請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2674
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳信志(Shinn-Chin Wu) | |
dc.contributor.author | Sheng-Chih Chen | en |
dc.contributor.author | 陳昇志 | zh_TW |
dc.date.accessioned | 2021-05-13T06:48:34Z | - |
dc.date.available | 2020-02-16 | |
dc.date.available | 2021-05-13T06:48:34Z | - |
dc.date.copyright | 2017-02-16 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-01 | |
dc.identifier.citation | Ades, E. W., R. K. Zwerner, R. T. Acton, and C. M. Balch. 1980. Isolation and partial characterization of the human homologue of Thy-1. J. Exp. Med. 151 (2): 400-406.
Aigner, B., S. Renner, B. Kessler, N. Klymiuk, M. Kurome, A. Wunsch, and E. Wolf. 2010. Transgenic pigs as models for translational biomedical research. J. Mol. Med. (Berl) 88: 653-664. Argenta, L. C., and M. J. Morykwas. 1997. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann. Plast. Surg. 38: 563-577. Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. 2009. Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell. Sci. 122: 546-553. Aschen, S., J. C. Zampell, S. Elhadad, E. Weitman, M. De Brot, and B. J. Mehrara. 2012. Regulation of adipogenesis by lymphatic fluid stasis: part II. Expression of adipose differentiation genes. Plast. Reconstr. Surg. 129: 838-847. Baldwin, H. S., H. M. Shen, H. C. Yan, H. M. DeLisser, A. Chung, C. Mickanin, T. Trask, N. E. Kirschbaum, P. J. Newman, S. M. Albelda, and C. A. Buck. 1994. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development 120: 2539-2553. Brucker, M., S. Sati, A. Spangenberger, and J. Weinzweig. 2008. Long-term fate of transplanted autologous fat in a novel rabbit facial model. Plast. Reconstr. Surg. 122: 749-754. Bullwinkel, J., B. Baron-Luhr, A. Ludemann, C. Wohlenberg, J. Gerdes, and T. Scholzen. 2006. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J. Cell. Physiol. 206: 624-635. Burridge, K., and E. S. Wittchen. 2013. The tension mounts: stress fibers as force-generating mechanotransducers. J. Cell. Biol. 200: 9-19. Buxboim, A., I. L. Ivanovska, and D. E. Discher. 2010. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in? J. Cell. Sci. 123: 297-308. Cawthorn, W. P., E. L. Scheller, and O. A. MacDougald. 2012. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid. Res. 53: 227-246. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitedes, and D. E. Ingber. 1997. Geometric control of cell life and death. Science 276: 1425-1428. Chen, C. S., J. Tan, and J. Tien. 2004. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng. 6: 275-302. Cheng, M., X. Guan, H. Li, X. Cui, X. Zhang, X. Li, X. Jing, H. Wu, and E. Avsar. 2013. Shear stress regulates late EPC differentiation via mechanosensitive molecule-mediated cytoskeletal rearrangement. Plos One 8: e67675. Cherubino, M., and K. G. Marra. 2009. Adipose-derived stem cells for soft tissue reconstruction. Regen. Med. 4: 109-117. Chien, S. 2007. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart. Circ. Physiol. 292: 1209-1224. Chien, M. S., M. Y. Bien, C. C. Ku, Y. C. Chang, H. Y. Pao, Y. L. Yang, M. Hsiao, C. L. Chen, and J. H. Ho. 2012. Systemic human orbital fat-derived stem/stromal cell transplantation ameliorates acute inflammation in lipopolysaccharide-induced acute lung injury. Crit. Care. Med. 40: 1245-1253. Chin, M. S., R. Ogawa, L. Lancerotto, G. Pietramaggiori, K. T. Schomacker, J. C. Mathews, S. S. Scherer, P. V. Duyn, M. J. Prsa, M. P. Ottensmeyer, A. Veves, and D. P. Orgill. 2010. In vivo acceleration of skin growth using a servo-controlled stretching device. Tissue. Eng. Part. C. Methods 16: 397-405 Choe, S. S., J. Y. Huh, I. J. Hwang, J. I. Kim, and J. B. Kim. 2016. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. 7: 30. Curtis, A., and C. Wilkinson. 2001. Nantotechniques and approaches in biotechnology. Trends Biotechnol. 19: 97-101. Dalby, M. J., N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. Wilkinson, and R. O. Oreffo. 2007. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6: 997-1003. David Merryman, W., and A. J. Engler. 2010. Innovations in cell mechanobiology. J. Biomech. 43: 1. De Ugarte, Daniel A., Zeni Alfonso, Patricia A. Zuk, Amir Elbarbary, Min Zhu, Peter Ashjian, Prosper Benhaim, Mare H. Hedrick, and John K. Fraser. 2003. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology Letters 89: 267-270. Discher, D., C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schonbein, and S. Weinbaum. 2009. Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37: 847-859. Dolderer, J. H., E. W. Thompson, J. Slavin, N. Trost, J. J. Cooper-White, Y. Cao, J. O'Connor A, A. Penington, W. A. Morrison, and K. M. Abberton. 2011. Long-term stability of adipose tissue generated from a vascularized pedicled fat flap inside a chamber. Plast. Reconstr. Surg. 127: 2283-2292. Du, J., X. Chen, X. Liang, G. Zhang, J. Xu, L. He, Q. Zhan, X. Q. Feng, S. Chien, and C. Yang. 2011. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Curr. Issue 108: 9466-9471. Dunwoodie, S. L. 2009. The role of hypoxia in development of the Mammalian embryo. Dev. Cell. 17: 755-773. Duran-Struuck, R., C. A. Huang, K. Orf, R. T. Bronson, D. H. Sachs, and T. R. Spitzer. 2015. Miniature swine as a clinically relevant model of graft-versus-host disease. Comp. Med. 65: 429-443. Eilken, H. M., and R. H. Adams. 2010. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell. Biol. 22: 617-625. Eirin, A., X. Y. Zhu, J. D. Krier, H. Tang, K. L. Jordan, J. P. Grande, A. Lerman, S. C. Textor, and L. O. Lerman. 2012. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells 30: 1030-1041. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, and D. E. Discher. 2004. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell. Biol. 166: 877-887. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126: 677-689. Erba, P., R. Ogawa, M. Ackermann, A. Adini, L. F. Miele, P. Dastouri, D. Helm, S. J. Mentzer, R. J. D'Amato, G. F. Murphy, M. A. Konerding, and D. P. Orgill. 2011. Angiogenesis in wounds treated by microdeformational wound therapy. Ann. Surg. 253: 402-409. Eto, H., H. Kato, H. Suga, N. Aoi, K. Doi, S. Kuno, and K. Yoshimura. 2012. The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast. Reconstr. Surg. 129: 1081-1092. Folkman, J., and A. Moscona. 1978. Role of cell shape in growth control. Nature 273: 345-349. Galarraga, M., J. Campion, A. Munoz-Barrutia, N. Boque, H. Moreno, J. A. Martinez, F. Milagro, and C. Ortiz-de-Solorzano. 2012. Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections. J. Lipid. Res. 53: 2791-2796. Gigliofiorito, P., G. F. Marangi, M. Langella, D. Tosi, A. L. Pendolino, and P. Persichetti. 2013. The effects of negative pressure on blood supply and the adipogenic role of edema. Plast. Reconstr. Surg. 131: 931e-932e. Gilbert, P. M., K. L. Havenstrite, K. E. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau. 2010. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329: 1078-1081. Gomillion, C. T., and K. J. Burg. 2006. Stem cells and adipose tissue engineering. Biomaterials 27: 6052-6063. Goodison, S., V. Urquidi, and D. Tarin. 1999. CD44 cell adhesion molecules. Mol. Pathol. 52: 189-196. Gundeslioglu, A. O. 2012. Correction of severe ptosis with a silicone implant suspensor: 22 years of experience. Plast. Reconstr. Surg. 130: 752e-753e. Hamid, A. A., R. B. H. Idrus, A. B. Saim, S. Sathappan, and K. H. Chua. 2012. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics. 67: 99-106. Han, J., Y. J. Koh, H. R. Moon, H. G. Ryoo, C. H. Cho, I. Kim, and G. Y. Koh. 2010. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood 115: 957-964. Heit, Y. I., L. Lancerotto, I. Mesteri, M. Ackermann, M. F. Navarrete, C. T. Nguyen, S. Mukundan, Jr., M. A. Konerding, D. A. Del Vecchio, and D. P. Orgill. 2012. External volume expansion increases subcutaneous thickness, cell proliferation, and vascular remodeling in a murine model. Plast. Reconstr. Surg. 130: 541-547. Herold, C., K. Ueberreiter, and P. M. Vogt. 2012. Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. Plast. Reconstr. Surg. 130: 479e-480e. Higuchi, A., Q. D. Ling, Y. Chang, S. T. Hsu, and A. Umezawa. 2013. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 113: 3297-3328. Horton, E. R., P. Astudillo, M. J. Humphries, and J. D. Humphries. 2016. Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp. Cell. Res. 343: 7-13. Huang, C., J. Dai, and X. A. Zhang. 2015. Environmental physical cues determine the lineage specification of mesenchymal stem cells. Biochim. Biophys. Acta. 1850: 1261-1266. Huang, C., T. Leavitt, L. R. Bayer, and D. P. Orgill. 2014. Effect of negative pressure wound therapy on wound healing. Curr. Probl. Surg. 51: 301-331. Huang, S., W. Zhao, Z. Wang, K. Tao, X. Liu, and P. Chang. 2016. Potential drawbacks in cell-assisted lipotransfer: A systematic review of existing reports (Review). Mol. Med. Rep. 13: 1063-1069. Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. 2010. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9: 518-526. Hynes, R. O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11-25. Ingber, D. E. 2003. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell. Sci. 116: 1157-1173. James, Isaac B., Sydney R. Coleman, and J. Peter Rubin. 2016. Fat, Stem Cells, and Platelet-Rich Plasma. Clin. Plast. Surg. 43: 473-488. Janmey, P. A., and C. A. McCulloch. 2007. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9: 1-34. Jeanes, A. I., P. Wang, P. Moreno-Layseca, N. Paul, J. Cheung, R. Tsang, N. Akhtar, F. M. Foster, K. Brennan, and C. H. Streuli. 2012. Specific beta-containing integrins exert differential control on proliferation and two-dimensional collective cell migration in mammary epithelial cells. J. Biol. Chem. 287: 24103-24112. Kajita, K., I. Mori, T. Hanamoto, T. Ikeda, K. Fujioka, M. Yamauchi, H. Okada, T. Usui, N. Takahashi, Y. Kitada, K. Taguchi, T. Kajita, Y. Uno, H. Morita, and T. Ishizuka. 2012. Pioglitazone enhances small-sized adipocyte proliferation in subcutaneous adipose tissue. Endocr. J. 59 (12): 1107-1114. Kanchanawong, P., G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman. 2010. Nanoscale architecture of integrin-based cell adhesions. Nature 468: 580-584. Kato, H., K. Mineda, H. Eto, K. Doi, S. Kuno, K. Kinoshita, K. Kanayama, and K. Yoshimura. 2014. Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast. Reconstr. Surg. 133: 303e-313e. Khouri, R. K., M. Eisenmann-Klein, E. Cardoso, B. C. Cooley, D. Kacher, E. Gombos, and T. J. Baker. 2012. Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. Plast. Reconstr. Surg. 129: 1173-1187. Khouri, R. K., Jr., R. E. Khouri, J. R. Lujan-Hernandez, K. R. Khouri, L. Lancerotto, and D. P. Orgill. 2014. Diffusion and perfusion: the keys to fat grafting. Plast. Reconstr. Surg. Glob. Open. 2: e220. Khouri, R. K., R. K. Khouri, Jr., G. Rigotti, A. Marchi, E. Cardoso, S. C. Rotemberg, and T. M. Biggs. 2014. Aesthetic applications of Brava-assisted megavolume fat grafting to the breasts: a 9-year, 476-patient, multicenter experience. Plast. Reconstr. Surg. 133: 796-807. Khouri, R. K., G. Rigotti, R. K. Khouri, Jr., E. Cardoso, A. Marchi, S. C. Rotemberg, T. J. Baker, and T. M. Biggs. 2015. Tissue-engineered breast reconstruction with Brava-assisted fat grafting: a 7-year, 488-patient, multicenter experience. Plast. Reconstr. Surg. 135: 643-658. Kim, D. H., S. B. Khatau, Y. Feng, S. Walcott, S. X. Sun, G. D. Longmore, and D. Wirtz. 2012. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2: 555. Kosowski, T. R., G. Rigotti, and R. K. Khouri. 2015. Tissue-Engineered Autologous Breast Regeneration with Brava(R)-Assisted Fat Grafting. Clin. Plast. Surg. 42: 325-337. Kurpinski, K., J. Chu, C. Hashi, and S. Li. 2006. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl. Acad. Sci. U. S. A. 103: 16095-16100. Kurpinski, K., J. Chu, D. Wang, and S. Li. 2009. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-beta1. Cell. Mol. Bioeng. 2: 606-614. Lancerotto, L., L. R. Bayer, and D. P. Orgill. 2012. Mechanisms of action of microdeformational wound therapy. Semin. Cell. Dev. Biol 23: 987-992. Lancerotto, L., M. S. Chin, B. Freniere, J. R. Lujan-Hernandez, Q. Li, A. Valderrama Vasquez, F. Bassetto, D. A. Del Vecchio, J. F. Lalikos, and D. P. Orgill. 2013. Mechanisms of action of external volume expansion devices. Plast. Reconstr. Surg. 132: 569-578. Largo, R. D., L. A. Tchang, V. Mele, A. Scherberich, Y. Harder, R. Wettstein, and D. J. Schaefer. 2014. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review. J Plast. Reconstr. Aesthet. Surg. 67: 437-448. Lee, J. W., Y. S. Han, S. R. Kim, H. K. Kim, H. Kim, and J. H. Park. 2015. A rabbit model of fat graft recipient site preconditioning using external negative pressure. Arch. Plast. Surg. 42: 150-158. Legate, K. R., S. A. Wickstrom, and R. Fassler. 2009. Genetic and cell biological analysis of integrin outside-in signaling. Genes. Dev. 23: 397-418. Li, D., J. Zhou, F. Chowdhury, J. Cheng, N. Wang, and F. Wang. 2011. Role of mechanical factors in fate decisions of stem cells. Regen. Med. 6: 229-240. Lin, C. S., H. Ning, G. Lin, and T. F. Lue. 2012. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy. 14: 1159-1163. Lujan-Hernandez, J., L. Lancerotto, C. Nabzdyk, K. Z. Hassan, G. Giatsidis, R. K. Khouri, Jr., M. S. Chin, F. Bassetto, J. F. Lalikos, and D. P. Orgill. 2016. Induction of Adipogenesis by External Volume Expansion. Plast. Reconstr. Surg. 137: 122-131. Lunney, J. K. 2007. Advances in swine biomedical model genomics. Int. J. Biol. Sci. 3: 179-184. Maes, C., G. Carmeliet, and E. Schipani. 2012. Hypoxia-driven pathways in bone development, regeneration and disease. Nat. Rev. Rheumatol. 8: 358-366. Mailey, B., S. Saba, J. Baker, C. Tokin, S. Hickey, R. Wong, A. M. Wallace, and S. R. Cohen. 2013. A comparison of cell-enriched fat transfer to conventional fat grafting after aesthetic procedures using a patient satisfaction survey. Ann. Plast. Surg. 70: 410-415. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. 2004. Cell Shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6: 483-495. McIntosh, K., S. Zvonic, S. Garrett, J. B. Mitchell, Z. E. Floyd, L. Hammill, A. Kloster, Y. Di Halvorsen, J. P. Ting, R. W. Storms, B. Goh, G. Kilroy, X. Wu, and J. M. Gimble. 2006. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24: 1246-1253. Mitchell, J. B., K. McIntosh, S. Zvonic, S. Garrett, Z. E. Floyd, A. Kloster, Y. Di Halvorsen, R. W. Storms, B. Goh, G. Kilroy, X. Wu, and J. M. Gimble. 2006. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24: 376-385. Mojallal, A., C. Lequeux, C. Shipkov, P. Breton, J. L. Foyatier, F. Braye, and O. Damour. 2009. Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast. Reconstr. Surg. 124: 765-774. Moreno-Layseca, P., and C. H. Streuli. 2014. Signalling pathways linking integrins with cell cycle progression. Matrix. Biol. 34: 144-153. Nakamura, S., M. Ishihara, M. Takikawa, K. Murakami, S. Kishimoto, S. Nakamura, S. Yanagibayashi, S. Kubo, N. Yamamoto, and T. Kiyosawa. 2010. Platelet-rich plasma (PRP) promotes survival of fat-grafts in rats. Ann. Plast. Surg. 65: 101-106. Ng, F., S. Boucher, S. Koh, K. S. Sastry, L. Chase, U. Lakshmipathy, C. Choong, Z. Yang, M. C. Vemuri, M. S. Rao, and V. Tanavde. 2008. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 112: 295-307. Nielsen, J. S., and K. M. McNagny. 2008. Novel functions of the CD34 family. J. Cell. Sci. 121: 3683-3692. Nikolopoulos, S. N., P. Blaikie, T. Yoshioka, W. Guo, C. Puri, C. Tacchetti, and F. G. Giancotti. 2005. Targeted deletion of the integrin beta4 signaling domain suppresses laminin-5-dependent nuclear entry of mitogen-activated protein kinases and NF-kappaB, causing defects in epidermal growth and migration. Mol. Cell. Biol. 25: 6090-6102. Obi, S., H. Masuda, T. Shizuno, A. Sato, K. Yamamoto, J. Ando, Y. Abe, and T. Asahara. 2012. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am. J. Physiol. Cell. Physiol. 303: C595-606. Oh, D. S., Y. W. Cheon, Y. R. Jeon, and D. H. Lew. 2011. Activated platelet-rich plasma improves fat graft survival in nude mice: a pilot study. Dermatol. Surg. 37: 619-625. Pandey, A. C., J. A. Semon, D. Kaushal, R. P. O’Sullivan, J. Glowacki, J. M. Gimble, and B. A. Bunnell. 2011. MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Res. Ther. 2: 49-67. Park, B., J. S. Kong, S. Kang, and Y. W. Kim. 2011. The effect of epidermal growth factor on autogenous fat graft. Aesthetic. Plast. Surg. 35: 738-744. Park, J. S., J. S. Chu, C. Cheng, F. Chen, D. Chen, and S. Li. 2004. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88: 359-368. Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. 2005. Tensional homeostasis and the malignant phenotype. Cancer. Cell. 8: 241-254. Pietramaggiori, G., P. Liu, S. S. Scherer, A. Kaipainen, M. J. Prsa, H. Mayer, J. Newalder, M. Alperovich, S. J. Mentzer, M. A. Konerding, S. Huang, D. E. Ingber, and D. P. Orgill. 2007. Tensile forces stimulate vascular remodeling and epidermal cell proliferation in living skin. Ann. Surg. 246: 896-902. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Science. 284 (5411): 143-147. Rahmanzadeh, R., G. Hüttmann, J. Gerdes, and T. Scholzen. 2007. Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis. Cell Prolif. 40: 422-430. Rankin, E. B., and A. J. Giaccia. 2008. The role of hypoxia-inducible factors in tumorigenesis. Cell. Death. Differ. 15: 678-685. Reich, C. M., O. Raabe, S. Wenisch, P. S. Bridger, M. Kramer, and S. Arnhold. 2012. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study. Vet. Res. Commun. 36: 139-148. Ren, X. D., W. B. Kiosses, and M. A. Schwartz. 1999. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18: 578-585. Rigotti, G., L. Charles-de-Sa, N. F. Gontijo-de-Amorim, C. M. Takiya, P. R. Amable, R. Borojevic, D. Benati, P. Bernardi, and A. Sbarbati. 2016. Expanded Stem Cells, Stromal-Vascular Fraction, and Platelet-Rich Plasma Enriched Fat: Comparing Results of Different Facial Rejuvenation Approaches in a Clinical Trial. Aesthet. Surg. J. 36: 261-270. Rosen, E. D., and O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell. Biol. 7: 885-896. Roskelley, C. D., P. Y. Desprez, and M. J. Bissell. 1994. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl. Acad. Sci. 91: 12378-12382. Ross, T. D., B. G. Coon, S. Yun, N. Baeyens, K. Tanaka, M. Ouyang, and M. A. Schwartz. 2013. Integrins in mechanotransduction. Curr. Opin. Cell. Biol. 25: 613-8. Rueda-Clausen, C. F., V. W. Dolinsky, J. S. Morton, S. D. Proctor, J. R. Dyck, and S. T. Davidge. 2011. Hypoxia-induced intrauterine growth restriction increases the susceptibility of rats to high-fat diet-induced metabolic syndrome. Diabetes 60: 507-516. Sanz-Rodriguez, F., M. Guerrero-Esteo, L. M. Botella, D. Banville, C. P. Vary, and C. Bernabeu. 2004. Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J. Biol. Chem. 279: 32858-32868. Sawada, Y., M. Tamada, B. J. Dubin-Thaler, O. Cherniavskaya, R. Sakai, S. Tanaka, and M. P. Sheetz. 2006. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127: 1015-1026. Scholzen, T., and J. Gerdes. 2000. The ki-67 protein: from the known and the unknown. Journal of Cellular Physiology 182: 311-322. Schweizer, R., W. Tsuji, V. S. Gorantla, K. G. Marra, J. P. Rubin, and J. A. Plock. 2015. The role of adipose-derived stem cells in breast cancer progression and metastasis. Stem Cells Int. 2015: 120949. Serra-Renom, J. M., J. L. Muñoz-Olmo, and J. M. Serra-Mestre. 2010. Fat grafting in postmastectomy breast reconstruction with expanders and prostheses in patients who have received radiotherapy: formation of new subcutaneous tissue. Plast. Reconstr. Surg. 125: 12-18. Sharpless, N. E., and R. A. DePinho. 2007. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell. Biol. 8: 703-713. Shih, Yu-Ru V., Kuo-Fung Tseng, Hsiu-Yu Lai, Chi-Hung Lin, and Oscar K. Lee. 2011. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. Journal of Bone and Mineral Research 26: 730-738. Shukla, L., W. A. Morrison, and R. Shayan. 2015. Adipose-derived stem cells in radiotherapy injury: a new frontier. Front. Surg. 2: 1. Shultz, L. D., F. Ishikawa, and D. L. Greiner. 2007. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7: 118-130. Sidney, L. E., M. J. Branch, S. E. Dunphy, H. S. Dua, and A. Hopkinson. 2014. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32: 1380-1389. Song, J. W., and L. L. Munn. 2011. Fluid forces control endothelial sprouting. Current Issue 108: 15342-15347. Steward, A. J., and D. J. Kelly. 2015. Mechanical regulation of mesenchymal stem cell differentiation. J. Anat. 227: 717-731. Streuli, C. H., and N. Akhtar. 2009. Signal co-operation between integrins and other receptor systems. Biochem. J. 418: 491-506. Stricker-Krongrad, A., C. R. Shoemake, and G. F. Bouchard. 2016. The Miniature Swine as a Model in Experimental and Translational Medicine. Toxicol. Pathol. 44: 612-623. Suga, H., H. Eto, N. Aoi, H. Kato, J. Araki, K. Doi, T. Higashino, and K. Yoshimura. 2010. Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast. Reconstr. Surg. 126: 1911-1923. Suga, H., D. Matsumoto, K. Inoue, T. Shigeura, H. Eto, N. Aoi, H. Kato, H. Abe, and K. Yoshimura. 2008. Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast. Reconstr. Surg. 122: 103-114. Suzuki, Y., A. C. Yeung, and F. Ikeno. 2011. The representative porcine model for human cardiovascular disease. J. Biomed. Biotechnol. 2011: 195483. Swanson, E. 2014. Mechanisms of action of external volume expansion devices. Plast. Reconstr. Surg. 133: 425e-426e. Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. W. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341: 1240104. Swindle, M. M., A. Makin, A. J. Herron, F. J. Clubb, Jr., and K. S. Frazier. 2012. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49: 344-356. Tamura, E., H. Fukuda, and Y. Tabata. 2007. Adipose tissue formation in response to basic fibroblast growth factor. Acta Otolaryngol. 127: 1327-1331. Tojkander, S., G. Gateva, and P. Lappalainen. 2012. Actin stress fibers--assembly, dynamics and biological roles. J. Cell Sci. 125: 1855-1864. Traktuev, D. O., S. Merfeld-Clauss, J. Li, M. Kolonin, W. Arap, R. Pasqualini, B. H. Johnstone, and K. L. March. 2008. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102: 77-85. Tsuji, W., J. P. Rubin, and K. G. Marra. 2014. Adipose-derived stem cells: Implications in tissue regeneration. World. J. Stem Cells 6: 312-321. Turk, J. R., K. K. Henderson, G. D. Vanvickle, J. Watkins, and M. H. Laughlin. 2005. Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease. Int. J. Exp. Path. 86: 335-345. van Oostrom, M. C., O. van Oostrom, P. H. Quax, M. C. Verhaar, and I. E. Hoefer. 2008. Insights into mechanisms behind arteriogenesis: what does the future hold? J. Leukoc. Biol. 84: 1379-1391. Virtanen, K. A., E. L. Martin, B. S. Janne Orava, M. Heglind, R. Westergren, T. Niemi, M. Taittonen, J. Laine, N. J. Savisto, S. Enerbäck, and P. Nuutila. 2009. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360: 1518-1525. Wall, M. E., S. H. Bernacki, and E. G. Loboa. 2007. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue. Eng. 13: 1291-1298. Wang, N., D. Jessica, Tytell, and E. Donald. 2009. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell. Biol. 10: 75-82. Wolbank, S., A. Peterbauer, E. Wassermann, S. Hennerbichler, R. Voglauer, M. van Griensven, H. C. Duba, C. Gabriel, and H. Redl. 2007. Labelling of human adipose-derived stem cells for non-invasive in vivo cell tracking. Cell. Tissue. Bank. 8: 163-177. Yazawa, M., T. Mori, K. Tuchiya, Y. Nakayama, H. Ogata, and T. Nakajima. 2006. Influence of vascularized transplant bed on fat grafting. Wound. Repair. Regen. 14: 586-592. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. 2005. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell. Motil. Cytoskeleton. 60: 24-34. Yoshimura, K., T. Shigeura, D. Matsumoto, T. Sato, Y. Takaki, E. Aiba-Kojima, K. Sato, K. Inoue, T. Nagase, I. Koshima, and K. Gonda. 2006. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell. Physiol. 208: 64-76. Yoshimura, K., H. Suga, and H. Eto. 2009. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen. Med. 4: 265-273. Yoshimura, K., H. Eto, H. Kato, K. Doi, and N. Aoi. 2011. In vivo manipulation of stem cells for adipose tissue repair/reconstruction. Regen. Med. 6: 33-41. Yung, Y. C., J. Chae, M. J. Buehler, C. P. Hunter, and D. J. Mooney. 2009. Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. Proc. Natl. Acad. Sci. U. S. A. 106: 15279-15284. Zemel, A., F. Rehfeldt, A. E. Brown, D. E. Discher, and S. A. Safran. 2010. Optimal matrix rigidity for stress fiber polarization in stem cells. Nat. Phys. 6: 468-473. Zhang, Y., D. Khan, J. Delling, and E. Tobiasch. 2012. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Scientific World Journal 2012: 793823. Zhao, Y., S. D. Waldman, and L. E. Flynn. 2012. The effect of serial passaging on the proliferation and differentiation of bovine adipose-derived stem cells. Cells Tissues Organs 195: 414-427. Zhong, X., W. Yan, X. He, and Y. Ni. 2009. Improved fat graft viability by delayed fat flap with ischaemic pretreatment. J. Plast. Reconstr. Aesthet. Surg. 62: 526-531. Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick. 2002. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13: 4279-4295. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2674 | - |
dc.description.abstract | 自體脂肪移植 (autologous fat grafting, AFG) 為採集自身的脂肪組織進行注射,目前已經廣泛用於整形外科中之乳房重建;然而,AFG之手術成果通常被視為不可預測,因長期存留容積通常在20%和90%之間變化,其原因一般認為是移植後的早期階段缺乏血液供應所導致的結果。外部體積擴張 (external volume expansion, EVE) 的負壓處理,長期以來被認為具有預先處理受體部位之潛能。此外,機械力已被證實對於間葉幹細胞增殖和分化具有關鍵的作用。因此,為了探討EVE之體內機械力作用對於皮下脂肪中的細胞增殖,血管生長和成熟以及脂肪幹細胞 (adipose stem cells, ASCs) 的細胞標記,增殖能力和分化潛能的影響,利用豬的皮膚和皮下組織與人類之間在解剖和生理上相似性設計為動物模式。
本研究使用負壓50毫米汞柱,在每天相同8小時 (上午9點到下午5點) 的時間間隔連續作用於豬隻側腹表皮直到10或21天。在第11或22天進行採樣之前,使用超音波測量軟組織厚度,結果顯示EVE誘導軟組織擴增是屬於一種暫時性效應。接著將試驗組和對照組所取得之樣本進行各項分析。H&E染色 (hematoxylin and eosin staining) 結果顯示,EVE可以促進血管重塑的過程,但是對脂肪細胞的大小和數量並沒有顯著影響。Ki67免疫組織化學染色的結果顯示,基底角質細胞和脂肪細胞之細胞增殖相較於對照組沒有出現顯著差異;相反地,通過α-SMA染色得到證實,具有平滑肌細胞的血管網絡在EVE處理組中有明顯增加。另外,使用image J測量表皮厚度的結果顯示各組之間並沒有觀察到顯著的差異。CD31免疫螢光染色結果顯示,血管密度會隨著EVE的作用時間而逐漸增加。 基質血管細胞 (stromal vascular fraction, SVF) 和ASCs分別從脂肪組織中分離和純化。ASCs的增殖能力透過倍增時間和集落形成分析進行檢定,結果卻顯示對照組和EVE處理組之間沒有發現統計上的差異。ASCs進行脂肪分化誘導21天,隨後進行油紅染色 (Oil-Red O staining),結果ASCs的脂肪分化潛能在各組之中也沒有顯著差異。流式細胞術分析結果顯示,無論處理時間長短,ASCs皆會表現諸如CD29, CD44, CD90與CD105等多種間葉細胞標記,惟缺乏表現造血細胞標記如CD34之能力。多色流式細胞儀分析SVF細胞組成,結果顯示各組之間ASCs的比例沒有顯著差異;相較之下,在EVE處理組中的內皮細胞,其百分比,顯著高於對照組者,且亦會隨著其作用時間之延長而顯著增加。 綜合上述,EVE之主要作用機制,在於調節新血管網絡之形成、生長和功能化血管的成熟。EVE的預先處理效果已經在李宋豬模式中得到證實,此結果可以輕易地轉化為臨床實踐,以提高細胞和組織移植存活率。期望本研究成果可以幫助臨床醫生在手術前優化受體組織的血管分布,以進一步改善脂肪移植的存留容積。 | zh_TW |
dc.description.abstract | Autologous fat grafting (AFG) has been widely used as an injectable substance for breast reconstruction in cosmetic surgery; however, the clinical outcome of AFG is generally considered an unpredictable procedure, with long-term retention commonly varying between 20 and 90%, which is believed to be caused by poor blood supply in the early after grafting. Negative pressure using external volume expansion (EVE) has long been theorized as a potential means to precondition the recipient bed. In addition, the mechanical force has been confirmed to play a pivotal role in mesenchymal stem cells proliferation and differentiation. Accordingly, to investigate the effects of in vivo mechanical loading of EVE on cell proliferation, vascular growth and subsequent maturation as well as cellular markers, proliferation capacity and differentiation potential of adipose stem cells (ASCs) in subcutaneous fat, a swine model was devised to take advantage of anatomical and physiological similarities in skin and subcutaneous tissue between pigs and human.
In this study, pigs were treated with continuous suction at -50 mmHg during the same eight-hour (9:00-17:00) interval each day until 10 or 21 days. Before sampling on day-11 or 22, an ultrasonography was performed to study the soft tissue thickness and results revealed that EVE-induced soft tissue enlargement is a transient effect. Specimens from control and treated groups conducted a various analysis. The result of H&E staining showed that EVE can enhance the process of vascular remodeling but has no significant effect on adipocytes size and numbers. IHC stain with Ki67 showed cell proliferation in basal keratinocytes and adipocytes did not appear significant difference as compared with the non-treated group; in contrast, vascular networks layered with smooth muscle cells increased in EVE treated groups as evident by the α-SMA staining. On the other hand, the epidermal thickness was measured by image J but no significant difference was observed across the groups. Immunofluorescence stain with CD31 suggested that blood vessel density would gradually increase with the loading time of EVE. Stromal vascular fraction (SVF) cells and ASCs were isolated and purified from fat tissue, respectively. Proliferation capacity of ASCs was measured by doubling time and colony-forming assay but no statistical difference was found between the control and EVE treated groups. ASCs were subjected to adipogenic induction for 21 days followed by Oil-Red O staining and adipogenic differentiation potential of ASCs had no significant difference across the groups. Flow cytometry analysis showed regardless of treatment interval, ASCs expressed mesenchymal markers such as CD29, CD44, CD90, CD105 while lacking expression of hematopoietic marker such as CD34. Multicolor flow cytometric analysis of SVF cells revealed no significant difference in the ratio of ASCs across the groups; in contrast, the percentage of endothelial cells of EVE treated groups significantly increased as treatment lengthened when compared with the control group. In conclusion, the predominant mechanism of action of EVE, which would modulate neovascular network formation, growth and maturation of functional blood vessels. The preconditioning effect of EVE has been demonstrated in the swine model, which may be easily translated into clinical practices to enhance cell and tissue engraftment. It is expected that this understanding may help clinicians to optimize the vascularity of the recipient bed to further improve fat volume retention before the operation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:48:34Z (GMT). No. of bitstreams: 1 ntu-106-R00626013-1.pdf: 4282946 bytes, checksum: 784bfab365ec779baa7a7730d7da9cd5 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 Ι
誌謝 Ⅱ 摘要 Ⅲ ABSTRACT Ⅴ 目次 Ⅶ 圖次 Ⅹ 表次 Ⅻ 第一章 緒論 1 第二章 文獻探討 4 2.1 皮膚的解剖構造 4 2.1.1 皮膚結構簡介 4 2.1.2 皮下組織 4 2.1.3 結締組織 5 2.2 脂肪組織 7 2.2.1 脂肪組織之簡介 7 2.2.2 脂肪組織之分類 7 2.2.3 脂肪組織之生理功能 9 2.2.4 脂肪組織之擴增方式 9 2.2.5 脂肪組織之細胞組成 11 2.3 自體脂肪移植 13 2.3.1 簡介 13 2.3.2 非血管化脂肪移植 13 2.3.3 脂肪細胞移植後之命運 15 2.3.4改善脂肪移植存留容積之策略 18 2.4 力學生物學 21 2.4.1 簡介 21 2.4.2 機械力與細胞增殖 22 2.4.3 機械力與間葉幹細胞分化 25 2.4.4 機械力與血管形成 34 2.5 豬為動物模式於生物醫學之研究 40 2.5.1 動物模式之簡介 40 2.5.2 小型豬為動物模式之優點 40 第三章 試驗研究 43 3.1外部體積擴張對軟組織厚度、細胞增殖和血管重塑之影響 43 3.1.1 前言 43 3.1.2 材料與方法 44 3.1.3 結果與討論 51 3.2 外部體積擴張對脂肪幹細胞增殖、分化潛能及其細胞標記之探討 59 3.2.1 前言 59 3.2.2 材料與方法 61 3.2.3 結果與討論 64 第四章 綜合討論 70 第五章 結論 73 第六章 未來展望 74 REFERENCE 75 | |
dc.language.iso | zh-TW | |
dc.title | 預先皮膚擴張於豬模式中用以準備自體脂肪移植之潛能 | zh_TW |
dc.title | The Potential of Pre-Expansion of Skin Preparing for Autologous Fat Grafting in a Swine Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭登貴(Teng-Kuei Cheng),高煌凱(Huang-Kai Kao) | |
dc.subject.keyword | 自體脂肪移植,外部體積擴張,脂肪幹細胞,基質血管細胞,脂肪容積存留, | zh_TW |
dc.subject.keyword | Autologous fat grafting,External volume expansion,Adipose stem cells,Stromal vascular fraction,Fat volume retention, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201700117 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-02-03 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 4.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。