Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26824
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂育道(Yuh-Dauh Lyuu)
dc.contributor.authorCheng-Wei Wuen
dc.contributor.author吳承瑋zh_TW
dc.date.accessioned2021-06-08T07:27:29Z-
dc.date.copyright2008-07-21
dc.date.issued2008
dc.date.submitted2008-07-10
dc.identifier.citationBibliography
[1] Avellaneda, M., and Wu, L., 1999, Pricing Parisian-style options with a lattice method, International Journal of Theoretical and Applied Finance, 2, 1–16.
[2] Black, F., and Scholes, M., 1973, The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637–659.
[3] Boyle, P.P., 1977, Option: a Monte Carlo approach, Journal of Financial Economics, 4, 323–338.
[4] Boyle, P.P., and Lau, S.H., 1994, Bumping up against the barrier with the binomial method, The Journal of Derivatives, 1(4), 6–14.
[5] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., 2001, Introduction to Algorithms, 2nd edition. Cambridge, MA: The MIT Press.
[6] Costabile, M., 2002, A combinatorial approach for pricing Parisian options, Decisions in Economics and Finance, 25(2), 111–125.
[7] Cox, J.C., Ross, S.A., and Rubinstein, M., 1979, Option pricing: a simplified approach, Journal of Financial Economics, 7, 229–263.
[8] Hogg, R.V., and Tanis, E.A., 2001, Probability and Statistical Inference, 6th edition. Upper Saddle River, NJ: Prentice-Hall.
[9] Hull, J.C., 2006, Options, Futures, and Other Derivatives, 6th edition. Upper Saddle River, NJ: Prentice-Hall.
[10] Lint, J.H. Van, and Wilson, R.M., 2001, A Course in Combinatorics, 2nd edition. New York, NY: Cambridge University Press.
[11] Lyuu, Y.-D., 1998, Very fast algorithms for barrier options pricing and ballot problem, The Journal of Derivatives, 5(3), 68–79.
[12] Lyuu, Y.-D., 2002, Financial Engineering and Computation: Principles, Mathematics, Algorithms. New York, NY: Cambridge University Press.
[13] Merton, R.C., 1973, Theory of Rational Option Pricing, Bell Journal of Economics and Management Science, 4, 141–83.
[14] Michael, J.R., Schucany, W.R., and Haas, R.W., 1976, Generating random variates using transformations with multiple roots, American Statistician, 30, 88–90.
[15] Papadimitriou, C.H., 1995, Computational Complexity. Reading, MA: Addison-Wesley.
[16] Patterson, D.A., and Hennessy, J.L., 2005, Computer Organization and Design: The Hardware/Software Interface, 3rd edition. San Francisco, CA: Morgan Kaufmann.
[17] Rosen, K.H., 2003, Discrete Mathematics and Its Applications, 5th edition. New York, NY: McGraw-Hill.
[18] Silberschatz, A., Galvin, P.B., and Gagne, G., 2006, Operating System Principles, 7th edition. Hoboken, NJ: John Wiley & Sons.
[19] Tweedie, M.C.K., 1947, Functions of a statistical variate with given means, with special reference to Laplacian distributions, Proceedings of the Cambridge Philosophical Society, 43, 41–49.
[20] Wasan, M.T., 1969, First passage time distribution of Brownian motion with positive drift (Inverse Gaussian Distribution), Queen’s Papers in Pure and Applied Mathematics, No.19, Queen’s University, Kingston, Ontario.
[21] Whitmore, G..A., 1979, An inverse Gaussian model for labour turnover, Journal of the Royal Statistical Society, A142, 468–478.
[22] William, H.P., Brain, P.F., Saul, A.T., and William T.V., 1992, Numerical Recipes in C: The Art of Scientific Computing, 2nd edition. New York, NY: Cambridge University Press.
[23] 冼鏡光,2002,名題精選百則:使用C語言─技巧篇,第二版,臺北市:儒林。
[24] 陳威光,2001,選擇權:理論、實務與應用,臺北市:智勝文化。
[25] 陳威光,2001,衍生性金融商品:選擇權、期貨與交換,臺北市:智勝文化。
[26] 黃達業,2004,選擇權、期貨與其他衍生性商品,臺北縣:普林斯頓國際。
[27] 鄭守成,2002,C語言MPI平行計算程式設計,新竹市:國家高速網路與計算中心。
[28] 顏月珠,2004,應用統計學—最新課程含Microsoft Excel、SAS範例,修訂版,臺北市:臺大法律學院圖書文具部。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26824-
dc.description.abstract財務工程與金融創新在過去數十年蓬勃發展,設計出許多新金融商品,提供了風險管理所需的避險工具並促進市場效率與完整性。此財務領域的定價問題會嘗試建構數學模型推導公式解,但是由於大部分新奇衍生性金融商品契約複雜無公式能套用,必須借重電腦運算處理數值方法及模擬價格,因此計算機科學在此有其可施展之處。本篇論文探討巴黎選擇權評價方法即包含財務理論、機率統計、離散數學、計算複雜度、演算法設計與分析以及平行處理等議題。
巴黎選擇權為路徑相關選擇權,迄今尚無封閉公式解存在,為此我們提出兩種快速財務演算法。首先以Costabile 於2002年建立在離散結構二項樹狀模型下的組合方法為基礎去評價巴黎選擇權,再將此方法稍加修改可把原本的時間複雜度由O(n^3)成功推進至O(n^2);若是組合數已給定的情況下,空間複雜度亦由O(n^2)減少到O(n)。另外,在蒙地卡羅模擬法方面,我們引進逆高斯機率分配並結合其抽樣,可減少時間切割的期數而縮短計算時間。因為蒙地卡羅法的路徑模擬有各自獨立的特性,很容易使用平行運算處理。今日多核心處理器大行其道這不失為提高效率的方法,對此我們也做了相關的說明並加以應用。
我們以C語言實作論文中的財務演算法,執行於自行建構的高效能叢集運算平台。同步處理模擬之計算量,俾能有效使用系統效能。
zh_TW
dc.description.abstractFinancial engineering and financial innovation flourished in last decades. We have developed many new financial products to provide hedge instruments for risk management, and promoted market efficiency and completeness. The pricing problems of this financial field will try to build mathematical models and derive analytic pricing formulas. But most exotic derivatives are too complicated to derive formulas. We must use computers to handle numerical methods and simulations, so computer science can give them a favor. This thesis discusses pricing of Parisian options and includes a lot of subjects: financial theory, probability & statistics, discrete mathematics, computational complexity, design & analysis of algorithms, and parallel processing.
Parisian options are path-dependent options and their closed-form solutions are not available up to now. We propose two fast financial algorithms to solve it. First we price Parisian options based on a combinatorial approach in binomial tree by Costabile in 2002. To refine Costabile’s algorithm, time complexity O(n^3) can be reduced to O(n^2); If binomial coefficients are given, the space complexity O(n^2) could be reduced to O(n). Second on Monte Carlo simulation, we introduce the inverse Gaussian distribution and its sampling method. To combine simulations and the inverse Gaussian distribution sampling, it can reduce divided time intervals to save computational time. Because the paths generated by Monte Carlo simulation are independent, it is easy to apply parallel processing. Nowadays multi-core processors are very popular, it is also a good idea to enhance computational efficiency. We give some descriptions and applications on it.
All financial algorithms in this thesis are implemented in the C programming language. We execute the programs on our high-performance computing clustered platform, and deal with simulation jobs synchronously. Then the system can be fully exploited.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:27:29Z (GMT). No. of bitstreams: 1
ntu-97-R95922111-1.pdf: 1999013 bytes, checksum: c5908ca3e91621474da4be72e728c6f6 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
1. Introduction 1
1.1 Options 1
1.2 Barrier and Parisian Options 2
1.3 Thesis Structure 3
2. Fundamental Concepts 4
2.1 Wiener Process 4
2.2 Black-Scholes Option Pricing Model 4
2.3 Risk-Neutral Valuation 5
2.4 Binomial Option Pricing Model 6
3. Trees with Combinatorial Method in Pricing 9
3.1 Combinatorial Methods 9
3.2 Technique for Handling Large Numbers 11
3.3 Costabile’s Algorithm 11
3.4 An Improved Algorithm 18
3.5 General Case 22
3.6 Numerical Results 23
4. Monte Carlo Simulation 25
4.1 Crude Monte Carlo Simulation 25
4.2 Inverse Gaussian Distribution 27
4.3 Simulation with the Inverse Gaussian Distribution 30
4.4 General Case 34
4.5 Parallel Processing 34
4.6 Numerical Results 36
5. Conclusions 37
Bibliography 38
dc.language.isoen
dc.subject組合方法zh_TW
dc.subject巴黎選擇權zh_TW
dc.subject演算法zh_TW
dc.subject蒙地卡羅模擬法zh_TW
dc.subject障礙選擇權zh_TW
dc.subject逆高斯機率分配zh_TW
dc.subject平行處理zh_TW
dc.subject選擇權評價zh_TW
dc.subject二項樹模型zh_TW
dc.subjectParisian optionsen
dc.subjectbarrier optionsen
dc.subjectoption pricingen
dc.subjectalgorithmen
dc.subjectbinomial tree modelen
dc.subjectcombinatorial methoden
dc.subjectMonte Carol simulationen
dc.subjectinverse Gaussian distributionen
dc.subjectparallel processingen
dc.title評價巴黎選擇權之財務演算法:組合學、模擬法與平行處理zh_TW
dc.titlePricing Parisian Options: Combinatorics, Simulation, and Parallel Processingen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴天時(Tian-Shyr Dai),金國興(Guo-Xing Jin)
dc.subject.keyword巴黎選擇權,障礙選擇權,選擇權評價,演算法,二項樹模型,組合方法,蒙地卡羅模擬法,逆高斯機率分配,平行處理,zh_TW
dc.subject.keywordParisian options,barrier options,option pricing,algorithm,binomial tree model,combinatorial method,Monte Carol simulation,inverse Gaussian distribution,parallel processing,en
dc.relation.page39
dc.rights.note未授權
dc.date.accepted2008-07-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
1.95 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved