請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26677
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 于明暉(Ming-Whei Yu) | |
dc.contributor.author | Wei-Liang Shih | en |
dc.contributor.author | 施惟量 | zh_TW |
dc.date.accessioned | 2021-06-08T07:20:26Z | - |
dc.date.copyright | 2008-09-11 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-24 | |
dc.identifier.citation | 1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557-2576. 3. Cancer Registry Annual Report, 2004. Republic of China 4. World Health Organization. Hepatitis B. World Health Organization Fact Sheet 204 (Revised October 2000). WHO web site. http://www.who.int/mediacentre/factsheets/fs204/en/index.html (Accessed June 2008). 5. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control. J Viral Hepat 2004;11:97-107. 6. World Health Organization. Hepatitis C. World Health Organization Fact Sheet 164 (Revised October 2000). WHO web site. http://www.who.int/mediacentre/factsheets/fs164/en/index.html (Accessed June 2008). 7. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006;6:674-687. 8. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006;118:3030-3044. 9. Chen CJ, Yu MW, Liaw YF. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol 1997;12:S294-S308. 10. Chen CJ, Chen DS. Interaction of hepatitis B virus, chemical carcinogen, and genetic susceptibility: multistage hepatocarcinogenesis with multifactorial etiology. Hepatology 2002;36:1046-1049. 11. Beasley RP. Hepatitis B virus: the major etiology of hepatocellular carcinoma. Cancer 1988;61:1942-1956. 12. Yu MW, Hsu FC, Sheen IS, et al. Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers. Am J Epidemiol 1997;145:1039-1047. 13. Yu MW, Tsai SF, Hsu KH, et al. Epidemiologic characteristics of malignant neoplasms in Taiwan II. Liver cancer. J Natl Public Health Assoc 1988;8:125-138. 14. Wu CF, Yu MW, Lin CL, et al. Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis 2008;29:106-112. 15. Yu MW, Yeh SH, Chen PJ, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005;97:265-272. 16. Lin CL, Kao JH. Hepatitis B viral factors and clinical outcomes of chronic hepatitis B. J Biomed Sci 2008;115:137-145. 17. Yu MW, Chang HC, Chang SC, et al. Role of reproductive factors in hepatocellular carcinoma: impact on hepatitis B- and C-related risk. Hepatology 2003;38:1393-1400. 18. Yu MW, Chen CJ. Elevated serum testosterone levels and risk of hepatocellular carcinoma. Cancer Res 1993;53:790-794. 19. Tanaka K, Sakai H, Hashizume M, et al. Serum testosterone: estradiol ratio and the development of hepatocellular carcinoma among male cirrhotic patients. Cancer Res 2000;60:5106-5110. 20. Yu MW, Horng IS, Hsu KH, et al. Plasma selenium levels and risk of hepatocellular carcinoma among men with chronic hepatitis virus infection. Am J Epidemiol 1999;150:367-374. 21. Yu MW, Chiu YH, Chiang YC, et al. Plasma carotenoids, glutathione S-transferase M1 and T1 genetic polymorphisms, and risk of hepatocellular carcinoma: independent and interactive effects. Am J Epidemiol 1999;147:621-629. 22. Yu MW, Chiu YH, Yang SY, et al. Cytochrome P450 1A1 genetic polymorphisms and risk of hepatocellular carcinoma among chronic hepatitis B carriers. Br J Cancer 1999;80:598-603. 23. Yu MW, Yang SY, Chiu YH, et al. A p53 genetic polymorphism as a modulator of hepatocellular carcinoma risk in relation to chronic liver disease, familial tendency, and cigarette smoking in hepatitis B carriers. Hepatology 1999;29:697-702. 24. Yu MW, Pai CI, Yang SY, et al. Role of N-acetyltransferase polymorphisms in hepatitis B related hepatocellular carcinoma: impact of smoking on risk. Gut 2000;47:703-709. 25. Yu MW, Cheng SW, Lin MW, et al. Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 2000;92:2023-2028. 26. Yu MW, Yang SY, Pan IJ, et al. Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-realted hepatocellular carcinoma. J Natl Cancer Inst 2003;95:1485-1488. 27. Tanabe KK, Lemoine A, Finkelstein DM, et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA 2008;299:53-60. 28. Yu MW, Yang YC, Yang SY, et al. Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men. J Natl Cancer Inst 2001;93:1644-1651. 29. Rogers AB, Theve EJ, Feng Y, et al. Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res 2007;67:11536-11546. 30. Maeda S, Kamata H, Luo JL, et al. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005;121:977-990. 31. Ghebranious N, Sell S. Hepatitis B injury, male gender, aflatoxin, and p53 expression each contribute to hepatocarcinogenesis in transgenic mice. Hepatology 1998;27:383-391. 32. Naugler WE, Sakurai T, Kim Sunhwa, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007;317:121-124. 33. Chen BF, Liu CJ, Low GM, et al. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology 2006;130:1153-1168. 34. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295:65-73. 35. Liu CJ, Chen BF, Chen PJ, et al. Role of hepatitis B viral load and basal core promoter mutation in hepatocellular carcinoma in hepatitis B carriers. J Infect Dis 2006;193:1258-1265. 36. Kao JH, Chen PJ, Lai MY, et al. Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology 2003;124:327-334. 37. Yu MW, Chen CJ. Hepatitis B and C viruses in the development of hepatocellular carcinoma. Cri Rev Oncol Hematol 1994;17:71-91. 38. Yu MW, Chang HC, Liaw YF, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst 2000;92:1159-1164. 39. Shen FM, Lee MK, Gong HM, et al. Complex segregation analysis of primary hepatocellular carcinoma in Chinese families: interaction of inherited susceptibility and hepatitis B viral infection. Am J Hum Genet 1991;49:88-93. 40. Cai RL, Meng W, Lu HY, et al. Segregation analysis of hepatocellular carcinoma in a moderately high-incidence area of East China. World J Gastroenterol 2003;9:2428-2432. 41. Chang HC. Segregation analysis of HBsAg positive hepatocellular carcinoma in Taiwan. Doctoral Dissertation, 2002 July. 42. Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000;61:154-166. 43. Hein DW. N-acetyltransferase genetics and their role in predisposition to aromatic and heterocyclix amine-induced carcinogenesis. Toxicol Lett 2000;112-113:349-356. 44. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307-310. 45. Ntais C, Polucarpou A, Tsatsoulis A. Molecular epidemiology of prostate cancer: androgens and polymorphisms in androgen-related genes. Eur J Endocrinol 2003;149:469-477. 46. Stoscheck CM, King LE, Jr. Role of epidermal growth factor in carcinogenesis. Cancer Res 1986;46:1030-1037. 47. Borlak J, Meier T, Halter R, et al. Epidermal growth factor-induced hepatocellular carcinoma: gene expression profiles in precursor lesions, early stage and solitary tumors. Oncogene 2005;24:1809-1819. 48. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA 2008;299:1335-1344. 49. Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007;39:977-983. 50. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes for BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007;316:1331-1336. 51. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314:1461-1463. 52. Risch N, Merikangas K. T future of genetic studies of complex human diseases. Science1996;273:1516-1517. 53. Carison CS, Eberle MA, Kruglyan L, et al. Mapping complex disease loci in whole-genome association studies. Nature 2004;429:446-452. 54. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95-108. 55. Teare MD, Barrett JH. Genetic linkage studies. Lancet 2005;366:1036-1044. 56. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999;22:139-144. 57. Midorikawa Y, Yamamoto S, Ishikawa S, et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene 2006;25:5581-5590. 58. Lau SH, Guan ZY. Cytogenetic and molecular genetic alterations in hepatocellular carcinoma. Acta Pharmacologica Sinica 2005;26:659-665. 59. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002;31:339-346. 60. Midorikawa Y, Yamamoto S, Ishikawa S, et al. Molecular karyotyping of human hepatocellular carcinoma using single-mucleotide polymorphism arrays. Oncogene 2006;25:5581-5590. 61. Patil MA, Gutgemann I, Zhang J, et al. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma. Carcinogenesis 2005;26:2050-2057. 62. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 2001;120:1763-1773. 63. Okabe H, Ikai I, Matsuo K, et al. Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways of hepatocellular carcinoma between hepatitis B virus-positive and –negative tumors. Hepatology 2000;31:1073-1079. 64. Zondervan PE, Wink J, Alers JC, et al. Molecular cytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma: analysis of 26 carcinomas and 12 concurrent dysplasias. J Pathol 2000;192:207-215. 65. Yeh SH, Lin MW, Lu SF, et al. Allelic loss of chromosome 4q21-23 associates with hepatitis B virus-related hepatocarcinogenesis and elevated alpha-fetoprotein. Hepatology 2004;40:847-854. 66. Lin YW, Sheu JC, Liu LY, et al. Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur J Cancer 1999;35:1730-1734. 67. Yeh SH, Chen PJ, Lai MY, Chen DS. Allelic loss on chromosomes 4q and 16q in hepatocellular carcinoma: association with elevated α-fetoprotein production. Gastroenterology 1996;110:184-192. 68. Bluteau O, Beaudoin J-C, Pasturaud P, et al. Specific association between alcohol intake, high grade of differentiation and 4q34-q35 deletions in hepatocellular carcinomas identified by high resolution allelotyping. Oncogene 2002;21:1225-1232. 69. Jou YS, Lee CS, Chang YH, et al. Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma. Cancer Res 2004;64:3030-3036. 70. Nagai H, Pineau P, Tiollais P, et al. Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene 1997;14:2927-2933. 71. Kim H, Lee MJ, Kim MR, et al. Expression of cyclin D1, cyclin E, cdk4 and loss of heterozygosity of 8p, 13q, 17p in hepatocellular carcinoma: comparison study of childhood and adult hepatocellular carcinoma. Liver 2000;20:173-178. 72. Yeh SH, Chen PJ, Shau WY, et al. Chromosomal allelic imbalance evolving from liver cirrhosis to hepatocellular carcinoma. Gastroenterology 2001;121:699-709. 73. Yeh SH, Wu DC, Tsai CY, et al. Genetic characterization of Fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocelluar carcinoma. Clin Cancer Res 2006;12:1097-1108. 74. Deng Q, Huang S. PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene 2004;23:4903-4910. 75. Kong X, Murphy K, Raj T, et al. A combined linkage-physical map of the human genome. Am J Hum Genet 2004;75:1143-1148. 76. O’Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998;63:259-266. 77. Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 2004;5:150-163. 78. Kruglyak L, Daly MJ, Reeve-Daly MT, et al. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996;58:1347-1363. 79. Strauch K. Parametric linkage analysis with automatic optimization of the disease model parameters. Am J Hum Genet 2003;73(Suppl1):A2624. 80. Ott J. Linkage probability and its approximate confidence interval under possible heterogeneity. Genet Epidemiol 1986;3(Suppl1):251-257. 81. Abecasis GR, Cherny SS, Cookson WO, et al. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002;30:97-101. 82. Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2004;21:263-265. 83. Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003;25:115-121. 84. Martin ER, Monks SA, Warren LL, et al. A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000;67:146-154. 85. Martin ER, Bass MP, Kaplan NL. Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 2001;68:1065-1067. 86. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995;B 57: 289-300. 87. Li C, Scott LJ, Boehnke M, Assessing whether an allele can account in part for a linkage signal: the Genotype-IBD Sharing Test (GIST). Am J Hum Genet 2004; 74:418-431. 88. Takayasu K, Arii S, Ikai I, et al. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterology 2006;131:461-469. 89. Weeks DE, Lehner T, Squires-Wheeler E, et al. Measuring the inflation of the LOD score due to its maximization over model parameter values in human linkage analysis. Genet Epidemiol 1990;7:237-243. 90. Hodge SE, Abreu PC, Greenberg DA. Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. Am J Hum Genet 1997;60:217-227. 91. Reich DE, Goldstein DB. Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol 2001;20:4-16. 92. Marchini J, Cardon LR, Phillips MS, et al. The effects of human population structure on large genetic association studies. Nat Genet 2004;36:512-517. 93. Xu ZH, Otterness DM, Freimuth RR, et al. Human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1) and PAPSS2: gene cloning, characterization and chromosomal localization. Biochem Biophys Res Commun 2000;268:437-444. 94. Xu ZH, Thomae BA, Eckloff BW, et al. Pharmacogenetics of human 3'-phosphoadenosine 5'-phosphosulfate synthetase 1 (PAPSS1): gene resequencing, sequence variation, and functional genomics. Biochem Pharmacol. 2003;65:1787-1796. 95. Saini SP, Sonoda J, Xu L, et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 2004;65:292-300. 96. Harris RM, Wood DM, Bottomley L, et al. Phytoestrogens are potent inhibitors of estrogen sulfation: implications for breast cancer risk and treatment. J Clin Endocrinol Metab 2004;89:1779-1787. 97. Falany CN, Wheeler J, Oh TS, et al. Steroid sulfation by expressed human cytosolic sulfotransferases. J Steroid Biochem Mol Biol 1994;48:369-375. 98. Banoglu E. Current status of the cytosolic sulfotransferases in the metabolic activation of promutagens and procarcinogens. Curr Drug Metab 2000;1:1-30. 99. Liebersbach BF, Sanderson RD. Expression of syndecan-1 inhibits cell invasion into type I collagen. J Biol Chem 1994;269:20013-20019. 100. Hibino S, Shibuya M, Hoffman MP, et al. Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer Res 2005;65:10494-10501. 101. Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006;34:D140-144. 102. Betel D, Wilson M, Gabow A, et al. The microRNA.org resource: targets and expression. Nucleic Acids Res 2008;36:D149-153. 103. Conde L, Vaquerizas JM, Dopazo H, et al. PupaSuite: finding functional SNPs for large-scale genotyping purposes. Nucleic Acids Res 2006;34:W621-W625. 104. Hsu PW, Huang HD, Hsu SD, et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 2006;34:D135-139. 105. He L, Hannon GJ. MicroRNA: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-531. 106. Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 2005;353:1768-1771. 107. Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. Am J Hum Genet 2004;75:353-362. 108. Tateishi R, Shiina S, Yoshida H, et al. Prediction of recurrence of hepatocellular carcinoma after curative ablation using three tumor markers. Hepatology 2006;44:1518-1527. 109. Mattheisen M, Dietter J, Knapp M, et al. Inferential testing for linkage with GENEHUNTER-MODSCORE: the impact of the pedigree structure on the null distribution of multipoint MOD scores. Genetic Epidemiol 2008;32:73-83. 110. Mendell. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008;133:217-222. 111. Stembalska A, Blin N, Ramsey D, et al. Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Reports 2006;16:417-421. 112. Tsang YS, Lo KW, Leung SF, et al. Two distinct regions of deletion on chromosome 13q in primary nasopharyngeal carcinoma. Int J Cancer 1999;83:305-308. 113. Blackhall FH, Merry CLR, Davies EJ, et al. Heparan sulfate proteoglycans and cancer. Br J Cancer 2001;85:1094-1098. 114. Davies EJ, Blackhall FH, Shanks JH, et al. Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clin Cancer Res 2004;10:5178-5186. 115. Sung YK, Huwang SY, Park MK, et al. Glypican-3 is overexpressed in human hepatocellualr carcinoma. Cancer Sci 2003;94:259-262. 116. Hippo Y, Watanabe K, Watanabe A, et al. Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res 2004;64:2418-2423. 117. Xu ZH, Wood TC, Adjei AA, et al. Human 3'-phosphoadenosine 5'-phosphosulfate synthetase: radiochemical enzymatic assay, biochemical properties, and hepatic variation. Drug Metab Dispos 2001;29:172-178. 118. Lai JP, Sandhu DS, Yu C, et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 2008;47:1211-1222. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26677 | - |
dc.description.abstract | 背景
肝細胞癌家族聚集研究與分離率分析結果顯示遺傳因子參與家族性肝細胞癌致病機轉。在與B型肝炎相關的肝細胞癌中已發現4號染色體長臂與13號染色體長臂有高比率的缺失(loss-of-heterozygosity)現象,暗示其帶有之遺傳因子可能與B型肝炎相關肝細胞癌有關。本研究利用階段分析策略(hierarchical strategy),以連鎖分析與連鎖不平衡方法進行4號染色體長臂與13號染色體長臂上肝細胞癌易感性基因位置定位。 研究個案與方法 我們以連鎖分析與家族相關性研究方法進行第一階段研究,後續再以一獨立選樣之病例對照樣本進行第二階段的相關性驗證分析。第一階段研究以74個多發病例家族與166個單發病例家族,其中86.7%病例個案為B型肝炎帶原者,進行母數與無母數方法之連鎖分析。相關性研究則是以家族不平衡檢定(pedigree disequilibrium test,PDT)方法進行。第二階段則是以855名B型肝炎表面抗原陽性之肝細胞癌病例與875名B型肝炎表面抗原陽性之對照個案,針對第一階段所發現之可能候選區域內的單核甘多型性標記(single-nucleotide polymorphism,SNP),利用羅吉斯(logistic)與Cox迴歸方法分析其和肝細胞癌發生的相關性及與肝細胞癌或肝硬化死亡相關之存活分析。 結果 連鎖分析分別於4q25(於微衛星標記D4S3240,hetergeneity LOD score=3.14)、13q12.13-13.1、13q14.3-21.31與13q31.1-32.2 (高峰位於131q31.3上的微衛星標記D13S886,MOD score=3.73 ) 發現與肝細胞癌可能相關的連鎖訊息。針對4q25連鎖高峰下6.16-cM範圍的精確定位分析,在包含PAPSS1基因的兩個相鄰的單套體區塊(haplotype block)發現10個與肝細胞癌有顯著相關的單核甘多型性標記(PDT分析結果之empirical P-value介於0.0002~0.0045間)。PAPSS1蛋白質主要是參與體內許多物質的硫酸鹽化(sulfation)。以罹病手足資料進行genotype identity-by-descent sharing test,分析結果顯示,其中6個標記可解釋部分連鎖分析於4q25所發現的連鎖訊息。病例對照研究亦顯示,位於PAPSS1基因區域內的單核甘多型性標記與肝細胞癌發生有顯著的相關性,此一顯著相關性尤見於早發的肝細胞癌病例。此外,針對腫瘤≤2 cm的肝細胞癌病患進行的存活分析發現,帶有由4個單核甘多型性標記所構成的一常見單套體,其存活結果會顯著較差(調整風險比值 [hazard ratio] 為1.71,95%信賴區間為1.10-2.65)。此組成單套體之對偶基因在PDT分析中亦呈現過度傳遞現象(overtransmission)。 結論 位於PAPSS1基因內的遺傳變異在B型肝炎病毒相關之肝細胞癌致病過程,可能扮演一定角色。未來亦應針對13q31.3區域,進行候選基因或精細定位分析研究。 | zh_TW |
dc.description.abstract | Background
Studies of familial aggregation of hepatocellular carcinoma (HCC) and segregation analyses have suggested existence of genetic component in the etiology of familial HCC. High rates of loss-of-heterozygosity on chromosome 4q and 13q have been observed in hepatitis B-related HCC. The objective of this study was to use a hierarchical strategy with linkage and linkage disequilibrium (LD) approaches to identify HCC-susceptibility loci on chromosome 4q and 13q. Subjects and Methods We performed a two-stage genetic study in which linkage and family-based association mapping was followed up by association and replication studies in an independent sample of unrelated cases and controls. For stage 1, data were from 74 multiplex families and 166 singleton families. The majority of the affected individuals (86.7%) in the family sample were hepatitis B surface antigen (HBsAg) carriers. We applied model-based and model-free linkage analyses, as well as the pedigree disequilibrium test (PDT). For stage 2, promising single-nucleotide polymorphisms (SNPs) identified by stage 1 were examined in an independent set of 855 HBsAg-positive cases and 875 HBsAg-positive controls. Logistic and Cox regression analyses were used to study the relationship of SNPs representative of the implicated region with HCC development and with disease-specific survival determined in terms of HCC or cirrhosis deaths. Results We found evidence of linkage to microsatellite markers on 4q25 (peak multipoint heterogeneity LOD score =3.12 at marker D4S3240), 13q12.13-13.1, 13q14.3-21.31, and 13q31.1-32.2 (peak multipoint maximized LOD (MOD) =3.73 at marker D13S886 in 13q31.3). Fine mapping applied to the 4q25 region with SNPs across a 6.16-cM interval under peak resulted in significant association in ten SNPs (empirical P-value range: 0.0002 to 0.0045 from the PDT) from two adjacent haplotype blocks within or flanking the PAPSS1 gene, which encodes an enzyme involved in sulfation of a broad range of compounds. Our affected-sibship data and the genotype identity-by-descent sharing test suggest that six of these ten SNPs can account in part for the observed linkage signal. In the case-control analyses, multiple statistically significant SNP associations were identified in the PAPSS1 gene, particularly for the young-onset cases aged <45 years. In addition, the presence of a common haplotype containing the same alleles at four SNPs, which revealed overtransmission to HCC subjects in the PDT analyses, were associated with poor survival among patients with small tumor present at hospital admission (adjusted hazard ratio= 1.71; 95% confidence interval=1.10 to 2.65). Conclusions Genetic variation in the PAPSS1 gene may play a role in the pathogenesis of HBV-related HCC. Further fine-mapping studies or positional candidate gene studies on 13q31.3 are warranted. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:20:26Z (GMT). No. of bitstreams: 1 ntu-97-D92842003-1.pdf: 675016 bytes, checksum: d92cba0a17113cf311bf80844ea6a808 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Contents
誌謝 ................................................ I 中文摘要 ............................................. Ⅱ Abstract …………………………………………………………. Ⅳ Background ……………………………………………………… 1 Subjects and Methods ………………………………………… 7 Results …………………………………………………………… 15 Part (I) Analysis of Chromosome 4q Markers ……………. 15 Linkage Analysis …………………………………………….. 15 Fine Mapping ………………………………………………... 16 Part (II) Linkage Analysis of Chromosome 13q Markers.. 19 Discussion ……………………………………………………... 21 Perspectives ……….…………………………………………… 27 Reference ………………………………………………………… 49 Appendix ………………………………………………………… 59 | |
dc.language.iso | en | |
dc.title | 肝細胞癌家族4號與13號染色體長臂之遺傳研究 | zh_TW |
dc.title | Genetic Studies on Chromosome 4q and 13q in Familial Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),熊昭(Chao Agnes Hsiung),蔡世峰(Shih-Feng Tsai),范盛娟(Cathy Shen-Jang Fann),張久瑗(Joanne Jeou-Yuan Chen),簡國龍(Kuo-Liong Chien) | |
dc.subject.keyword | 肝細胞癌,連鎖分析,相關性分析,連鎖不平衡,4號染色體長臂,13號染色體長臂,PAPSS1基因, | zh_TW |
dc.subject.keyword | Hepatocellular carcinoma,Linkage analysis,Association analysis,Linkage disequilibrium,Chromosome 4q,Chromosome 13q,PAPSS1 gene, | en |
dc.relation.page | 66 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-25 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 659.2 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。