請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26780完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(Chih-Chung Yang) | |
| dc.contributor.author | Dong-Ming Yeh | en |
| dc.contributor.author | 葉東明 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:25:16Z | - |
| dc.date.copyright | 2008-07-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-16 | |
| dc.identifier.citation | [1-1] S. Tanaka, H. Yoshiyama, J. Nishiura, S. Ohshio, H. Kawakami, and H. Kobayashi, “Bright white-light electroluminescence based on nonradiative energy transfer in Ce- and Eu-doped SrS thin films,”Appl. Phys. Lett. 51, 1661 (1987).
[1-2] J. Y. Tsao, An OIDA Technology Roadmap Update 2002. [1-3] S. Nakamura, S. P. DenBaars, J. S. Speck, M. C. Schmidt, K. C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, H. Sato, H. Asamizu, A. Tyagi, H. Zhong, H. Masui, N. N. Fellows, M. Iza, T. Hashimoto, and K. Fujito, “Current status of GaN-based nonpolar/semipolar/polar blue and white LEDs” White LEDs-07, Tokyo, Japan, Nov. 26-30 (2007). [1-4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Japanese Journal of Applied Physics, Part 2, 35, L74-L76, (1996). [1-5] S. Nakamura, “Characteristics of InGaN multi-quantum-well-structure laser diodes,” Mater. Res. Soc. Proc. 449, 1135, (1996). [1-6] F. A. Ponce, and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386, 351, (1997). [1-7] E. Monroy, F. Call, E. Munoz, and F. Omnes, III-Nitride Semiconductors: Application and Devices, edited by E. Yu and M. Manasreh (Gordon and Breach), New York, (2000). [1-8] E. Munoz, E. Monroy, J. Pau, F. Calle, F. Omnes, and P. Gibart, “III-nitrides and UV detection, ” J. Phys.:Condens. Matter 13, 7115 (2001). [1-9] T. Zimmermann, “P-channel InGaN-HFET structure based on polarization doping,” IEEE Electron Dev. Lett. 25, 450 (2004). [1-10] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M.A. Khan, and M.S. Shur, “High-temperature performance of AlGaN/GaN HFETs on SiC substrates,” IEEE Electron Dev. Lett. 18, 492 (1997). [1-11] B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron. Devices 48, 490 ( 2001 ). [1-12] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22, 157 (2001). [1-13] R. H. Ritchie, “Plasmon losses by fast electrons in thin films,” Phys. Rev.106, 874 (1957). [1-14] W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92, 133115, (2008). [1-15] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003). [1-16] J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173 (1991). [1-17] E. Kretschmann, and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. 23A, 2135, (1968). [1-18] C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005). [1-19] S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Optics Lett. 28, 1870, (2003). [1-20] H.L. Offerhaus, B. van de Bergen, M. Escalante, F.B. Segerink, J.P. Korterik, and N.F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5, 2144, (2005). [1-21] S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B. 52, 11441 (1995). [1-22] W. L. Barnes, S. C. Kitson, T. W. preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654 (1997). [1-23] C. Bonnand, J. Bellessa, C. Symond, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” App. Phys. Lett. 89,231119 (2006). [1-24] T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 391, 667, (1998). [1-25] H. F. Ghaemi, T. Thio, D. E. Grupp, T.W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes” Phys. Rev. B, 58, 6779 (1998). [1-26] H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944). [1-27] J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). [1-28] V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996). [1-29] J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005). [1-30] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003). [1-31] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,“ Ann. Phys. 25, 377 (1908). [1-32] V. M. Shalaev, R. Botet, J. Mercer, E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996). [1-33] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985). [1-34] A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Optics Lett. 5, 368 (1980). [1-35] A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24, 4906 (1981). [1-36] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449 (2002). [1-37] K T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002). [1-38] Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007). [1-39] D. M. Schaadt, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [1-40] R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007). [1-41] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” SCIENCE, 271, 933 (1996). [1-42] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B, 101, 9463, (1997). [1-43] L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049 (2002). [1-44] M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature, 429, 642 (2004). [1-45] H. S. Chen, C. K. Hsu, and H. Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18, 193 (2006). [1-46] H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, “White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/Green two-wavelength light-emitting diode,” IEEE Photon. Technol. Lett. 18, 1430 (2006). [1-47] S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18, 065709 (2007). [1-48] S. Nizamoglu, and H. V. Demir, “Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes,” Nanotechnology 18, 405702 (2007). [1-49] E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Highly efficient light-emitting diodes with microcavities,” Science 265, 943 (1994). [1-50] H. W. Choi, C. W. Jeon, and M. D. Dawson, “InGaN microring light-emitting diodes,” IEEE Photon. Technol. Lett., 16, 33 (2004). [1-51] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855 (2004). [1-52] C. S. Chang, S. J. Chang, Y. K. Su,, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side walls,” IEEE Photon. Technol. Lett., 16, 750 (2004). [1-53] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett. 84, 466 (2004). [1-54] J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett. 85, 142 (2004). [1-55] W. L. Barnes, “'Eectromagnetic crystals for surface plasmon polaritons and the extraction of light rom emissive devices,” J. Lightwave Technol. 17, 2170 (1999). [1-56] J. Vu kovi , M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131 (2000). [2-1] C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89, 051913 (2006). [2-2] H. S. Chen, C. F. Lu, D. M. Yeh, C. F. Huang, J. J. Huang, and C. C. Yang, “Orange–Red Light-Emitting Diodes Based on a Prestrained InGaN–GaN Quantum-Well Epitaxy Structure,” IEEE Photonics Technol. Lett. 18, 2269 (2006). [2-3] A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate,” Jpn. J. Appl. Phys. 43, L1524 (2004). [2-4] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601 (2004). [2-5] K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005). [2-6] C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113 (2006). [2-7] C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined Stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett. 90, 183114 (2007). [2-8] G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [2-9] J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B 24, 1968 (2007). [2-10] R. Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87, 111104 (2005). [2-11] Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007). [2-12] A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E.Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002). [2-13] W. L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Naure 424, 824 (2003). [2-14] S. Pillai, K. R. Catchpole, T. Trupke, G.. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006). [2-15] S. A. Choulis, M. K. Mathai, and Vi-En Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503 (2006). [2-16] C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B 64, 245339 (2001). [2-17] J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett. 86, 062104 (2005). [2-18] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang, “Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN,” Appl. Phys. Lett. 70, 57 (1997). [2-19] Yen-Cheng Lu, Cheng-Yen Cheng, Kun-Ching Shen, and C. C. Yang, “Enhanced photoluminescence excitation in surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 91, 183107 (2007). [2-20] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [2-21] W. C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134 (2000). [2-22] W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002). [2-23] A. Bagchi, C. B. Duke, P. J. Feibelman, J. O. Porteus, “Measurement of Surface-Plasmon Dispersion in Aluminum by Inelastic Low-Energy Electron Diffraction,” Phys. Rev. Lett. 27, 998, (1971). [2-24] D. M. Yeh, C. F. Huang, Y. C. Lu, C. Y. Chen, T. Y. Tang, J. J. Huang, K. C. Shen, Y. J. Yang, and C. C. Yang, “Surface plasmon leakage in its coupling with an InGaN/GaN quantum well through an Ohmic contact,” Appl. Phys. Lett. 91, 063121 (2007). [2-25] J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302 (2005). [2-26] H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and T. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91, 023510 (2007). [2-27] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes,” Appl. Phys. Lett. 89, 071109 (2006). [2-28] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007). [2-29] W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92, 133115 (2008). [2-30] H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815 (1998). [2-31] S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006). [2-32] H. Raether, Surface plasmon on smooth and rough surface and on grating, p. 6, Springer, Berlin, 1988. [3-1] N. Hirosaki , R. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005). [3-2] R. Peon , G. Doluweera, I. Platonova, D. Irvine-Halliday, and G. Irvine-Halliday, “Solid state lighting for the developing world: the only solution,” Proc. SPIE 5941, 109 (2005). [3-3] Light Up the World Foundation online at http://www.lutw.org. [3-4] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN–GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18 (2003). [3-5] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160 (2004). [3-6] J. S. Kim, J. Y. Kang, P. E. Jeon, J. C. Chol, H. L. Park, and T. W. Kim, “GaN-Based white-light-emitting diodes fabricated with a mixture of Ba3MgSi2O8:Eu2+ and Sr2SiO4:Eu2+ phosphors,” Jpn. J. Appl. Phys. 43, 989 (2004). [3-7] J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683 (2003). [3-8] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Topics Quantum Electron. 8, 683 (2003). [3-9] M. Yamada, Y. Narukawa and T. Mukai, “Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well,” Jpn. J. Appl. Phys. 41, L246 (2002). [3-10] A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43, L1524 (2004). [3-11] M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantumwell ,” Nature 429, 642 (2004). [3-12] C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706 (1993). [3-13] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, 271, 933 (1996). [3-14] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B, 101, 9463 (1997). [3-15] H. S. Chen, S. J. J. Wang, C. J. Lo, and J. Y. Chi, “White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes,” Appl. Phys. Lett. 86, 131905 (2005). [3-16] H. S. Chen, C. K. Hsu, and H. Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18, 193 (2006). [3-17] H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, “White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/Green two-wavelength light-emitting diode,” IEEE Photon. Technol. Lett., 18, 1430 (2006). [3-18] S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology 18, 065709 (2007). [3-19] S. Nizamoglu, and H. V. Demir, “Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes,” Nanotechnology 18, 405702 (2007). [3-20] H. R. Stuart, and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327 (1996). [3-21] T. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999). [3-22] Y. C. Lu, C. Y. Cheng, K. C. Shen, and C. C. Yang, “Enhanced photoluminescence excitation in surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 91, 183107 (2007). [3-23] A. Neogi, C. W.Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002). [3-24] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601 (2004). [3-25] C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined Stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett. 90, 183114 (2007). [3-26] Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007). [3-27] D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology, 18, 265402 (2007). [3-28] D. M. Yeh, C. F. Huang, Y. C. Lu, C. Y. Chen, T. Y. Tang, J. J. Huang, K. C. Shen, Y. J. Yang, and C. C. Yang, “Surface plasmon leakage in its coupling with an InGaN/GaN quantum well through an Ohmic contact,” Appl. Phys. Lett. 91, 06312 (2007). [3-29] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface Plasmon Coupling Effect in an InGaN/GaN Single-quantum-well Light-emitting Diode,” Appl. Phys. Lett. 91, 171103 (2007). [3-30] K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008). [3-31] J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). [3-32] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087 (2003). [3-33] J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005). [3-34] V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996). [3-35] A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24, 4906 (1981). [3-36] K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002). [3-37] Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007). [3-38] K. Okamoto, S. Vyawahare, and A. Scherer, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” J. Opt. Soc. Am. B 23, 1674 (2006). [3-39] M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74, 184203 (2006). [3-40] Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P .T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18, 415707 (2007). [3-41] B Nikoobajht, C. Burda, M. Braun, M. Hun, and M. A. El-Sayed, “The Quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution,” Photochem. Photobiol. 75, 591 (2002). [3-42] K. Kosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100, 207404 (2008). [3-43] Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, K. M. Lau, “Dual wavelength emission InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 272, 333 (2004). [3-44] L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049 (2002). [3-45] H. F. Xiang, S. C. Yu, C. M. Che, and P. T. Lai, “Efficient white and red light emission from GaN/tris-(8-hydroxyquinolato) aluminum/platinum(II) meso-tetrakis(pentafluorophenyl) porphyrin hybrid light-emitting diodes,” Appl. Phys. Lett. 83, 1518 (2003). [3-46] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids, ” Nano Lett. 2, 1449 (2002). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26780 | - |
| dc.description.abstract | 為應用表面電漿子與量子井耦合以提升發光二極體效率,我們首先實現在氮化銦鎵/氮化鎵量子井結構上,使用熱退火技術來製作不同尺寸的銀奈米結構,經由表面電漿子與量子井的耦合,光致螢光頻譜的峰值位置和強度會隨著不同尺寸的銀奈米結構而變化。經由將銀薄膜轉變成奈米島狀型的結構,我們不但可以增強光致螢光的強度,也能調整表面電漿子的色散曲線,使得量子井的發光頻譜具有明顯的紅移現象。此外,我們探討在氮化銦鎵/氮化鎵的量子井與表面電漿子的耦合效應中,表面電漿子經由p-型或n-型氮化鎵層的歐姆接點之耗損。研究顯示當歐姆接點形成於摻雜的半導體層之上,光致螢光強度明顯減弱,相反地,如於摻雜的半導體層和歐姆接點接之間成長一絕緣層,光致螢光強度會顯著地提升。
為應用表面電漿子與量子井的耦合效應於氮化銦鎵/氮化鎵的量子井發光二極體上,我們於藍光之單層氮化銦鎵/氮化鎵的量子井發光二極體的p-型氮化鎵層上製作能產生表面電漿子的結構,並且研究表面電漿子與量子井的耦合效應。我們製作一個具有較強的表面電漿子與量子井的耦合並有較低的表面電漿子能量耗損的發光二極體,證實此發光二極體相對於較低的表面電漿子與量子井的耦合或較強的表面電漿子能量耗損的發光二極體,能增強電致螢光強度。同時,在綠光之單層氮化銦鎵/氮化鎵的量子井發光二極體的p-型氮化鎵層上製作銀奈米結構,此奈米結構可產生侷限性表面電漿子,透過量子井與侷限性表面電漿子的耦合,我們證實綠光之單層氮化銦鎵/氮化鎵的量子井發光二極體的發光效率顯著的增強。經由控制銀薄膜的厚度和熱退火條件,可以產生適當的銀奈米結構,此奈米結構產生的侷限性表面電漿子的能量與發光二極體的能隙一致。當發光二極體操作於20毫安培時,我們觀察到電致螢光的峰值強度增強至2.5倍,而整體的發光強度增強至2.2倍。 另外,我們製作藍紅光之多色彩發光元件,係將發紅光的硒化鎘/硫化鋅奈米晶體塗佈於發藍光的氮化銦鎵/氮化鎵的多層量子井發光二極體上。為改善紅光和藍光的強度對比,製作不同孔徑大小的微米級孔洞於發光二極體上,以增加多層量子井的主動層和硒化鎘/硫化鋅奈米晶體直接接觸的面積。同時,我們也製作白光之發光元件,係將硒化鎘/硫化鋅奈米晶體塗佈於發藍綠雙波長的氮化銦鎵/氮化鎵量子井發光二極體上,藉由吸收/再放光之機制,部份的藍光和綠光轉換成紅光,剩餘的藍光、綠光與紅光組合成白光。同時,將金奈米粒子摻入硒化鎘/硫化鋅奈米晶體內,使其產生侷限性表面電漿子,此侷限性表面電漿子可吸收綠光,而且有效率地轉換能量至硒化鎘/硫化鋅奈米晶體,增強奈米晶體的吸收效果,進而增強紅光發光強度。經由侷限性表面電漿子耦合之機制,從藍綠光轉換成紅光的轉換效率增加30%,而量子轉換效率可以達到52.8%。 | zh_TW |
| dc.description.abstract | In this dissertation, we first demonstrate the variations of the photoluminescence (PL) spectral peak position and intensity through the surface plasmon (SP) coupling with an InGaN/GaN quantum-well (QW) by forming Ag nanostructures of different scale sizes on the QW structure with thermal annealing. By transferring an Ag thin film into a nano-island structure, we can not only enhance the PL intensity, but also adjust the SP dispersion relation and hence red-shift the effective QW emission wavelength. Also, the leakage of SP through the Ohmic contact of either p-type or n-type GaN layer in the coupling process between SP and an InGaN/GaN QW is studied. It is shown that the PL intensity is significantly reduced when an Ohmic contact is formed, in contrast to the case of significant PL enhancement when an insulating thin layer is applied between the doped semiconductor and metal.
For practical application of the QW-SP coupling, we study the coupling effects between the QW and SP generated nearby on the p-type side in a blue InGaN/GaN single-QW LED. The QW-SP coupling leads to the enhancement of the electroluminescence (EL) intensity in the LED sample designed for QW-SP coupling and reduced SP energy leakage, when compared to an LED sample of weak QW-SP coupling or significant SP energy loss. Meanwhile, the output enhancement of a green InGaN/GaN QW LED through the coupling of QW with localized surface plasmons (LSPs), which are generated on Ag nanostructures on the top of the device, is also demonstrated. The suitable Ag nanostructures for generating LSPs of resonance energies around the LED wavelength are formed by controlling the Ag deposition thickness and the post-thermal-annealing condition. With a 20 mA current injected onto the LED, enhancements of up to 150 % in electroluminescence peak intensity and of 120 % in integrated intensity are observed. Besides, blue-red polychromatic light-emitting devices are fabricated by attaching red-emitting CdSe/ZnS nano-crystals (NCs) on a blue-emitting InGaN/GaN multiple-quantum-well (MQW) structure. To improve the red/blue intensity contrast, holes of different diameters are fabricated for increasing the direct contact area between the MQW active regions and CdSe/ZnS NCs. In addition, we demonstrate the implementation of a white-light device by spin-coating CdSe/ZnS NCs on the top of a blue/green two-color InGaN/GaN QW LED for converting blue and green emissions into red light through the absorption/reemission process. Meanwhile, Au nano-particles (NPs) are mixed with CdSe/ZnS NCs for generating LSP modes to couple with the CdSe/ZnS NCs. The LSP modes can absorb green emission and effectively transfer the energy into the CdSe/ZnS NCs through the coupling process for enhancing red emission. With the LSP coupling process, the conversion efficiency from the blue/green range into red light can be increased by around 30 %. The conversion quantum efficiency can reach 52.8 %. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:25:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2008 | en |
| dc.description.tableofcontents | Contents
中文摘要…………………………………………………i Abstract…………………………………………………iv Contents…………………………………………………vii Chapter 1 Introduction 1.1 Applications of Wide Bandgap Nitride Semiconductors…………………………………………1 1.2 Surface Plasmons…………………………………4 1.3 CdSe/ZnS Nano-Crystals…………………………12 1.4 Research Motivations……………………………15 1.5 Thesis Organization……………...……………20 References………………………………………………21 Chapter 2 Coupling between Surface Plasmon and Quantum Well in an InGaN/GaN Quantum-well through Metal/semiconductor Interface Light-emitting Diode 2.1 Annealing-induced Metal Nano-structures for Surface Plasmon Coupling…………………………………………………40 2.2 Surface Plasmon Leakage Effect…………………………53 2.3 Surface Plasmon-Coupled Blue Light-emitting Diode…64 2.4 Surface Plasmon-Coupled Green Light-emitting Diode…73 References……………………………………………………………82 Chapter 3 Use of CdSe/ZnS Nanocrystals for Color Conversion in an InGaN/GaN Quantum-well Light-emitting Diode 3.1Control of Color Contrast of Blue/red Lights…………128 3.2White-light Device Based on Surface Plasmon-enhanced CdSe/ZnS Nanocrystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode…………………………………135 References……………………………………………………………147 Chapter 4 Conclusions…………………………………………………………171 Publication List…………………………………………………175 | |
| dc.language.iso | en | |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 奈米光電 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | Surface Plasmon | en |
| dc.subject | Nano-photonics | en |
| dc.subject | Light-emitting Diode | en |
| dc.title | 應用奈米光電技術於發光二極體之研發 | zh_TW |
| dc.title | Application of Nano-photonics Technology to the Development of Light-emitting Diode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),黃建璋(Jian-Jang Huang),李允立(Yun-Li Li),吳育任(Yuh-Renn Wu),綦振瀛(Jen-Inn Chyi),謝明勳,徐大正 | |
| dc.subject.keyword | 表面電漿子,發光二極體,奈米光電, | zh_TW |
| dc.subject.keyword | Surface Plasmon,Light-emitting Diode,Nano-photonics, | en |
| dc.relation.page | 197 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
