Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁(Li-Jen Chen)
dc.contributor.authorSung-Yuan Chenen
dc.contributor.author陳崧源zh_TW
dc.date.accessioned2021-06-08T07:20:17Z-
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-10
dc.identifier.citation1. 李金揚, 液晶配向技術分析. 2005: 工業技術研究院.
2. Gennes, P.-G.d. and J. Prost, The physics of liquid crystals. 1995: Clarendon Press.
3. Berreman, D.W., Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal. Physical Review Letters, 1972. 28(26): p. 1683.
4. Berreman, D.W., Alignment of Liquid Crystals by Grooved Surfaces. Molecular Crystals and Liquid Crystals, 1973. 23(3-4): p. 215-231.
5. Fukuda, J.-i., M. Yoneya, and H. Yokoyama, Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman's Model Reexamined. Physical Review Letters, 2007. 98(18): p. 187803.
6. Frank, F.C., I. Liquid crystals. On the theory of liquid crystals. Discussions of the Faraday Society, 1958. 25: p. 19-28.
7. Oseen, C.W., The theory of liquid crystals. Transactions of the Faraday Society, 1933. 29(140): p. 883-899.
8. Zocher, H., The effect of a magnetic field on the nematic state. Transactions of the Faraday Society, 1933. 29(140): p. 945-957.
9. Gupta, V.K. and N.L. Abbott, Azimuthal anchoring transition of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols. Physical Review E, 1996. 54(5): p. R4540.
10. Janning, J.L., Thin film surface orientation for liquid crystals. 1972. 21(4): p. 173-174.
11. Cheng, J. and G.D. Boyd, Liquid-Crystal Alignment Properties of Photolithographic Gratings. Applied Physics Letters, 1979. 35(6): p. 444-446.
12. Bin Lias, J., et al., Liquid crystal alignment on patterned-alignment films. Journal of Information Display, 2011. 12(2): p. 101-107.
13. Park, S., et al., Chemical nanopatterns via nanoimprint lithography for simultaneous control over azimuthal and polar alignment of liquid crystals. Advanced Materials, 2005. 17(11): p. 1398-+.
14. Chiou, D.-R., K.-Y. Yeh, and L.-J. Chen, Adjustable pretilt angle of nematic 4-n-pentyl-4'-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces. Vol. 88. 2006: AIP. 133123.
15. Geary, J.M., et al., The Mechanism of Polymer Alignment of Liquid-Crystal Materials. Journal of Applied Physics, 1987. 62(10): p. 4100-4108.
16. Stöhr, J., et al., Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order. Science, 2001. 292(5525): p. 2299-2302.
17. Wang, Y.H., et al., Homogeneous alignment of nematic liquid crystal induced by polyimide exposed to linearly polarized light. Applied Physics Letters, 1998. 72(5): p. 545-547.
18. Wang, Y.H., et al., Alignment of a nematic liquid crystal induced by anisotropic photo-oxidation of photosensitive polyimide films. Journal of Applied Physics, 1998. 84(8): p. 4573-4578.
19. Wang, Y.H., et al., Generation of nematic liquid crystal alignment with polyimides exposed to linearly polarized light of long wavelength. Journal of Applied Physics, 1998. 84(1): p. 181-188.
20. Gibbons, W.M., et al., Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature, 1991. 351(6321): p. 49-50.
21. Castellano, J.A., Surface Anchoring of Liquid-Crystal Molecules on Various Substrates. Molecular Crystals and Liquid Crystals, 1983. 94(1-2): p. 33-41.
22. Sugimura, A. and O.-Y. Zhong-can, Mechanism of nematic molecular alignment based on friction charges and surface topology by rubbing. Liquid Crystals, 1993. 14(2): p. 319-326.
23. Kumar, S., J.-H. Kim, and Y. Shi, What Aligns Liquid Crystals on Solid Substrates? The Role of Surface Roughness Anisotropy. Physical Review Letters, 2005. 94(7): p. 077803.
24. Lee, S.W., et al., New Clues to the Factors Governing the Perpendicular Alignment of Liquid Crystals on Rubbed Polystyrene Film Surfaces. Langmuir, 2003. 19(21): p. 8735-8743.
25. Porte, G., Tilted Alignment of MBBA Induced by Short-chain Surfactants. Journal De Physique, 1976. 37(10): p. 1245-1252.
26. Yeung, F.S.Y., et al., Liquid Crystal Alignment Layer With Controllable Anchoring Energies. Display Technology, Journal of, 2008. 4(1): p. 24-27.
27. Shiyanovskaya, I., et al., 50.1: Distinguished Contributed Paper: Single Substrate Encapsulated Cholesteric LCDs: Coatable, Drapable and Foldable. SID Symposium Digest of Technical Papers, 2005. 36(1): p. 1556-1559.
28. Seo, D.S. and S. Kobayashi, Liquid crystal alignment capabilities on rubbed organic solvent soluble polyimide surfaces with trifluoromethyl moieties. Liquid Crystals, 2000. 27(7): p. 883-887.
29. 松本正一 and 角田良市, 液晶之基礎與應用. 1996, 台北市: 國立編譯館.
30. 顧鴻壽, 光電液晶平面顯示器. 2 ed. 2004: 新文京開發出版社.
31. Yeung, F.S.-Y. and H.-S. Kwok, Fast-response no-bias-bend liquid crystal displays using nanostructured surfaces. 2006. 88(6): p. 063505.
32. Yeung, F.S., et al., High Pretilt Angles by Nano-Structured Surfaces and their Applications. SID Symposium Digest of Technical Papers, 2005. 36: p. 1080-1083.
33. Hatoh, H., et al., Molecular tilt direction in a slightly tilted homeotropic aligned liquid crystal cell. Vol. 63. 1993: AIP. 3577-3579.
34. Paek, S.-H., et al., A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles. Vol. 83. 1998: AIP. 1270-1280.
35. Hiroshima, K. and M. Mochizuki, Influence of SiO Film-Thickness on Liquid Crystal Orientation. Jpn. Appl. Phys., 1980. 19: p. 567.
36. Urbach, W., M. Boix, and E. Guyon, Alignment of nematics and smectics on evaporated films. 1974. 25(9): p. 479-481.
37. Uchida, T., M. Ohgawara, and M. Wada, Liquid Crystal Orientation on the Surface of Obliquely-Evaporated Silicon Monoxide with Homeotropic Surface Treatment. Jpn. J. Appl. Phys., 1980. 19: p. 2127.
38. Ulman, A., Formation and structure of self-assembled monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
39. Kessel, C.R. and S. Granick, Formation and Characterization of A Highly Ordered and Well-Anchored Alkylsilane Monolayer on Mica by Self-Assembly. Langmuir, 1991. 7(3): p. 532-538.
40. Tredgold, R.H., AN INTRODUCTION TO ULTRATHIN ORGANIC FILMS - FROM LANGMUIR-BLODGETT TO SELF-ASSEMBLY - ULMAN,A. Nature, 1991. 354(6349): p. 120-120.
41. Sagiv, J., Organized Monolayers by Adsorption .1. Formation and Structure of Oleophobic Mixed Monolayers on Solid-Surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
42. Silberzan, P., et al., Silanation of Silica Surfaces - A New Method of Constructing Pure or Mixed Monolayers. Langmuir, 1991. 7(8): p. 1647-1651.
43. Angst, D.L. and G.W. Simmons, Moisture Absorption Characteristics of Organosiloxane Self-Assembled Monolayers. Langmuir, 1991. 7(10): p. 2236-2242.
44. Rye, R.R., G.C. Nelson, and M.T. Dugger, Mechanistic aspects of alkylchlorosilane coupling reactions. Langmuir, 1997. 13(11): p. 2965-2972.
45. Gun, J., R. Iscovici, and J. Sagiv, On The Formation and Structure of Self-Assembling Monolayers .2. A Comparative-Study of Langmuir-Blodgett and Adsorbed Films Using Ellipsometry And IR Reflection Absorption-Spectroscopy. Journal of Colloid and Interface Science, 1984. 101(1): p. 201-213.
46. Jin, Y.G., et al., Langmuir monolayers of the long-chain alkyl derivatives of a nucleoside analogue and the formation of self-assembled nanoparticles. Colloids and Surfaces B-Biointerfaces, 2005. 42(1): p. 45-51.
47. Knobler, C.M. and D.K. Schwartz, Langmuir and self-assembled monolayers. Current Opinion in Colloid & Interface Science, 1999. 4(1): p. 46-51.
48. Maoz, R. and J. Sagiv, On The Formation and Structure of Self-Assembling Monolayers .1. A Comparative ATR-Wetability Study of Langmuir-Blodgett and Adsorbed Films on Flat Substrates and Glass Microbeads. Journal of Colloid and Interface Science, 1984. 100(2): p. 465-496.
49. Meucci, S., G. Gabrielli, and G. Caminati, Comparative investigation of Langmuir-Blodgett films and Self-Assembled Monolayers on metal surfaces. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 1999. 8-9: p. 135-143.
50. Wasserman, S.R., Y.T. Tao, and G.M. Whitesides, Structure and Reactivity of Alkylsiloxane Monolayers Formed By Reaction of Alkyltrichlorosilanes on Silicon Substrates. Langmuir, 1989. 5(4): p. 1074-1087.
51. Campos-Teran, J., J. Mas-Oliva, and R. Castillo, Interactions and conformations of alpha-helical human apolipoprotein CI on hydrophilic and on hydrophobic substrates. Journal of Physical Chemistry B, 2004. 108(52): p. 20442-20450.
52. Kim, S., H.K. Christenson, and J.E. Curry, The effect of humidity on the stability of an octadecyltriethoxysilane monolayer self-assembled on untreated and plasma-treated mica. Langmuir, 2002. 18(6): p. 2125-2129.
53. Rozlosnik, N., M.C. Gerstenberg, and N.B. Larsen, Effect of solvents and concentration on the formation of a self-assembled monolayer of octadecylsiloxane on silicon (001). Langmuir, 2003. 19(4): p. 1182-1188.
54. Carraro, C., et al., Observation of three growth mechanisms in self-assembled monolayers. Journal of Physical Chemistry B, 1998. 102(23): p. 4441-4445.
55. Banga, R., et al., FTIR and AFM Studies of the Kinetics and Self-Assembly of Alkyltrichlorosilanes and (Perfluoroalkyl)Trichlorosilanes onto Glass and Silicon. Langmuir, 1995. 11(11): p. 4393-4399.
56. Filas, R.W. and J.S. Patel, Chemically induced high‐tilt surfaces for liquid crystals Applied Physics Letters, 1987. 50(20): p. 1426-1428.
57. Pockels, A., Surface tension. Nature, 1891. 43(1117): p. 437-439.
58. Pockels, A., On the Relative Contamination of the Water-Surface by Equal Quantities of Different Substances. Nature, 1892. 46(1192): p. 418-419.
59. Langmuir, I., The constitution and fundamental properties of solids and liquids. II. Liquids. Am. Chem. Soc, 1917. 39(9): p. 1848-1906.
60. Langmuir, I., The mechanism of the surface phenomena of flotation. Trans. Faraday Soc., 1920. 15: p. 62-74.
61. Bigelow, W.C., D.L. Pickett, and W.A. Zisman, Oleophobic Monolayers, I. Films Adsorbed from Solution in Non-Polar Liquids. Journal of Colloid Science, 1946. 1: p. 513-538.
62. Seo, D.S. and S. Kobayashi, Liquid crystal alignment capability on polyimide Langmuir-Blodgett surfaces with alkyl chain lengths. Molecular Crystals and Liquid Crystals, 2000. 339: p. 1-10.
63. Lee, E.S., et al., Control of the LC alignment using a stamped morphology method and its application to LCDs. SID Symposium Digest of Technical Papers, 1993. 24(1): p. 957-960.
64. Yeung, F.S., et al., Variable liquid crystal pretilt angles by nanostructured surfaces. Vol. 88. 2006: AIP. 051910.
65. Vaughn, K.E., et al., Continuous control of liquid crystal pretilt angle from homeotropic to planar. Applied Physics Letters, 2007. 90(19).
66. Chaudhari, P., et al., Atomic-beam alignment of inorganic materials for liquid-crystal displays. Nature, 2001. 411(6833): p. 56-59.
67. Lu, X., et al., Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly(urethane-imide) film. Chemical Physics Letters, 2003. 377(3-4): p. 433-438.
68. Kim, J.B., et al., Variable liquid crystal pretilt angles on various compositions of alignment layers. Vol. 90. 2007: AIP. 043515.
69. Schadt, M., et al., Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Japanese Journal of Applied Physics Part 1, 1992. 31(7): p. 2155-64.
70. Wang, Y., et al., Generation of nematic liquid crystal alignment with polyimides exposed to linearly polarized light of long wavelength. 1998. 84(1): p. 181-188.
71. Wang, Y., et al., Alignment of a nematic liquid crystal induced by anisotropic photo-oxidation of photosensitive polyimide films. 1998. 84(8): p. 4573-4578.
72. Nishikawa, M. and J.L. West, Mechanism of Generation of Pretilt Angles on Polyimides with a Single Exposure to Polarized Ultraviolet Light. Japanese Journal of Applied Physics, 1999. 38(9A): p. 5183-5188.
73. Yaroshchuk, O., et al., Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates. Liquid Crystals, 2004. 31(6): p. 859-869.
74. Kim, J.B., et al., No bias pi cell using a dual alignment layer with an intermediate pretilt angle. Vol. 91. 2007: AIP. 023507.
75. Kawata, Y. and Y. Mori, Control of Nematic Liquid Crystal Alignment Using Stripped Film Method. Jpn. J. Appl. Phys., 1996. 35: p. L40.
76. 陳品誠, et al., 非刷磨式奈米配向技術發展. 工業材料, 2002. 190: p. 133-138.
77. Hwang, S.J., et al., Characteristics of nanoparticle-doped homeotropic liquid crystal devices. Journal of Physics D-Applied Physics, 2009. 42(2).
78. Hwang, S.-J., S.-C. Jeng, and I.-M. Hsieh, Nanoparticle-doped polyimide for controlling the pretilt angle of liquid crystals devices. Opt. Express, 2010(18): p. 16507-16512.
79. Hiroshima, K., Controlled High-Tilt-Angle Nematic Alignment Compatible with Glass Frit Sealing. Jpn. J. Appl. Phys., 1982. 21: p. L761-L763
80. Scheffer, T.J. and J. Nehring, Accurate Determination of Liquid-Crystal Tilt Bias Angles. Journal of Applied Physics, 1977. 48(5): p. 1783-1792.
81. Chen, K.-S., et al., Soft-and hard-segment phase segregation of polyester-based polyurethane. Journal of Polymer Research, 2001. 8(2): p. 99-109.
82. Whitesides, G.M. and Y.N. Xia, Replica molding: Complex optics at lower costs. Photonics Spectra, 1997. 31(1): p. 90-91.
83. Xia, Y.N. and G.M. Whitesides, Soft lithography. Abstracts of Papers of the American Chemical Society, 1997. 214: p. 348-PMSE.
84. Chiou, D.-R. and L.-J. Chen, Pretilt Angle of a Nematic Liquid Crystal on Microgrooved Silica Surfaces Continuously Manipulated by the Surface Hydrophobicity. Journal of Physical Chemistry C, 2009. 113(22): p. 9797-9803.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26674-
dc.description.abstract液晶顯示器基本組成為兩片透明的導電玻璃基板中夾入一層液晶物質,而在兩片基板內面與液晶接觸的表面上必須塗佈一層配向膜以提供液晶分子方向性。由於平面顯示器隨著應用領域的不斷開發,顯示器朝向軟性材料的應用,本研究主要以高分子作為配向膜的基材,希望未來可朝向可撓式基材做配向膜的研究。
配向膜的配向能力與表面化學性質及表面結構有關,預傾角的調控為控制顯示效果的關鍵技術所在。有別於定向摩擦法製備配向膜,本研究根據Berreman (1972、1973)提出了溝槽理論,利用軟性模板壓印法提供了有別於摩擦法所製備之溝槽,可避免摩擦法所產生之靜電與碎屑汙染問題。第一部分是針對結晶性高分子聚對苯二甲酸乙二酯 (PET)、與非結晶性高分子聚甲基丙烯酸甲酯 (PMMA)高分子進行電漿改質處理,以末端碳鏈長度不同的有機矽烷來做表面改質形成自聚性分子膜進而調整表面能量。第二部分是合成化學性質不同的聚胺酯丙烯酸樹酯,以不同比例混摻聚合來調整不同的表面能量,並可藉由測量對水的前進接觸角來了解材料的表面能量。本研究以固定溝槽寬度 (~450 nm)及液晶分子4-n-pentyl-4’-cyanobiphenyl (5CB)的條件下,探討液晶分子在微溝槽表面上的排列行為。
本研究發現表面較親水,由其製備的配向膜會使液晶分子呈水平配向;而表面較疏水,由其製備的配向膜則會使液晶分子呈垂直配向。更發現材料表面的親疏水性質與向列型液晶之預傾角有高度相關性。任何本研究所使用之高分子 (PET、PMMA與urethane-acrylate resins),若固定液晶種類及表面起伏的條件下,水的前進角與預傾角均落在同一條關聯曲線。當水的前進角為70o ~ 100o時,液晶的預傾角亦隨之自0o ~ 90o變動。
zh_TW
dc.description.abstractThe liquid crystal display is composed by two conducted ITO glass and a liquid crystal material. In the between of two ITO glass, we need alignment film on ITO glass to induce the liquid crystal molecules to align at certain pretilt angle. With the innovation of LCD, we hope we can use other polymers rather than polyimide (PI) as alignment film to fabricate flexible alignment film.
The alignment behavior of the liquid crystal molecules is related to the surface chemical properties and topology. It is believed that the groove theory proposed by Berreman in 1972 and 1973 explain that the liquid crystal molecules would align along the groove direction that lowers the elastic free energy of nematic liquid crystal molecules. Therefore, we use soft-embossing method to fabricate the micro-grooved polymer surface in order to prevent electrostatics and debris causing by rubbing method. The first part is to use crystalline polymer, polyethylene terephthalate (PET) and non-crystalline polymer poly(methyl methacrylate) (PMMA) as substrate to demonstrate the potentials to apply those plastics as alignment film. We use O2 plasma to bombard the substrate in order to generate hydroxy group which reacts with alkoxysilane as self-assembly monolayer. The second part is to synthesize novel urethane-acrylate resins, and we use different combinations of end groups to tune the surface energy. The advancing contact angle of water is applied as an index of the surface hydrophobicity, that is, the surface energy of the material. In this study, we want to figure out the alignment behavior of liquid crystal molecules in the condition of using 450 nm period micro-grooved polymer surface and 4-n-pentyl-4’-cyanobiphenyl (5CB) liquid crystal molecules.
Our study shows that if the surface is hydrophilic, the liquid crystal alignment tends to homogeneous; and if the surface is hydrophilic, the liquid crystal alignment tends to homeotropic. Furthermore, we find out that there is a highly relationship between advancing contact angle of water and pretilt angle. In every polymer substrate we use, that is, PET, PMMA, and urethane-acrylate resins, as we tune the surface hydrophobicity in the same condition of surface topology and liquid crystal molecules, the pretilt angle falls on the same correlation curve. As the advancing water contact angle increase from 70oC to 100 oC, the pretile angle increase from 0oC to 90oC.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:20:17Z (GMT). No. of bitstreams: 1
ntu-100-R98524014-1.pdf: 5905097 bytes, checksum: 44428964491a170febc85dad5c476695 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 I
Abstract II
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 緒論 1
第二章 文獻回顧 5
2-1 液晶分子的排列方式 5
2-2 液晶分子的配向理論 7
2-2-1 溝槽配向理論 7
2-2-2 高分子長鏈配向理論 9
2-2-3 靜電場配向理論 10
2-2-4 表面粗糙度配向理論 10
2-2-5 表面自由能配向理論 11
2-3 液晶配向處理 12
2-4 液晶配向技術 12
2-4-1 定向摩擦法 13
2-4-2 傾斜蒸鍍法 14
2-4-3 表面活性劑法 15
2-4-4 Langmuir-Blodgett薄膜法 18
2-4-5 壓製微溝槽法 18
2-4-6 垂直與水平配向之聚亞醯胺混合法 19
2-4-7 離子束轟擊法 19
2-4-8 紫外光照射法 20
2-4-9 電漿束轟擊法 20
2-4-10 雙層配向層法 21
2-4-11 薄膜剝去法 21
2-4-12 奈米粒子配向法 22
第三章 實驗方法 36
3-1 實驗藥品 36
3-2 清潔用藥品 42
3-3 實驗器材 42
3-4 實驗設備 43
3-5 分析儀器設備 43
3-5-1 傅立葉轉換紅外線光譜儀 43
3-5-2 熱重量分析儀 44
3-5-3 微差掃描卡計儀 45
3-5-4 卡爾費璽水份測定儀 45
3-5-5 核磁共振儀 46
3-5-6 原子力顯微鏡 47
3-5-7 接觸角量測系統 47
3-5-8 預傾角量測系統 48
3-5-9 正交偏光顯微鏡 49
3-5-10 對比度 50
3-3 實驗原理 51
3-3-1 壓克力樹脂 51
3-3-2 聚胺基甲酸酯 51
3-3-3 聚胺酯丙烯酸樹酯 52
3-3-4 聚合反應 53
3-3-5 光聚合法 54
3-3-6 聚二甲基矽氧烷 55
3-3-7 軟性模板壓印法 55
3-4 實驗方法 56
3-4-1 玻璃器皿的清潔 56
3-4-2 矽晶母片及玻璃基材的清潔 56
3-4-3 異辛烷的除水乾燥 57
3-4-4 矽晶母片表面的預處理 57
3-4-5 軟性模板的製造 58
3-4-6 以軟性模板壓印法製備高分子微溝槽表面 59
3-4-7 在微溝槽表面上製備自聚性分子膜 60
3-4-8 聚胺酯丙烯酸樹酯的合成 61
3-4-9 液晶盒的製作、液晶排列的觀察及預傾角量測 63
3-4 實驗流程 72
第四章 結果與討論 78
4-1 以自聚性分子膜方式對PET、PMMA高分子基材進行表面改質 78
4-1-1 水的前進角之討論 79
4-1.2 預傾角之討論 83
4-1-3 配向結果之討論 84
4-2 以合成聚胺酯丙烯酸樹酯製備液晶配向膜 85
4-2-1 製備過程之討論 85
4-2-2 熱性質之討論 88
4-2-3 水的前進接觸角之討論 89
4-2-4 預傾角之討論 90
4-2-5 配向結果之討論 91
4-3 綜合討論 91
4-3-1 原子力顯微鏡之觀察 91
4-3-2 偏光顯微鏡之觀察 92
4-3-3 亮暗態與對比度 94
4-3-4 文獻比較 94
第五章 結論 122
參考文獻 124
dc.language.isozh-TW
dc.title向列型液晶4-n-pentyl-4'-cyanobiphenyl於具微溝槽結構之高分子基材上之配向行為研究zh_TW
dc.titleThe Alignment Behavior of Nematic Liquid Crystal 4-n-pentyl-4'-cyanobiphenyl on Micro-grooved Polymer Surfacesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝國煌(Kuo-Huang Hsieh),李政道(Chein-Dhau Lee)
dc.subject.keyword液晶,配向膜,對苯二甲酸乙二酯,聚甲基丙烯酸甲酯,聚胺酯丙烯酸樹酯,有機矽烷,親疏水,前進接觸角,預傾角,zh_TW
dc.subject.keywordliquid crystal,alignment film,polyethylene terephthalate (PET),poly(methyl methacrylate) (PMMA),poly(urethane-acrylate) resin,alkoxysilane,hydrophobicity,advancing water contact angle,pretilt angle,en
dc.relation.page131
dc.rights.note未授權
dc.date.accepted2011-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
5.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved