請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26823完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Tzu-Ching Yang | en |
| dc.contributor.author | 楊子慶 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:27:26Z | - |
| dc.date.copyright | 2008-07-17 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-10 | |
| dc.identifier.citation | Akimenko, M.A., Ekker, M., Wegner, J., Lin, W., Westerfield, M., 1994. Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J. Neurosci. 14, 3475–3486.
An, M., Luo, R., Henion, P.D., 2002. Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J. Comp. Neurol. 446, 67–275. Aoki, Y. et al., 2003. Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev. Biol. 259, 19–33. Aruga, J., Tohmonda, T., Homma, S., and Mikoshiba, K., 2002. Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev. Biol. 244, 329–341. Aybar, M., Nieto, M., Mayor, R., 2003. Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130, 483–494. Bang, A.G., Papalopulu, N., Goulding, M.D., Kintner, C., 1999. Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev. Biol. 212, 366–380. Badano, J.L., Mah, A.K., Beales, P.L., Davidson, W.S. et al. (2004). Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev. 18: 1630-1642. Barrallo-Gimeno, A., Holzschuh, J., Driever, W., Knapik, E.W., 2003. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development 131, 1463-1477 Batlle, E. et al., 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biol. 2, 84–89. Bellmeyer, A., Krase, J., Lindgren, J., LaBonne, C., 2003. The protooncogene c-myc is an essential regulator of neural crest formation in Xenopus. Dev. Cell 4, 827–839 . Bolós, V. et al., 2002. The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with snail and E47 repressors. J. Cell Sci. 116, 499–511. Bonstein, L., Elias, S., Frank, D., 1998. Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos. Dev. Biol. 193, 156–168. Brewster, R., Lee, J., Ruiz i Altaba, A., 1998. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393, 579–83. Britsch, S. et al., 2001. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78. Cano, A., Pérez-Moreno, M. A., Rodrigo, M.., Locascio, A., Blanco, M. J., del Barrio, M.G., Portillo, F., M., Nieto, M. A., 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76–83. Carl, T., Dufton, C., Hanken, J., Klymkowsky, M., 1999. Inhibition of neural crest migration in Xenopus using antisense slug RNA. Dev. Biol. 213, 101–115. Carney, T. J., Dutton, K. A., Greenhill, E., Delfino-Machin, M., Dufourcq, P., Blader, P., Kelsh, R., 2006. A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 133, 4619-4630. Chavrier, P. and Gound, B., 1999. The role of ARF and rab GTPases in membrane transport. Curr. Opin. Cell Biol 11: 466-475. Cheung, M., Chaboissier, M.C., Mynett, A., Hirst, E., Schedl, A., Briscoe, J., 2005. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev. Cell 8, 179–192. Chiang, E. F. et al., 2001. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol. 231, 149–163. Cheng, Y., Cheung, M., Abu-Elmagd, M. M., Orme, A., Scotting, P. J., 2000. Chick sox10, a transcription factor expressed in both early neural crest cells and central nervous system. Brain Res. Dev. Brain Res. 121, 233–241. Chiang, A.P., Nishimura, D., Searby, C., Elbedour, K., Carmi, R., Ferguson, A.L., Secrist, J., Braun, T., Casavant, T., Stone, E.M. et al., 2004. Comparative genomic analysis identifies an ADP-ribosylation factor like gene as the cause of Bardet-Biedl syndrome (BBS3). Am. J. Hum. Genet. 75: 475-484. Coffman, C. R., Skoglund, P., Harris, W. A., Kintner, C. R., 1993.Expression of an extracellular deletion of Notch diverts cell fate in Xenopus embryos. Cell 73, 659–671. Cole, M. D., McMahon, S. B., 1999. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18, 2916–2924. Cornell, R. A., Eisen, J. S., 2002. Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129, 2639–2648. del Barrio, M., Nieto, M., 2002.Overexpression of Snail family members highlights their ability to promote chick neural. Development 129, 1583-1593. Dutton, K. A. et al., 2001. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128, 4113–4125. Dottori, M., Gross, M. K., Labosky, P., Goulding, M., 2001. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128, 4127–4138. Dorsky, R.I., Moon, R.T., Raible, D.W., 1998. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370–373. Dutton, K.A., Pauliny, A., Lopes, S.S., Elworthy, S., Carney, T.J., Rauch, J., Geisler, R., Haffter, P., Kelsh, R.N., 2001. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128, 4113–4125. Endo, Y., Osumi, N., Wakamatsu, Y., 2002. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 129, 863–873. Fan, Y., Esmail, M.A., Analsley, S.J., Blacque, O.E., Boroevich, K., Ross, A.J., Moore, S.J., Badano, J., May-Simera, H., Compton, D.S., 2004. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat. Genet. 36: 989-993. Fashena, D., Westerfield, M., 1999. Secondary Motoneuron Axons Localize DM-GRASP on Their Fasciculated Segments. THE JOURNAL OF COMPARATIVE NEUROLOGY 406:415–424 Feledy, J.A., Beanan, M.J., Sandoval, J.J., Goodrich, J.S., Lim, J.H., Matsuo-Takasaki, M., Sato, S.M., Sargent, T.D., 1999. Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1. Dev. Biol. 212, 455–464. Furthauer, M., Thisse, C., Thisse, B., 1997. A role for FGF-8 in the dorsoventral patterning of the zebrafish gastrula. Development 124, 4253–4264 . Garcia-Castro, M.I., Marcelle, C., Bronner-Fraser, M., 2002. Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851. Glavic, A., Silva, F., Aybar, M.J., Bastidas, F., Mayor, R., 2004. Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Developonment 131, 347–359. Goulding, M.D., Lumsden, A., Gruss, P., 1993. Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development 117, 1001–1016. Hanna, L. A., Foreman, R. K., Tarasenko, I. A., Kessler, D. S., Labosky, P. A., 2002. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16, 2650–2661. His, W. Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei. (F. C. W. Vogel, Leipzig, 1868). Honoré, S., Aybar, M., Mayor, R., 2003. Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev. Biol. 260, 79–96. Horstadius, S., 1950. The Neural Crest. Oxford Univ. Press, Oxford. Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J., Tsai, H. J., 2003. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30– 40. Ikenouchi, J., Matsuda, M., Furuse, M., Tsukita, S., 2003. Regulation of tight junctions during the epitheliummesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J. Cell Sci. 116, 1959–1967. Ingley, E., Williams, J. H., Walker, C. E., Tsai, S., Colley, S., Sayer, M. S., Tilbrook, P. A., Sarna, M., Beaumont, J. G., and Klinken, S. P., 1999. A novel ADP-ribosylation like factor (ARL-6), interacts with the protein-conducting channel SEC61b subunit. FEBS Lett. 459: 69–74. Kahn, R. A., Cherfi, J., Elias, M., Lovering, R. C., Munro, S., Schurmann, A., 2006. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. Jounal of cell biology, 172, 645-650. Kaji, T. and Artinger, K. B., 2004. dlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula. Dev. Biol. 276, 523– 540 Kelsh, R.N., Dutton, K., Medlin, J., Eisen, J.S., 2000. Expression of zebrafish fkd6 in neural crest-derived glia. Mech. Dev. 93, 161–164. Kelsh, R. N., Raible, D.W., 2002. Specification of zebrafish neural crest. Results Probl Cell Differ 40:216–236. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310 Knight, R.D., Nair, S., Nelson, S.S., Afshar, A., Javidan, Y., Geisler, R., Rauch, G.J., Schilling, T.F., 2003. Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 130, 5755– 5768. Knight, R.D., Javidan, Y., Nelson, S., Zhang, T., Schilling, T., 2004. Skeletal and pigment cell defects in the lockjaw mutant reveal multiple roles for zebrafish tfap2a in neural crest development. Dev. Dyn. 229, 87– 98. Kos, R., Reedy, M., Johnson, R., Erickson, C., 2001. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128, 1467–1479. LaBonne, C., Bronner-Fraser, M., 1998. Neural crest induction in Xenopus: evidence for a two signal model. Development 125, 2403–2414. LaBonne, C., Bronner-Fraser, M., 2000. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent. Dev. Biol. 221, 195–205. Lin, C.Y., Huang, P.H., Lee, F.J., 2002. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J. Cell Sci. 115: 4433-4445. Lin, C.Y., Huang, P.H., Liao, W.L., Cheng, H.J., Huang, C.F., Kuo, J.C., Patton, W.A., Massenburg, D., Moss, J., Lee, F.J., 2000. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J. Biol. Chem. 275: 37815-37823. Lister, J. A., Cooper, C., Nguyen, K., Modrell, M., Grant, K., Raible, D. W., 2006. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev. Biol. 290, 92–104. Liu, Y., Helms, A.W., Johnson, J.E., 2004. Distinct activities of Msx1 and Msx3 in dorsal neural tube development. Development 131, 1017–1028. Lowe, S.L., Wong, S.H., Hong, W., 1996. The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J. Cell Sci. 109: 209-220. Lu, L., Horstmann, H., Ng, C., Hong, W., 2001. Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J. Cell Sci. 114: 4543-4555. Luo, T., Matsuo-Takasaki, M., Sargent, T.D., 2001. Distinct roles for distal-less genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus. Mol. Reprod. Dev. 60, 331–337. Luo, T., Matsuo-Takasaki, M., Lim, J.H., Sargent, T.D., 2001. Differential regulation of Dlx gene expression by a BMP morphoge-netic gradient. Int. J. Dev. Biol. 45, 681–684. Luo, T., Matsuo-Takasaki, M., Thomas, M.L., Weeks, D.L., Sargent, T.D., 2002. Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus. Dev. Biol. 245, 136–144. Luo, T., Lee, Y. H., Saint-Jeannet, J. P., Sargent, T. D., 2003. Induction of neural crest in Xenopus by transcription factor AP2. Proc. Natl Acad. Sci. USA 100, 532–537. Marchant, L., Linker, C., Ruiz, P., Guerrero, N., Mayor, R., 1998. The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev. Biol. 198, 319–329. Mansouri, A., Gruss, P., 1998. Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech. Dev. 78, 171–178. Mayor, R., Guerrero, N., Martinez, C., 1997. Role of FGF and noggin in neural crest induction. Dev. Biol. 189, 1–12. McLarren, K.W., Litsiou, A., Streit, A., 2003. DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev. Biol. 259, 34–47. Meulemans, D., Bronner-Fraser, M., 2004. Gene-Regulatory Interactions Review in Neural Crest Evolution and Development. Dev. Cell, 7, 291–299, Meulemans, D., McCauley, D., Bronner-Fraser, M., 2003. Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution. Dev. Biol. 264, 430–442. Minchin, J. E. N. and Hughes, S. M., 2008. Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest. Dev. Biol. in press Mitchell, P., Timmons, P., Herbert, J., Rigby, P., Tijan, R., 1991. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 5, 105–119. Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., Sasai, Y., 1998. Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579–587. Mollaaghababa, R., Pavan, W. J., 2003. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22, 3024–3034. Monsoro-Burq, A.H., Fletcher, R.B., Harland, R.M., 2003. Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130, 3111–3124. Morgan, R., Sargent, M.G., 1997. The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes. Development 124, 2751–2760. Mori-Akiyama, Y., Akiyama, H., Rowitch, D. H., de Crombrugghe, B., 2003. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl Acad. Sci. USA 100, 9360–9365 . Moss, J., Vaughan, M., 1995. Structure and function of ARF proteins: Activators of cholera toxin and critical components of intracellular vesicular transport processes. J. Biol. Chem. 270: 12327-12330. Nakata, K., Nagai, T., Aruga, J., Mikoshiba, K. 1997. Xenopus Zic3, a primary regulator both in neural and neural crest develop- ment. Proc. Natl. Acad. Sci. USA 94, 11980–11985. Nakata, K., Koyabu, Y., Aruga, J., Mikoshiba, K., 2000. A novel member of the Xenopus Zic family, Zic5, mediates neural crest development. Mech. Dev. 99, 83–91. Nasevicius, A., Ekker, S.C., 2000. Effective targeted gene ‘knockdown’ in zebrafish. Nature Genetics. 26, 216-220. Neuhauss, S. C. F., Solnica-Krezel, L., Schier, A. F., Zwartkruis, F., Stemple, D. L., Malicki, J., Abdelilah, S., Stainier, D. Y. R., Driever, W., 1996. Mutations affecting craniofacial development in zebrafish. Development 123, 357-367. Nguyen, V.H., Schmid, B., Trout, J., Connors, S.A., Ekker, M., Mullins, M.C., 1998. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev. Biol. 199, 93–110. Nieto, M., Sargent, M., Wilkinson, D., Cooke, J., 1994. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835–839 . Nomura, N., Nagase, T., Miyajima, N., Sazuka, T., Tanaka, A., Sato, S., Seki, N., Kawarabayasi, Y., Ishikawa, K., and Tabata, S. (1994). Prediction of the coding sequences of unidentified human genes. The coding sequences of 40 new genes (KIAA0041–KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 1: 223–229. O’Brien, E. K., d’Alencon, C., Bonde, G., Li, W., Schoenebeck, J., Allende, M. L., Gelb, B. G., Yelon, D., Eisen, J. S., Cornell, R. A., 2004. Transcription factor Ap-2a is necessary for development of embryonic melanophores, autonomic neurons and pharyngealskeleton in zebrafish. Dev. Biol. 265 246–261 Odenthal, J., Nusslein-Volhard, C., 1998. Fork head domain genes in zebrafish. Dev. Genes Evol. 208, 245–258. Panic, B., Whyte, L.R.C., Munro, S., 2003. The Arf-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13: 405-410. Pera, E., Kessel, M., 1999. Expression of DLX3 in chick em bryos. Mech. Dev. 89, 189–193. Pettersson, M., Bessonova, M., Gu, H. F., Groop, L. C., Jonsson, J. I., 2000. Characterization, Chromosomal Localization, and Expression during Hematopoietic Differentiation of the Gene Encoding Arl6ip, ADP-Ribosylation-like Factor-6 Interacting Protein (ARL6). Genomics 68, 351–354 Phillips, B. T., Kwon, H. J., Melton, C., Houghtaling, P., Fritz, A., Riley, B. B., 2006. Zebrafish msxB, msxC and msxE function together to refine the neural–nonneural border and regulate cranial placodes and neural crest development. Dev. Biol. 294 , 376–390 Rehberg, S. et al., 2002. Sox10 is an active nucleocytoplasmic shuttle protein, and shuttling is crucial for Sox10-mediated transactivation. Mol. Cell. Biol. 22, 5826–5834. Robinson, G.W., Mahon, K.A., 1994. Differential and overlap ping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for distal-less homeobox genes in craniofacial development. Mech. Dev. 48, 199–215. Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. 2007. p53 activation by knockdown technologies. PLoS Genet. 3: e78. doi: 10.1371/journal.pgen.0030078. Saint-Jeannet, J.P., He, X., Varmus, H.E., Dawid, I.B., 1997. Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc. Natl. Acad. Sci. USA 94, 13713–13718. Sasai, Y., De Robertis, E.M., 1997. Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20. Sasai, N., Mizuseki, K., Sasai, Y., 2001. Requirement of FoxD3 class signaling for neural crest determination in Xenopus. Development 128, 2525–2536. Schilling, T.F., Kimmel, C.B., 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483–494. Schurmann, A., Koloins, S., Jacobs, S., Saftig, P., Krauss, S., Wennemuth, G., Kluge, R., Joost, H.G., 2002. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factor-like 4 (Arl4) gene. Mol Cell Biol. 22: 2761-2768 Setty, S.R.G., Ehin, S.M., Yoshino, A., Marks, M.S., Burd, C.G., 2003. Golgi recruitment of GRIP domain proteins by Arf-like GTPase1 is regulated by the Arf-like GTPase3. Curr. Biol. 13: 401-404. Shen, H. et al., 1997. Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominances and limb buds. Dev. Biol. 188, 248–266. Snape, A.M., Winning, R.S., Sargent, T.D., 1991. Transcription factor AP-2 is tissue-specific in Xenopus and is closely related or identical to keratin transcription factor 1 (KTF-1). Development 113, 283–293. Southard-Smith, E. M., Kos, L., Pavan, W. J., 1998. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nature Genet. 18, 60–64. Spokony, R., Aoki, Y., Saint-Germain, N., Magner-Fink, E., Saint-Jeannet, J.P., 2002. The transcription factor Sox9 is required for canial neural crest development in Xenopus. Development 129, 421–432. Sperber, M. S., Saxena, V., Hatch, G., Ekker, M., 2008. Zebrafish dlx2a contributes to hindbrain neural crest survival, is necessary for differentiation of sensory ganglia and functions with dlx1a in maturation of the arch cartilage elements. Dev. Biol. 314, 58-70. Stewart, R.A., Arduini, L.B., Berghmans, S., George, R. E., Kanki, J. P., Henion, P. D., Look, A. T., 2006. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Dev. Biol. 292 174–188 Sun, X., Zhang, R., Lin, X., and Xu, X., 2008. Wnt3a Regulates the Development of Cardiac Neural Crest Cells by Modulating Expression of crip2 in Rhombomere 6. Circ. Res. 102:0-0. Sutton, J. et al., 1996. Genesis, a winged helix transcriptional repressor with expression restricted to embryonic stem cells. J. Biol. Chem. 271, 23126–23133. Suzuki, A., Ueno, N., Hemmati-Brivanlou, A., 1997. Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037–3044. Takada, T., Iida, K., Sasaki, H., Taira, M., Kimura, H., 2005. Expression of ADP-ribosylation factor (ARF)-like protein 6 during mouse embryonic development. Int. J. Dev. Biol. 49: 891-894. Takahashi, K., Nuckolls, G.H., Takahashi, I., Nonaka, K., Nagata, M., Ikura, T., Slavkin, H.C., Shum, L., 2001. Msx2 is a repressor of chondrogenic differentiation in migratory cranial neural crest cells. Dev. Dyn. 222, 252–262. Thisse, C., Thisse, B., Postlethwait, J.H., 1995. Expression of snail2, a second member of the zebrafish snail family, in cephalic mesendoderm and presumptive neural crest of wild-type and spadetail mutant embryos. Dev. Biol. 172, 86–99. Tobin, J. L., Franco, M. D., Eichers, E., May-Simera, H., Garcia, M., Yan, J., Quinlan, R., Justice, M. J., Hennekam, R. C., Briscoe, J., Tada, M., Mayor, R., Burns, A. J., Lupski, J. R., Hammond, P., Beales, P. L., 2008. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet–Biedl syndrome. Proc. Natl. Acad. Sci. USA, 105, 6714–6719. Tribulo, C., Aybar, M.J., Nguyen, V.H., Mullins, M.C., Mayor, R., 2003. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130, 6441–6452. Wakamatsu, Y., Endo, Y., Osumi, N., Weston, J.A., 2004. Multi ple roles of Sox2, an HMG-box transcription factor in avian neural crest development. Dev. Dyn. 229, 74–86. Weinstein, D.C., Hemmati-Brivanlou, A., 1999. Neural induction. Annu. Rev. Cell Dev. Biol. 15, 411–433. Woda, J.M., Pastagia, J., Mercola, M., Artinger, K.B., 2003. Dlx proteins position the neural plate border and determine adjacent cell fates. Development 130, 331–342. Yan, Y. L. et al., 2002. A zebrafish sox9 gene required for cartilage morphogenesis. Development 129, 5065–5079. Yang, L., Zhang, H.L., Hu, G.Z., Wang, H.Y., Abate-Shen, C., Shen, M.M., 1998. An early phase of embryonic Dlx5 expression defines the rostral boundary of the neural plate. J. Neurosci. 18, 8322–8330. Yelick, P. C., Schilling, T. F., 2002. Molecular dissection of craniofacial development using zebrafish. Crit Rev Oral Biol Med 13:308–322. Yin-Xiong Li, Y. X., Zdanowicz, M., Young, L., Kumiski, D., Leatherbury, L., Kirby M. L., 2003. Cardiac Neural Crest in Zebrafish Embryos Contributes to Myocardial Cell Lineage and Early Heart Function. Dev. Biol. 257 127–139 Zerial, M., and Huber, L.A., 1995. Guidebook to the small GTPases. Oxford University Press. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26823 | - |
| dc.description.abstract | ADP-ribosylation-like factor-6 interacting protein (Arl6ip) 是Arl6 的interacting protein。Arl6屬於small ADP ribosylation fator GTP-binding proteins,在intracellular traffic 中為主要的 regulators。Fan et al. (2004) 證實當 Arl6 缺失時會產生人類遺傳疾病 Bardet-Biedl syndrome type 3 (BBS3) 。BBS3是一種 multisystemic disorder會同時發生 obesity, blindness, polydactyly, renal abnormalities 和 cognitive impairment 的症狀。此外當 neural crest migration被抑制時,也會造成 BBS 中的craniofacial dysmorphology 和腸道神經缺失的 Hirschsprung’s disease (Tobin et al., 2008),代表與BBS相關的基因必定和 neural crest 的發育有著密切的關係。雖然 已知 Arl6ip 在 in vitro 的功能可能和造血細胞maturation中蛋白質運送、membrane trafficking、細胞訊息傳遞有關,但是在 in vivo 胚胎發育的功能目前並沒有相關研究指出,因此我們想知道當 Arl6ip 缺失時是否同樣會造成 BBS,並且 Arl6ip 是否參與了 neural crest 的發育。本篇研究中我們在斑馬魚胚胎利用專一性的antisense morpholino oligonucleotides (MO) 抑制 Arl6ip轉譯,neural crest衍生物如軟骨, cranial ganglia, peripheral neurons 和心臟的發育出現嚴重缺失,和 BBS 症狀非常相似。Whole mount in situ hybridization 結果中可以看到早期 neural plate border specifiers 如 msxb, dlx3b 和 pax3 表現並沒有產生異常;但 neural crest specification genes 如 foxd3, snail1b和 sox10 則嚴重減少,顯示出 Arl6ip 為 neural crest 特化所必要的因子,但並不影響 neural crest induction。Arl6ip 缺失胚胎中表現在遷移中 cranial 和 trunk neural crest cells 的crestin 和 sox10 缺失,代表 Arl6ip 影響了 neural crest 的遷移。最後利用 TUNEL assay 實驗,pre-migratory的 neural crest 發生了不正常的 apoptosis 現象,表示Arl6ip 影響了pre-migratory neural crest 的 survival。此外在 Arl6ip 缺失胚胎中,可以看到心臟不正常的 looping 和心跳緩慢的表型,而心臟發育異常的情形可能是由 cardiac pre-migratory neural crest cells 缺失所造成。綜合以上結果, Al6ip影響了 neural crest 的特化, migration及survival,同時也為 neural crest derivatives 分化所必須。本篇也是首次來討論arl6ip 在neural crest 發育時所扮演的功能。 | zh_TW |
| dc.description.abstract | ADP-ribosylation-like factor-6 interacting protein (Arl6ip) is an interacting protein of Arl6 which is one of the small ADP ribosylation factor GTP-binding proteins that are major regulators in intracellular traffic. Fan et al. (2004) identified Arl6 as the gene underlying Bardet-Biedl syndrome type 3 (BBS3), a multisystemic disorder characterized by obesity, blindness, polydactyly, renal abnormalities and cognitive impairment. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in BBS (Tobin et al., 2008). It means that BBS associated genes must involve in neural crest development. Although the in vitro function of Arl6ip gene is suggested as protein transport, membrane trafficking, or cell signaling during hematopoietic maturation, the in vivo roles that alr6ip plays in BBS and neural crest development are totally unknown. Here, we demonstrated that when Arl6ip function was lost by injecting the zebrafish embryos an antisense morpholino oligonucleotides (MO) which inhibited Arl6ip mRNA translation specifically, the neural crest derivatives, such as cartilage, cranial ganglia, peripheral neurons, and heart, were defective. These defects are similar to Bardet-Biedl syndrome. The expressions of neural plate border specifiers, msxb, dlx3b, and pax3 were normal, but the expression of neural crest specification genes, foxd3, snail1b, and sox10 were reduced, implicating Arl6ip is essential for neural crest specification, but not for neural crest induction. Furthermore, crestin and sox10, which were expressed in the cranial and trunk migrating neural crest cells, were also decreased, suggesting that Arl6ip is required for neural crest migration. In addition, apoptosis was apparent occurrence in the pre-migratory neural crest cells, indicating a critical role for arl6ip in the survival of neural crest cells. Interestingly, we noticed that the hearts of the Arl6ip-MO-injected embryos were failure to undergo normal looping and the function of heart was depressed. This defective heart may result from the loss of cardiac pre-migratory neural crest cells. Taken together, we conclude that Arl6ip is not only required for neural crest specification, survival, and migration, but also for neural crest derivatives differentiation. This is the first report that demonstrates the in vivo function of Arl6ip during neural crest development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:27:26Z (GMT). No. of bitstreams: 1 ntu-97-R95b43024-1.pdf: 3181507 bytes, checksum: 30b30ef45488dbc793792fb43c0173a8 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要------------------------------------------- 1
英文摘要------------------------------------------- 3 前言------------------------------------------------- 5 實驗材料與方法---------------------------------- 15 結果------------------------------------------------- 23 討論------------------------------------------------- 30 參考文獻------------------------------------------- 39 圖---------------------------------------------------- 56 附錄------------------------------------------------- 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 發育 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | arl6ip | zh_TW |
| dc.subject | neural crest | zh_TW |
| dc.subject | arl6ip | en |
| dc.subject | zebrafish | en |
| dc.subject | neural crest | en |
| dc.subject | development | en |
| dc.title | 斑馬魚 ADP-ribosylation-like factor-6 interacting protein 在 neural crest 發育之角色 | zh_TW |
| dc.title | ADP-ribosylation-like factor-6 interacting protein is required for neural crest development in zebrafish embryos | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李芳仁,游智凱,鄭邑荃 | |
| dc.subject.keyword | 斑馬魚,arl6ip,neural crest,發育, | zh_TW |
| dc.subject.keyword | zebrafish,arl6ip,neural crest,development, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
