Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26721
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李銘仁(Ming-Jen Lee)
dc.contributor.authorChin-Wen Yangen
dc.contributor.author楊錦雯zh_TW
dc.date.accessioned2021-06-08T07:22:29Z-
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citationAI-Fifi S, Teebi AS, Shevell M. Autosomal dominant Russell-Silver syndrome. Am J Med Genet 1996; 61: 96-97.
Ariel I, Ayesh S, Perlman EJ, Pizov G, Tanos V, Schneider T, Erdmann VA, Podeh D, Komitowski D, Quasem AS et al.. The product of the imprinted H19 gene is an oncofetal RNA. J Clin Pathol 1997; 50: 34-44.
Ariel I, de Groot N, Hochberg A, Imprinted H19 gene expression in embryogenesis and human cancer: the oncofetal connection. Am J Med Genet 2000; 91: 46-50.
Bailey W, Popovich B, Jones KL. Monozygotic twins discordant for the Russell-Silver syndrome. Am J Med Genet 1995; 58:101-105.
Barlow DP. Imprinting: A gamete’s point of view. Trends Genet 1994; 10:194-199.
Beatty L, Weksberg R, Sadowski PD. Detailed analysis of the methylation patterns of the KvDMR1 imprinting control region of human chromosome 11. Genomics 2006; 87: 46-56.
Bliek J, Maas SM, Ruijter JM, Hennekam RCM, Alders M,Westerveld A, Mannens MMAM. Increased tumour risks for BWS patients correlates with aberrant H19 and not KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Gen 2001; 10: 467-476.
Bliek J, Terhal P van den, Bogaard MJ, Maas S, Hamel B, Salieb-Beugelaar G, Simon M, Letteboer T,van der Smagt J, Krroes H, Mannens M. Hypomethylation of the H19 gene cause not only Silver-Russell syndrome(SRS) but also isolated asymmetry or an SRS-like phenotype. Am J Med Genet 2006; 78: 604-614.
Bruckheimer E, Abrahamov A. Russell-Silver syndrome and Wilms tumor. J Pediatr 1993; 122: 165-166.
Bruce S, Katariina HJ, Cecillia MD, Marita LN, Juhf K. Restriction site-specific methylation studies of imprinted gene with quantitative real-time PCR. Clin Chem 2008; 54:491-499.
Chitayat D, Friedman JM, Anderson L , Dimmick JE. Hepatocellular careinoma in a child with familial Russell-Silver syndrome. Am J Med Genet 1988; 31: 909-914.
Coffee B, Muralidharan K, Highsmith WE, Lapunzina P, Warren S. Molecular diagnosis of Beckwith-Wiedemann Syndrome using quantitative methylation-sensitive polymerase chain reaction. Genet Med 2006; 8: 628-634.
Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 2002; 71:162-164.
DeBaun MR, Tucker MA. Risk of cancer during the first four years of life in children from the Beckwith-Wiedemann Syndrome Registry. J Pediatr 1998; 132: 398-400.
DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith–Wiedemann syndrome epigenetic alterations of LIT1 and H19. Am J
Hum Genet 2003; 72:156-160.
De Lonlay P, Fournet JC, Rahier J, Gross-Morand MS, Poggi-Travert F, Foussier V, Bonnefont JP, Brusset MC, Brunelle F, Robert JJ, Nihoul-Fékété C, Saudubray JM, Junien C. Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 1997; 100: 802-807.
Donnai D, Thompson E, Allanson J, Baraitser M. Severe Silver-Russell syndrome. J
Med Genet 1989; 26: 447-451.
Duncan PA, Hall JG, Shapiro LR, Vibert BK. Three-generation dominant transmission
of the Silver-Russell syndrome. Am J Med Genet 1990; 35: 245-250.
Eggermann T, Schonherr N, Meyer E, Obermann C, Mavany M, Eggermann K, Ranke MB, Wollmann HA. Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain. J Med Genet 2006; 43: 615-616.
Eggerman T, Eggermann K, Mergenthaler S, Kuner R, Kaiser P, Ranke MB, Wollmann HA. Paternally inherited deletion of CSH1 in a patient with Silver-Russell syndrome. J Med Genet. 1998; 35: 784-786.
Elliott M, Bayly R, Cole T, Temple IK, Maher ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet 1994; 46: 168-174.
Elliott M and Maher ER. Beckwith-Wiedemann syndrome. J Med Genet 1994; 31: 560-564.
Feuk L, Kalervo A, Lipsanen-Nyman M, Skaug J, Nakabayashi K, Finucane B, Hartung D, Innes M, Kerem B, Nowaczyk M J, Rivlin J, Roberts W, Senman L, Summers A, Szatmari P, Wong V, Vincent JB, Zeesman S, Osborne LR, Cardy JO, Kere J, Scherer SW, Hannula-Jouppi K. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet 2006; 79: 965-972.
Gaston V, Le Bouc Y, Soupre V, Burglen L, Donadieu J, Oro H, Audry G, Vazquez MP, Gicquel C. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur J Hum Genet 2001; 6: 409-418.
Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 2003; 72: 1338-1341.
Gicquel C, Rossignol S, Cabrol S, Houang M, Steunou V, Barbu V, Danton F, Thibaud N Le, Merrer M, Burglen L, Bertrand A M, Netchine I, Le Bouc Y. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nature Genet 2005; 37: 1003-1007.
Joyce C A, Sharp A, Walker J, Bullman H, Temple I K. Duplication of 7p12.1-p13, including GRB10 and IGFBP1, in a mother and daughter with features of Silver-Russell syndrome. Hum Genet 1999; 105: 273-280.
Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour-suppressor activity of H19 RNA. Nature 1993; 365: 764-767.
Hewitt B and Bankier A. Prenatal ultrasound of Beckwith-Wiedemann syndrome. Aust N Z Obset Gynaecol 1994; 34: 488-490.
Hoebeeck J, van der Luijt R, Poppe B, De Smet E, Yigit N, Claes K, Zewald R, de Jong GJ, De Paepe A, Speleman F, Vandesompele J. Rapid detection of VHL exon deletions using real-time quantitative PCR. Lab Invest 2005; 85: 24-33.
Kierszenbaum AL. Genomic imprinting and epigenetic reprogramming: Unearthing the garden of forking paths. Mol Reprod Dev 2002; 63: 269-272.
Koufos A, Grundy P, Morgan K, Aleck KA, Lampkin BC, Kalbakji A, Cavenee WK. Familia Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet 1989; 44: 711-719.
Koontz WL, Shaw LA, RN, Lavery JP. Antenatal Sonographic Appearance of
Beckwith-Wiedemann syndrome. J Clin Ultrasound 1986; 14: 57-59.
Li M, Squire JA, Weksberg R. Molecular genetics of Wiedemann-Beckwith syndrome. Am J Med Genet 1998; 79: 253-259.
Maher ER and Reik W. Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J Clin Invest 2000; 105: 247-252.
McCann J A, Zheng H, Islam A, Goodyer CG, Polychronakos C. Evidence against GRB10 as the gene responsible for Silver-Russell syndrome. Biochem Biophys Res Commun 2001; 286: 943-948.
Midro AT, Debek K, Sawicka A, Marcinkiewicz D, Rogowska M. Second observation of Silver-Russel syndrome in a carrier of a reciprocal translocation with one breakpoint at site 17q25. Clin Genet 1993; 44: 53-55.
Moore GE, Abu-Amero S, Wakeling E, Hitchins M, Monk D, Stanier P, Preece M. The
search for the gene for Silver-Russell syndrome. Acta Paediatr Suppl 1999; 88: 42-48.
Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions
partitions the imprinted genes IGF2 and H19 into parent-specific chromatin loops.
Nat Genet 2004; 36: 889-893.
Murrell A, Heeson S, Cooper WL, Douglas E, Apostolidou S, Moore GE, Maher ER, Reik W. An association between variants in the IGF2 gene and Beckwith-Wiedemann syndrome: interaction between genotype and epigenotype. Hum Mol Genet 2004; 13: 247-255.
Nakano S, Murakami K, Meguro M, Soejima H, Higashimoto K, Urano T,
Kugoh H, Mukai T, Ikeguchi M Oshimura M. Expression profile of LIT1/ KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers. Cancer Sci 2006; 97: 1147-1154.
Nicholls RD. The impact of genomic imprinting for neurobehavioral and developmental disorders. J Clin Invest 2000; 105: 413-418.
Niikawa N, Ishikiriyama S, Takahashi S, Inagawa A, Tonoki H, Ohta Y, Hase N, Kamei T, Kajii T. The Widemann-Beckwith syndrome: pedigree studies on five families with evidence for autosomal dominant inheritance with variable expressivity. Am J Med Genet 1986; 24: 41-55.
Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 1993; 362: 749-751.
Ounap K, Reimand T, Magi M L, Bartsch O. Two sisters with Silver-Russell
phenotype. Am J Med Genet A 2004; 131: 301-306.
Patton MA. Russell-Silver syndrome. J Med Genet 1988; 25: 557-560.
Perkins RM, Hoang-Xuan MA. The Russell-Silver Syndrome: a case report and briefreview ofthe literature. Pediatr Dermatol 2002; 19: 546-549.
Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet 1986; 74: 143-154.
Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet 1989; 44: 720-723.
Preece MA, Price SM, Davies V, Clough L, Stanier P, Trembath RC, Moore GE. Maternal uniparental disomy 7 in Silver-Russell syndrome. J Med Genet 1997; 34: 6-9.
Price SM, Stanhope R, Garrett C, Preece MA, Trembath RC. The spectrum of Silver-Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria. J Med Genet 1999; 36: 837-842.
Russell A. A syndrome of intra-uterine-dwarfism recongnizable at birth with cranio-facial dysostosis, disproportionate short arms, and other anomalies (5 samples). Proc R Soc Med 1954; 47: 1040-1044.
Schneid H, Vazquez MP, Vacher C, Gourmelen M, Cabrol S, Le Bouc Y. The Beckwith-Wiedemann syndrome phenotype and the risk of cancer. Med Prediatr Oncol 1997; 28: 411-415.
Shuman C, Smith AC, Steele L, Ray PN, Clericuzio C, Zackai E, Parisi MA, Meadows AT, Kelly T, Tichauer D, Squire JA, Sadowski P, Weksberg R. Constitutional UPD for chromosome 11p15 in individuals with isolated hemihyperplasia is associated with high tumor risk and occurs following assisted reproductive technologies. Am J Med Genet 2006; 140: 1497-1503.
Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W, Nicholls RD, Weksberg R, Driscoll DJ, Maher ER, Shows TB, Higgins MJ. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Widemann syndrome. Proc Natl Acad Sci USA 1999; 96: 8064-8069.
Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A. Microdeletions in the humanH19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome.Nat Genet 2004; 36: 958-960.
Silver HK, Kiyasu W, George J, Deamer WC. Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics 1953; 12: 368-376.
Weksberg R, Shuman C, Smith AC. Beckwith-Wiedemann syndrome. Am J Med Genet C 2005; 137: 12-23.
Weksberg R, Smith AC, Squire J, Sadowski P. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet 2003; 12: 61-68.
William DH, Gauthier DW, Maizel M. Prenatal diagnosis of Beckwith–Wiedemann syndrome, Prenat Diagn 2005; 25: 879–884.
Wolffe AP and Matzke MA. Epigenetics: Regulation through repression. Science 1999; 286: 481-486.
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nuceic Acid Res 2003; 31: 3406-3415.
http://www.bws-support.org.uk/index.html3
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26721-
dc.description.abstract與人類印痕區域11p15.5相關的甲基化異常遺傳疾病包含貝克威思-威德曼症候群 (Beckwith-Wiedemann syndrome)及羅素-西弗症候群(Russell-Silver syndrome)。導致此兩種疾病發生的主要原因,是由於染色體印痕區域11p15.5上的LIT1與H19基因甲基化程度發生異常。本論文的研究主題有二:(1)開發簡單快速之檢測系統用以偵測甲基化程度的變化(主要是利用甲基化敏感性限制酶結合定量聚合酶連鎖反應),並(2)將此一新開發技術,用於貝克威思-威德曼症候群及羅素-西弗症候群患者LIT1與H19基因座上的DNA甲基化程度檢測。在檢測10名貝克威思-威德曼症候群病患、20名羅素-西弗症候群的病患及20名健康個體LIT1基因的甲基化程度結果中,在健康個體所獲得的基因甲基化指數(Methylation Index; MI)平均值±2個標準差為53.9 %± 14.61(正常參考值:39.29 %~68.51 %);而在10名貝克威思-威德曼症候群患者的基因甲基化指數中,有五位屬於基因低度甲基化,甲基化指數分別為8.42 %、8.47 %、7.35 %、19.04 %及4.48 %,平均值±2個標準差為9.59 ± 11.08,四位的甲基化指數落於正常參考值範圍內,其值分別為55.28 %、51.34 %、55.87 %及57.8 %;而有ㄧ位甲基化程度介於正常值與低度甲基化之間,甲基化指數為36.7 %,推測這可能與遺傳鑲嵌(genetic mosaicism)現象有關。在羅素-西弗症候群患者裡,LIT1甲基化指數均落在正常參考值範圍內,顯示這些病患可能與LIT1基因甲基化異常無關。在檢測H19基因甲基化時,發現在健康個體所測得的甲基化指數不符合預期(其值均呈現明顯低度甲基化,MI<<1),以軟體分析經聚合酶連鎖反應擴增後的單股DNA序列發現,分子會形成明顯的二級結構,推測這可能會影響引子黏合(annealing)效率,進而致使所偵測的甲基化指數與預期結果不符;因此,學生目前初步所開發的E-Q-PCR暫時還無法應用於H19基因的甲基化程度檢測。然而,本研究所開發的新技術已證實在LIT1基因座上可以快速準確偵測其甲基化程度變化,此外,本方法只須少量DNA即可進行甲基化程度檢測,因此可將其發展應用於產前篩檢上。zh_TW
dc.description.abstractThe imprinting regions at chromosome11p15.5 are associated with Beckwith-Wiedemann syndrome (BWS) and Russell-Silver syndrome (RSS). The most frequent findings are the defect of methylation on the imprinting loci LIT1 and H19, both located at chromosome11p15.5, in patients with BWS and RSS. Therefore this study is to develop a simplified and high-performance method for assessment of the degrees of DNA methylation. The novel method is designed by coupling the methylation-sensitive endonuclease treatment and the quantitative polymerase chain reaction (called E-Q-PCR). And the method was employed to evaluate the variable of methylation on the imprinting loci LIT1 and H19. A total of 10 BWS patients, 20 RSS patients and 20 healthy individuals were analysed. The methylation index (MI) of the 20 health individuals was estimated to be ranged from 39.29 %~68.51 % (mean ± 2 SD = 53.9% ± 14.61) which was arbitrarily designated as the normal range of the MI. For the ten BWS patients, five reveal LIT1 hypomethylation with the MI values, 8.42 %, 8.47 %, 7.35 %, 19.04 % and 4.48 % (mean ± 2 SD = 9.59 % ± 11.08 ), four show normal LIT1 methylation pattern, MI= 55.28 %, 51.34 %, 55.89 % and 57.8 %, (mean ± 2 SD = 55.08 % ± 5.42), and one has the MI value (MI= 36.7 %) between the normal and hypomethylation ranges, possibly caused by a genetic mosaicism. For the 20 RSS patients, neither hypomethylation nor hypermethylation was identified. I noted unexpected results were obtained when E-Q-PCR was performed on the H19 locus which might be due to the secondary structure of the single strand DNA produced during PCR. Despite this, E-Q-PCR remains to be a practical method for estimating degrees of DNA methylation since it has been successfully applied on the LIT1 locus. This molecular approach deserves more effort to further characterize its sensitivity, specificity, and cost-effective analyses when compared with other molecular diagnostic techniques.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:22:29Z (GMT). No. of bitstreams: 1
ntu-97-P95448010-1.pdf: 6858997 bytes, checksum: cc2d1c64596e16cc6cf4b5c87b9b50d4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要………………………………………………………………………………....Ι
英文摘要……………………………………………………………………………….Ⅲ
目錄……………………………………………………………………………………V
圖目錄及表目錄……………………………………………………………………… Ⅵ
附圖及附表目錄…………………………………………………………………….Ⅶ
第一章 緒論……………………………………………………………………….......1
第一節 基因印痕(genetic imprinting)………………………………………......1
第二節 DNA甲基化(methylation)與基因表現…………………………………2
第三節 與基因印痕有關的遺傳疾病………………………………………….......3
第四節 研究緣由及目的……………………………………………………….......3
第二章 材料與方法………………………………………………………………….12
第一節 實驗材料………………………………………………………………….12
第二節 實驗方法………………………………………………………………….12
第三章 結果………………………………………………………………………….24
第一節 南方墨點法(Southern blot)的結果………………………………….24
第二節 校正曲線之建立………………………………………………………...24
第三節 貝克威思-威德曼症候群與羅素-西弗症候群患者在11p15.5區域基因的甲基化表現…………………………………………………………...26
第四章 討論………………………………………………………………………….29

第五章 總結………………………………………………………………………….39
參考文獻……………………………………………………………………………….41
附件…………………………………………………………………………………….68
圖目錄及表目錄
圖
圖一、人類染色體11p15.5區域之印痕基因群及偵測LIT1基因甲基化程度之實驗設計圖示....………………………………………………………………………….…46
圖二、人類染色體11p15.5區域之印痕基因群及偵測H19基因甲基化程度之實驗設計圖示…………………………………………………………………………….…47
圖三、LIT1/pGEM-T easy 圖譜…………………………………………………..…..48
圖四、H19/pGEM-T easy 圖譜………………………………………………………..49
圖五、南方墨點法電泳結果-LIT1基因………………………………………………50
圖六、LIT1/pGEM-T easy質體經限制酶NotI及EcoRI處理後的電泳結果………51
圖七、LIT1基因校正曲線之建立………………………………………………….…52
圖八、E-Q-PCR-H19基因建立校正曲線結果…………………………………….…53
圖九、限制酶結合定量聚合酶連鎖反應-LIT1基因正常甲基化結果…………..….55
圖十、限制酶結合定量聚合酶連鎖反應(E-Q-PCR)-LIT1基因結果統計圖(ㄧ)………………………………………………………………………………..…56
圖十ㄧ、限制酶結合定量聚合酶連鎖反應-LIT1基因低度甲基化結果……………58
圖十二、限制酶結合定量聚合酶連鎖反應-LIT1基因反應結果電泳圖……………59
圖十三、限制酶結合定量聚合酶連鎖反應-H19基因之健康個體結果…………….60
表
表一、本實驗中所使用引子序列………………………………………………..……61
附圖及附表目錄
附圖
附圖一、超音波下所顯示貝克威思-威德曼症候群疾病之巨舌特徵……………….62
附圖二、貝克威思-威德曼症候群疾病之臍膨出特徵……………………………….63
附圖三、H19基因序列經聚合酶連鎖反應擴增後單股DNA所形成的二級結構…64
附圖四、LIT1基因序列經聚合酶連鎖反應擴增後單股DNA所形成的二級結構…66
附表
附表一、貝克威思-威德曼症候群致病原因……………………………….................67
dc.language.isozh-TW
dc.subject甲基化敏感性限制&#37238zh_TW
dc.subject甲基化zh_TW
dc.subject人類印痕區域11p15.5zh_TW
dc.subject羅素-西弗症候群zh_TW
dc.subject貝克威思-威德曼症候群zh_TW
dc.subject連鎖反應zh_TW
dc.subject結合即時定量聚合&#37238zh_TW
dc.subjectBeckwith-Wiedemann syndromeen
dc.subjectRussell-Silver syndromeen
dc.subjectmethylation-sensitive endonuclease-coupled quantitative polymerase chain reaction (E-Q-PCR)en
dc.subjectmethylationen
dc.subjectimprintingen
dc.title人類印痕區域11p15.5遺傳疾病之分析zh_TW
dc.titleAnalysis of Human Imprinting gene 11p15.5en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余家利(Chia-li Yu),陳明(Ming Chen)
dc.subject.keyword人類印痕區域11p15.5,甲基化,甲基化敏感性限制&#37238,結合即時定量聚合&#37238,連鎖反應,貝克威思-威德曼症候群,羅素-西弗症候群,zh_TW
dc.subject.keywordimprinting,methylation,methylation-sensitive endonuclease-coupled quantitative polymerase chain reaction (E-Q-PCR),Beckwith-Wiedemann syndrome,Russell-Silver syndrome,en
dc.relation.page71
dc.rights.note未授權
dc.date.accepted2008-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
6.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved