J. M.; Hodgkiss, J. M.; Nocera, D. G.; Bawendi, M. G. Appl. Phys. Lett. 2005, 86, 073102. 17. Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049. 18. Zhong, X.; Feng, Y.; Zhang, Y.; Lieberwirth, I.; Knoll, Wolfgang Small 2007, 3, 1194. 19. Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462 Chapter 3. 1. Goppert-Mayer, M. Ann. Phys., Lpz, 1931, 9, 273. 2. Peticolas, W. L. Annu. Rev. Phys. Chem. 1967, 18, 233. 3. Bhawalkar, J. D.; He, G. S.; Prasad, P. N. Rep. Prog. Phys. 1996, 59, 1041. 4. Denk, W.; Stricker, J. H.; Webb, W. W. Science 1990, 248, 73. 5. Spangler, C. W. J. Mater. Chem. 1999, 9, 2013. 6. Balton, S. A.; Dehestani, A.; Guyot-Sionnest, P.; Lin, P. C. Chem. Phys. Lett. 1994, 229, 317. 7. Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Wise, F. W.; Clark, S. W. Bruchez, M. P.; Webb, W. W. Science 2003, 300, 1434. 8. Willets, K. A.; Nishimura, S. Y.; Schuck, P. J.; Twieg, R. J.; Moerner, W. E. Acc. Chem. Res. 2005 38, 549. 9. Chung, S. J.; Maciel, G. S.; Pudavar, H. E.; Lin, T. C.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. J. Pjys. Chem. A 2002, 106, 7512. 10. Lukomska, J.; Gryczynski, I.; Malicka, J.; Makowiecz, S.; Lakowicz, J.; Gryczinski, Z. Biochem. Biophys. Res. Commun. 2005, 328, 78. 11. Blanton, S. A.; Schmit, M. E.; Hines, M. A.; Guyot-Sionnest, P. Phys. Rev. B 1996, 53, 12, 629. 12. Padilha, L. A.; Fu, J.; Hagan, D. J.; Van Stryland, E. W.; Cesar, C. L.; Barbosa, L. C.; Cruz, H. B. Optics Express 2005, 13, 6460. 13. Alivisatos, A. P. Science 1996, 271, 933. 14. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001, 291, 2115. 15. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854. 16. Yu, W. W.; Peng, X. Angew. Chem. Int. Ed. 2002, 41, 2368. 17. Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049. 18. Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333. 19. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183. 20. Huang, G. W.; Chen, C. Y.; Wu, K. C.; Ahmed, M. O.; Chou, P.T. J. Crystal Growth. 2004, 265, 250. 21. Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481. 22. Albota, M. A.; Xu, C.; Webb, W. W. Appl. Opt. 1998, 37, 7352. 23. Chang, R.; Hsu, J.-H.; Fann, W.-S.; Liang, K. K.; Chiang, C. H.; Hayashi, M.; Yu, J. Lin, S. H.; Chang, E. C.; Chuang, K. R.; Chen, S. A. Chem. Phys. Lett. 2000, 317, 142. 24. Schmelz, O.; Mews, A.; Basché, T.; Herrmann, A.; Müllen, K. Langmuir 2001, 17, 2861. 25. Striolo, A.; Ward, J.; Prausnitz, J. M.; Parak, W. J.; Zanchet, D.; Gerion, D.; Milliron, D.; Alivisatos, A. P. J. Phys. Chem. B 2002, 106, 5500. 26. Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. J. Phys. Chem. B 2002, 106, 7619. 27. Shen, Y. R. The Principles of Nonlinear Optics, Wiley: New York, 1984. 28. Lin, S. H.; Fujimura, Y.; Neusser, H. J.; Schlag, E. W. Multiphoton Spectroscopy of Molecules, Academic press, 1984. Chapter 4 4.2.5 1. Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z. L. Nano Lett. 2006, 6, 2768. 2. Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Science 2007, 316, 102. 3. Cornet, C. et. al. Phys. Rev. B 2006, 74, 035312. 4. Duval, E.; Boukenter, A.; Champagnon, B. Phys. Rev. Lett. 1986, 56, 2052. 5. Krauss, T. D.; Wise, F. W. Phys. Rev. Lett. 1997, 79, 5102. 6. Murray, D. B. et. al. J. Nanoelectron. Optoelectron. 2006, 1, 92. 7. Lamb, H. Proc. London Math. Soc. 1882, 13, 189. 8. Duval, E. Phys. Rev. B 1992, 46, 5795. 9. Chen, C.-Y.; Cheng, C.-T.; Lai, C.-W.; Hu, P.-T.; Chou, P.-T.; Chou, Y.-H.; Chiu, H.-T. Small, 2005, 1, 1215. 10. Murphy, C. J. Anal. Chem. A-Pages 2002, 74, 520 A. 11. Banerjee, S.; Jia, S.; Kim, D. I.; Robinson, R. D.; Kysar, J. W.; Bevk, J.; Herman, I. P. Nano Lett. 2006, 6, 175. 12. Rode, D. L. Phys. Rev. B 1970, 2, 4036. 13. Lee, S. I.; Noh, T. W.; Cummings, K.; Gaines, J. R. Phys. Rev. Lett. 1985, 55, 1626. 14. Saviot, L.; Murray, D. B. Phys. Rev. Lett. 2004, 93, 055506. 15. Zubritskii, V. V. Tech. Phys. 1997, 42, 639. 16. Royer, D.; Dieulesaint, E. Elastic Waves in Solids I, Springer-Verlag, Berlin, 2000, Chap. 3 . 17. Beard, M. C.; Turenr, G. M.; Schmuttenmaer, Nano Lett. 2002, 2, 983. 18. Jiang, J.; Krauss, T. D.; Brus, L. E. J. Phys. Chem. B 2000, 104, 11936. 4.3.4 1. Lamb, H. Proc. London Math. Soc. 1882, 13, 189. 2. Duval, E. Phys. Rev. B 1992, 46, 5795. 3. Murray, D. B. et. al. J. Nanoelectron. Optoelectron. 2006, 1, 92. 4. Kim, S.; Fisher, B.; Eisler, H.-J.; Bawemdi, M. J. Am. Chem. Soc. 2003, 125, 11466. 5. Duval, E. et. al. Phys. Rev. Lett. 1986, 56, 2052. 6. Kuok, M. H.; Lim, H. S.; Ng, S. C.; Liu, N. N.; Wang, Z. K. Phys. Rev. Lett. 2003, 90 , 25502. 7. Krauss, T. D.; Wise, F. W. Phys. Rev. Lett. 1997, 79, 5102. 8. Lee, S.-I.; Noh, T. W.; Cumings, K.; Gaines, J. R. Phys. Rev. Lett. 1985, 55, 1626. 9. Chen, C.-Y. et. al. Small, 2005, 1, 1215. 10. Poznyk, S. K. et. al. J. Phys. Chem. B, 2005, 109, 1094. 11. Lu, J.-Y. et. al. IEEE Photonics Technol. Lett., 2006, 18, 2254. 12. Pan, C.-L. Opt. Express, 2005, 13, 3921. 13. Rode, D. L. Phys. Rev. B, 1970, 2, 4036. 14. Deligoz, E. et. al. Physica B, 2006, 373, 124. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26827 | - |
| dc.description.abstract | 由於量子限量化效應的影響,奈米材料表現出與塊材不同的特性,諸如材料
的光電磁等物理特性,甚至因為在奈米材料其表面積對體積的比值很大,進而影 響其化學性質。本篇論文主要分成兩部分,第一部分探討奈米材料的雙光子躍遷 的特性。第二部分則探討當空間被侷限的時候。聲學聲子呈現所謂的量子化的效 應。 論文中的第一章主要是回顧了早期其他的研究群對奈米材料的基礎特性進行 探討,因為奈米材料其尺度介在巨觀塊材與分子之間,在探討其能帶結構時需考 慮限量化效應的有想,早期理論上探討引入了粒子在一維盒中的模型、有效粒子 質量等來解釋奈米材料的電子結構。另外,並舉出奈米材料在光電元件上應用的 前瞻性。第二章則是回顧文獻中合成奈米材料的方法,利用膠體化學的方式合成 了硒化鎘與硒化碲來應用在第三章雙光子吸收截面積與粒徑關係探討,接著利用 膠體化學的方式來合成硒化鎘─硒化碲核─殼奈米材料與硒化鎘,於第四章中進 行限量化的聲學聲子探討。另外嘗試用高溫裂解醋酸鋅合成粒徑單一性的氧化鋅 奈米顆粒,期望未來能探討兆赫波吸收特性。並於第二章中討論調控不同的界面 活性劑比例來進行奈米材料的形狀控制,因為特殊形狀的奈米結構在不同的光電 元件有不同的應用性與前景。 | zh_TW |
| dc.description.abstract | Part 1:
The size-dependent two photon absorption (TPA) cross section of II-VI semiconductor quantum dots (QDs) has been investigated. As the size of the QDs increased, the TPA cross section was found to be empirically related via a power-law proportionality of 3.5 and 5.6 to the diameters of CdSe and CdTe QDs. These results can be rationalized by a theoretical model of two-photon excitation in a system incorporating excitons and defects. Part 2: With spatial confinement, low dimensional systems such as QDs and nanowires (NWs) exhibit not only electronic but also acoustic energy quantization. In 1882, Lamb had already studied the acoustic normal modes confined in a homogeneous free sphere. Two types of modes, torsional and spheroidal (SPH), were derived from the stress-free boundary condition on the spherical surface. Taking advantage of the charge separation structure in the CdSe/CdTe core-shell type-II QDs, we experimentally observed and verified the existence the resonance-enhanced dipolar interaction between terahertz (THz) photons and their corresponding eigenmode (l=1). We also observed that the piezoelectricity of CdSe QDs can induced THz photon absorption related to inactive breathing mode (l=0). From our THz absorption spectrum, we found that the corresponding absorption cross section of CdSe/CdTe QDs shows a D4 (D: diameter) dependence, and the frequency of absorbed photons is inversely proportional to D of the QDs and agrees with that of dipolar active mode. The absorption peak of CdSe QDs which related to breathing mode also shows that the frequency of peak is inversely to the D of the CdSe QDs. We can covert the THz photons into a phonon of the same frequency through charge separation of CdSe/CdTe and the piezoelectricity of CdSe. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:27:38Z (GMT). No. of bitstreams: 1 ntu-97-R95223007-1.pdf: 6432739 bytes, checksum: 2c5efb2e1fda47ff073fb72bf197d9f2 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Table of Contents
謝誌……………………………………………………………………………………....i 中文摘要…………………………………………………………………………….......ii Abstract……………………………………………………………………………….iii Index of Figures………………………………………………………………………….v Index of Tables………………………………………………………………………...viii Index of Schemes...........................................................................................................viii Table of Contents……………………………………………………………………....viii Chapter 1. Basics and General Review of Nanomaterials….…………..1 1.1 Theoretical Considerations of Bulk and Nanocrystalline Semiconductors………….1 1.1.1 Bulk Semiconductors………………………………………………………………5 1.1.2 Semiconductor Nanocrystals………………………………………………………7 1.1.3 Optical Properties of Semiconductor Nanocrystals………………………………10 1.2 Semiconductor Nanocrystals for Optoelectronics………………………………….13 1.2.1 Application for Photovoltaic (PV) Cells………………………………………….13 1.2.2 Semiconductor Nanocrystals for Lasing………………………………………….20 1.3 Conclusions…...…………………………………………………………………....27 1.4 References………………………………………………………………………...28 Chapter 2. “Soft” Chemical Synthesis of Semiconductor Nanocrystals…………..31 2.1 Abstract……………………………………………………………………………31 2.2 Colloidal Method…………………………………………………………………...32 2.2.1 Synthesis of CdX (X=S, Se, Te) Nanoparticles from Organic Phase…………….32 2.2.2 Synthesis of CdX (X=S, Se, Te) Nanoparticles from Aqueous Solution…………36 2.2.3 Surface Passivation of Semiconductor Nanocrystals…………………………….37 2.2.4 Shape Control of Semiconductor Nanocrystals…………………………………..46 2.3 Experimental Section, Results and Disccussion……………………………………47 2.3.1 Chemicals………………………………………………………………………...47 2.3.2 Preparation of CdSe, CdTe ,and ZnO Quantum Dots (QDs)……………………..47 2.3.3 Preparation of Type-II CdSe/CdTe Core/Shell Nanoparticles (NPs)……………..50 2.3.4 Shape Control of CdSe Nanocrystals (NCs), CdTe NCs, and CdSe/CdTe dumbbell Structure………………………………………………………………………….53 2.4 Conclusion………………………………………………………………………….56 2.5 References…………………………………………………………………….…….56 Chapter. 3 The Correlation between Diameter and Two Photon Absorption Cross Section of II-VI Semiconductor Quantum Dots……………………….60 3.1 Abstract……………………………………………………….…………………….60 3.2 Introduction…………………………………………………………………...……60 3.3 Experimental Section, Results ,and Discussion…………………………………….62 3.4 Conclusions………………………………………………………………………...75 3.5 References………………………………………………………………………...86 Chapter. 4 The Confined Acoustic Phonon Study of II-VI Semiconductor Nanoparticles (NPs)..…………………………………………………….90 4.1 Abstract……………………………………………………………………………..90 4.2 Piezoelectricity-Induced Terahertz (THz) Photon Absorption by Confined Acoustic Phonons in Wurtzite CdSe NPs…………...………………………………………...91 4.2.1 Introduction………………………………………………………………………91 4.2.2 Experimental Section……………………………………………………………..91 4.2.3 Results and Discussion…………………………………………………………96 4.2.4 Conclusions……………………………………………………………………100 4.2.5 References………………………………………………………………………106 4.3 Resonance-Enhanced Dipolar Interaction between THz Photons and Confined Acoustic Phonons in Nanocrystals (NCs)…………………………………………107 4.3.1 Introduction………………………………………………………………….….107 4.3.2 Experimental Section, Results, and Discussion…………………………………109 4.3.3 Conclusions……………………………………………………………………...113 4.3.4 References………………………………………………………………………120 | |
| dc.language.iso | en | |
| dc.subject | 二六族核殼奈米材料 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 奈米棒 | zh_TW |
| dc.subject | 聲學聲子 | zh_TW |
| dc.subject | 雙光子吸收 | zh_TW |
| dc.subject | two photon absoptioption | en |
| dc.subject | quantum dots | en |
| dc.subject | confined acoustic phonon | en |
| dc.subject | nanorods | en |
| dc.subject | core/shell structure | en |
| dc.title | 一、二六族化合物半導體奈米粒子其粒徑與雙光子吸收截面積探討
二、二六族化合物半導體奈米材料於聲學聲子性質研究 | zh_TW |
| dc.title | 1. The Correlation between Diameter and Two Photon Absorption Cross Section of II-VI Semiconductor Quantum Dots
2. The Confined Acoustic Phonon Study of II-VI Semiconductor Nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張鎮平,林萬寅 | |
| dc.subject.keyword | 量子點,奈米棒,聲學聲子,雙光子吸收,二六族核殼奈米材料, | zh_TW |
| dc.subject.keyword | quantum dots,nanorods,core/shell structure,two photon absoptioption,confined acoustic phonon, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-10 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 6.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
