Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國(Chien-Kuo Lee)
dc.contributor.authorLan-Sun Chenen
dc.contributor.author陳蘭蓀zh_TW
dc.date.accessioned2021-06-08T07:20:28Z-
dc.date.copyright2008-08-14
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citationAkira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511.
Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
Amrani, N., Sachs, M.S., and Jacobson, A. (2006). Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 7, 415-425.
Andrejeva, J., Young, D.F., Goodbourn, S., and Randall, R.E. (2002). Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respectively: consequences for virus replication in the presence of alpha/beta and gamma interferons. J Virol 76, 2159-2167.
Bach, E.A., Aguet, M., and Schreiber, R.D. (1997). The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15, 563-591.
Blesofsky, W.A., Mowen, K., Arduini, R.M., Baker, D.P., Murphy, M.A., Bowtell, D.D., and David, M. (2001). Regulation of STAT protein synthesis by c-Cbl. Oncogene 20, 7326-7333.
Bluyssen, H.A., and Levy, D.E. (1997). Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA. J Biol Chem 272, 4600-4605.
Borden, E.C., Sen, G.C., Uze, G., Silverman, R.H., Ransohoff, R.M., Foster, G.R., and Stark, G.R. (2007). Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6, 975-990.
Darnell, J.E., Jr. (1997). STATs and gene regulation. Science 277, 1630-1635.
Darnell, J.E., Jr., Kerr, I.M., and Stark, G.R. (1994). JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421.
Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450.
Greenlund, A.C., Morales, M.O., Viviano, B.L., Yan, H., Krolewski, J., and Schreiber, R.D. (1995). Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 2, 677-687.
Hahm, B., Trifilo, M.J., Zuniga, E.I., and Oldstone, M.B. (2005). Viruses evade the immune system through type I interferon-mediated STAT2-dependent, but STAT1-independent, signaling. Immunity 22, 247-257.
Hu, X., Chen, J., Wang, L., and Ivashkiv, L.B. (2007). Crosstalk among JAK-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82, 237-243.
Hu, X., Paik, P.K., Chen, J., Yarilina, A., Kockeritz, L., Lu, T.T., Woodgett, J.R., and Ivashkiv, L.B. (2006). IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24, 563-574.
Hwang, S.Y., Hertzog, P.J., Holland, K.A., Sumarsono, S.H., Tymms, M.J., Hamilton, J.A., Whitty, G., Bertoncello, I., and Kola, I. (1995). A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc Natl Acad Sci U S A 92, 11284-11288.
Isaacs, A., and Lindenmann, J. (1957). Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147, 258-267.
Isaacs, A., and Lindenmann, J. (1987). Virus interference. I. The interferon. By A. Isaacs and J. Lindenmann, 1957. J Interferon Res 7, 429-438.
Kisseleva, T., Bhattacharya, S., Braunstein, J., and Schindler, C.W. (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1-24.
Levy, D.E., and Darnell, J.E., Jr. (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3, 651-662.
Maruyama, T., Miyake, Y., Tajima, S., Funahashi, T., Matsuzawa, Y., and Yamamoto, A. (1995). A single point mutation in the splice donor site of the low-density-lipoprotein-receptor gene produces intron read-through, exon-skipped and cryptic-site-utilized transcripts. Eur J Biochem 232, 700-705.
Pagani, F., and Baralle, F.E. (2004). Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5, 389-396.
Park, C., Li, S., Cha, E., and Schindler, C. (2000). Immune response in Stat2 knockout mice. Immunity 13, 795-804.
Paulson, M., Pisharody, S., Pan, L., Guadagno, S., Mui, A.L., and Levy, D.E. (1999). Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 274, 25343-25349.
Paulson, M., Pisharody, S., Pan, L., Guadagno, S., Mui, A.L., and Levy, D.E. (1999). Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 274, 25343-25349.
Pestka, S., Krause, C.D., and Walter, M.R. (2004). Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202, 8-32.
Platanias, L.C. (2003). Map kinase signaling pathways and hematologic malignancies. Blood 101, 4667-4679.
Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5, 375-386.
Samuel, C.E. (2001). Antiviral actions of interferons. Clin Microbiol Rev 14, 778-809.
Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., and Schreiber, R.D. (1998). How cells respond to interferons. Annu Rev Biochem 67, 227-264.
Takaoka, A., Mitani, Y., Suemori, H., Sato, M., Yokochi, T., Noguchi, S., Tanaka, N., and Taniguchi, T. (2000). Cross talk between interferon-gamma and -alpha/beta signaling components in caveolar membrane domains. Science 288, 2357-2360.
Takeda, K., and Akira, S. (2000). STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 11, 199-207.
Taniguchi, T. (1995). Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268, 251-255.
Uze, G., Schreiber, G., Piehler, J., and Pellegrini, S. (2007). The receptor of the type I interferon family. Curr Top Microbiol Immunol 316, 71-95.
Vilcek, J., and Feldmann, M. (2004). Historical review: Cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 25, 201-209.
Xing, Y., and Lee, C. (2006). Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat Rev Genet 7, 499-509.
Yan, R., Qureshi, S., Zhong, Z., Wen, Z., and Darnell, J.E., Jr. (1995). The genomic structure of the STAT genes: multiple exons in coincident sites in Stat1 and Stat2. Nucleic Acids Res 23, 459-463.
Zhang, X., Deriaud, E., Jiao, X., Braun, D., Leclerc, C., and Lo-Man, R. (2007). Type I interferons protect neonates from acute inflammation through interleukin 10-producing B cells. J Exp Med 204, 1107-1118.
Zhao, W., Cha, E.N., Lee, C., Park, C.Y., and Schindler, C. (2007). Stat2-dependent regulation of MHC class II expression. J Immunol 179, 463-471.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26678-
dc.description.abstract第一型干擾素在宿主先天性免疫系統中對抗病毒或細菌感染是重要的細胞激素。動物遺傳實驗證據顯示,第一型干擾素的訊息傳遞主要是透過STAT1和STAT2蛋白來傳遞。透過篩選中研院基因突變鼠動物模式核心實驗室所提供的突變鼠,我們找到了一隻對於第一型干擾素反應出現問題的突變鼠。這隻對於第一型干擾素之所以會有低反應的老鼠的主要原因,因為有一個T到A的點突變發生在STAT2基因上的4∼5內含子(Intron)的剪接供體(Splicing donor),進而造成STAT2蛋白表現嚴重地減少。利用低功能STAT2蛋白的突變老鼠和細胞,我們研究STAT2在干擾素與類鐸受體(TLR)交互訊息傳遞中扮演的角色。首先,利用轉錄與轉譯抑制物(actinomycin D and cycloheximide)去加到STAT2突變的細胞上,我們證明STAT2蛋白過低表現不是因為訊息RNA或蛋白質穩定度的降低所造成。此外,STAT2突變鼠與細胞對於腦心肌炎病毒(EMCV)感染也具有高感受性,此現象與STAT2剔除老鼠相似。再者,STAT2突變老鼠與細胞在加入類鐸受體配合體(ligand)刺激之後,呈現出的發炎反應也是降低的,此證據暗示STAT2在與類鐸受體交互訊息傳遞中扮演了正向調控的角色。為了證明STAT2突變老鼠的表現型的研究是因為受到STAT2基因的點突變所造成,而非其他基因的突變所造成,我們在STAT2突變的纖維細胞株中放回老鼠與人類的STAT2。結果顯示兩種STAT2都可以使突變細胞回復第一型干擾素反應。總言,我們找到了另一種STAT2突變的老鼠,這突變鼠的結果,同樣支持STAT2在抗病毒反應上的重要性。我們也同時發現STAT2可以正向調控類鐸受體的訊息傳遞,但機制有待更進一步研究。zh_TW
dc.description.abstractType I interferons (IFNs) are critical cytokines for innate immunity to protect host from viral and bacterial infections. Genetic evidence suggests that the action of type I IFN is mainly mediated by its downstream signal mediators STAT1 and STAT2. From screening the ENU-mutagenized mice generated in the Mouse Mutagenesis Program Core Facility at Academia Sinica, we have identified a mutant mouse displaying impaired type I IFN responses. The hyporesponsiveness of IFNα/β in the mutant mouse is due to a T to A point mutation in the splicing donor of intron 4~5 of STAT2 gene, leading to dramatically reduced production of full length STAT2 protein. Using STAT2 mutant mice and cells, we investigate the hypomorphic functions of STAT2 and its role in the crosstalk between IFNs and TLR signaling. First, by treating cells with actinomycin D or cycloheximide, we confirm that the impaired production of STAT2 protein is not due to reduced stability of its mRNA or protein. In addition, the STAT2 mutant mice and cells were highly susceptible to EMCV infection, which is similar to what has been reported in STAT2KO mice. Furthermore, STAT2 mutant mice and cells display diminished inflammatory response after TLR ligands, suggesting that STAT2 may crosstalk with stimulation of TLR signaling and play a positive regulator. To confirm that the hypomorphic phenotypes of mutant mice are due to the point mutation in STAT2 gene but not mutations else where, we restore a functional mouse and human STAT2 gene in STAT2 mutant embryonic fibroblasts. Both STAT2 genes are able to rescue type I IFN responses. Taken together, we have found another mutant allele of STAT2 to support the importance of STAT2 in antiviral responses. We also demonstrate that STAT2 can positively regulate TLR signaling by which mechanisms need to be further clarified.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:20:28Z (GMT). No. of bitstreams: 1
ntu-97-R95449009-1.pdf: 8187315 bytes, checksum: d67fe36c65c0c0dba4500a637cbadf60 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter I Introduction................................................................................................ 1
Part 1 background............................................................................................................ 1
1.1 Interferons and IFN receptors................................................................................ 1
1.2 JAK-STAT family................................................................................................... 1
1.3 Type I and type II IFN signaling............................................................................ 2
1.4 Role of STAT2 in type I IFN signaling.................................................................. 3
1.5 Antiviral effects of IFN.......................................................................................... 4
1.6 TLR signaling......................................................................................................... 4
Part 2 Rationales and objectives...................................................................................... 5
Chapter II Materials and Methods.............................................................................. 8
2.1 Mice and cells........................................................................................................ 8
2.2 Isolation of mRNA, preparation of cDNA and QPCR......................................... 10
2.3 Construction of MigR1-muST2 and MigR1-huST2............................................ 12
2.4 Transfection and retroviral delivery..................................................................... 13
2.5 Nonsense-mediated mRNA decay assay.............................................................. 14
2.6 Electroporation...................................................................................................... 14
2.7 Western blotting................................................................................................... 15
2.8 FACS analysis...................................................................................................... 15
2.9 Antiviral state assay.............................................................................................. 16
2.10 D-galactosamine plus R848 survival assay.......................................................... 16
2.11 Encephalomyocarditis virus (EMCV) survival assay........................................... 16
2.12 Northern blotting.................................................................................................. 17
Chapter III Results.................................................................................................... 18
3.1 STAT2 mutant mice are hypomorphic but not null mutant.................................. 18
3.2 Reduced expression of STAT2 protein in the mutant mic is not due to decreased mRNA stability.............................................................................................................. 19
3.3 Reduced expression of STAT2 protein in mutant mice is not due to decreased stability of STAT2 protein............................................................................................. 20
3.4 STAT2 mutant mice and cells are extremely susceptible to viral infection in vivo and in vitro..................................................................................................................... 21
3.5 Crosstalk of TLR and JAK-STAT signaling......................................................... 22
3.6 Activation of STAT1 is normal in the mutant splenocytes in response to IFNα... 23
3.7 Restoration of STAT2 rescues IFNα response in STAT2 mutant cells................. 24
Chapter IV Discussion.............................................................................................. 27
Figures........................................................................................................................... 30
Figure 1. Reduced IFNα responses in STAT2 mutant splenocytes................................ 31
Figure 2. Hypothetic stop codons formation in STAT2 mutant cells............................. 32
Figure 3. Comparable half-life of STAT2 mRNA in WT and STAT2 mutnat splenocytes..................................................................................................................... 33
Figure 4. Comparable level of STAT2 mRNA in WT and STAT2 mutant splenocytes..................................................................................................................... 34
Figure 5. Stability of STAT2 protein is comparable between WT and STAT2 mutant MEF............................................................................................................................... 35
Figure 6. Impaired antiviral responses to EMCV infection in STAT2 mutant MEF................................................................................................................................ 36
Figure 7. STAT2 mutant mice are highly susceptible to EMCV infection.................... 37
Figure 8. The expression profiles of different proinflammatory cytokines in STAT2 mutnat and WT splenocytes after TLR-ligand treatment............................................... 38
Figure 9. STAT2 mutant mice are more resistant to TLR ligand-induced toxic shock than WT and heterozygous mice................................................................................... 39
Figure 10. Comparable p-STAT1 expression in WT and STAT2 mutant cells after IFNα or IFNγ stimulation....................................................................................................... 40
Figure 11. Ectopic expression of mouse STAT2 in STAT2 mutant splenocytes........... 41
Figure 12. Transfection of MigR1, MigR1-huST2, and MigR1-muST2 in 293T cells................................................................................................................................ 42
Figure 13. Retroviral transduction of MigR1, MigR1-huST2, and MigR1-muST2 in STAT2 mutant MEFs..................................................................................................... 43
Figure 14. Induction of antiviral genes in restored STAT2 mutant MEFs by IFNα stimulation..................................................................................................................... 44
References..................................................................................................................... 45
dc.language.isoen
dc.subject抗病毒zh_TW
dc.subject干擾素zh_TW
dc.subject訊息傳遞zh_TW
dc.subject低功能zh_TW
dc.subject類鐸受體zh_TW
dc.subjectJAK-STATen
dc.subjectSTAT2en
dc.subjectcrosstalken
dc.subjectantiviralen
dc.subjectENUen
dc.subjecthypomorphicen
dc.subjectTLRen
dc.title低功能STAT2在ENU突變鼠中與TLR訊息傳遞交互對話的角色研究zh_TW
dc.titleHypomorphic function of STAT2 in ENU mutaginized mice and the crosstalk between STAT2 and TLR signalingen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林宜玲(Yi-Ling Lin),賴明宗(Ming-Zong Lai)
dc.subject.keyword低功能,干擾素,類鐸受體,抗病毒,訊息傳遞,zh_TW
dc.subject.keywordJAK-STAT,TLR,hypomorphic,ENU,antiviral,crosstalk,STAT2,en
dc.relation.page49
dc.rights.note未授權
dc.date.accepted2008-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved