Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳寬墩(Kwan-Dun Wu)
dc.contributor.authorYu-Feng Linen
dc.contributor.author林裕峯zh_TW
dc.date.accessioned2021-06-08T07:20:06Z-
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citationAbe, J., Baines, C. P., & Berk, B. C. (2000). Role of mitogen-activated protein kinases in ischemia and reperfusion injury : the good and the bad. Circ Res, 86(6), 607-609.
Anderson, S., Jung, F. F., & Ingelfinger, J. R. (1993). Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations. Am J Physiol, 265(4 Pt 2), F477-486.
Ayo, S. H., Radnik, R. A., Garoni, J. A., Glass, W. F., 2nd, & Kreisberg, J. I. (1990). High glucose causes an increase in extracellular matrix proteins in cultured mesangial cells. Am J Pathol, 136(6), 1339-1348.
Ayo, S. H., Radnik, R. A., Glass, W. F., 2nd, Garoni, J. A., Rampt, E. R., Appling, D. R., et al. (1991). Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am J Physiol, 260(2 Pt 2), F185-191.
Carranza, A., Karabatas, L., Barontini, M., & Armando, I. (2001). Decreased tubular uptake of L-3,4-dihydroxyphenylalanine in streptozotocin-induced diabetic rats. Horm Res, 55(6), 282-287.
Chang, H. W., Chu, T. S., Huang, H. Y., Chueh, S. C., Wu, V. C., Chen, Y. M., et al. (2007). Down-regulation of D2 dopamine receptor and increased protein kinase Cmu phosphorylation in aldosterone-producing adenoma play roles in aldosterone overproduction. J Clin Endocrinol Metab, 92(5), 1863-1870.
Chang, H. W., Wu, V. C., Huang, C. Y., Huang, H. Y., Chen, Y. M., Chu, T. S., et al. (2008). D4 dopamine receptor enhances angiotensin II-stimulated aldosterone secretion through PKC-varepsilon and calcium signaling. Am J Physiol Endocrinol Metab, 294(3), E622-629.
Christlieb, A. R. (1974). Renin, angiotensin, and norepinephrine in alloxan diabetes. Diabetes, 23(12), 962-970.
Cooper, L. (2001). USRDS. 2001 Annual Data Report. Nephrol News Issues, 15(10), 31, 34-35, 38 passim.
Cussac, D., Newman-Tancredi, A., Pasteau, V., & Millan, M. J. (1999). Human dopamine D(3) receptors mediate mitogen-activated protein kinase activation via a phosphatidylinositol 3-kinase and an atypical protein kinase C-dependent mechanism. Mol Pharmacol, 56(5), 1025-1030.
Danne, T., Spiro, M. J., & Spiro, R. G. (1993). Effect of high glucose on type IV collagen production by cultured glomerular epithelial, endothelial, and mesangial cells. Diabetes, 42(1), 170-177.
de Vriese, A. S., Tilton, R. G., Elger, M., Stephan, C. C., Kriz, W., & Lameire, N. H. (2001). Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol, 12(5), 993-1000.
di Mari, J. F., Davis, R., & Safirstein, R. L. (1999). MAPK activation determines renal epithelial cell survival during oxidative injury. Am J Physiol, 277(2 Pt 2), F195-203.
Dzau, V. J., & Ingelfinger, J. R. (1989). Molecular biology and pathophysiology of the intrarenal renin-angiotensin system. J Hypertens Suppl, 7(7), S3-8.
Gruden, G., Perin, P. C., & Camussi, G. (2005). Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr Diabetes Rev, 1(1), 27-40.
Gruden, G., Thomas, S., Burt, D., Zhou, W., Chusney, G., Gnudi, L., et al. (1999). Interaction of angiotensin II and mechanical stretch on vascular endothelial growth factor production by human mesangial cells. J Am Soc Nephrol, 10(4), 730-737.
Ha, H., Yu, M. R., Choi, Y. J., Kitamura, M., & Lee, H. B. (2002). Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol, 13(4), 894-902.
Hussain, T., & Lokhandwala, M. F. (2003). Renal dopamine receptors and hypertension. Exp Biol Med (Maywood), 228(2), 134-142.
Ihm, C. G., Park, J. K., Hong, S. P., Lee, T. W., Cho, B. S., Kim, M. J., et al. (1998). A high glucose concentration stimulates the expression of monocyte chemotactic peptide 1 in human mesangial cells. Nephron, 79(1), 33-37.
Jaimes, E. A., Galceran, J. M., & Raij, L. (1998). Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int, 54(3), 775-784.
Jose, P. A., Eisner, G. M., & Felder, R. A. (1998). Renal dopamine receptors in health and hypertension. Pharmacol Ther, 80(2), 149-182.
Kranzhofer, R., Schmidt, J., Pfeiffer, C. A., Hagl, S., Libby, P., & Kubler, W. (1999). Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 19(7), 1623-1629.
Kunduzova, O. R., Bianchi, P., Pizzinat, N., Escourrou, G., Seguelas, M. H., Parini, A., et al. (2002). Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemia-reperfusion. FASEB J, 16(9), 1129-1131.
Lajiness, M. E., Chio, C. L., & Huff, R. M. (1993). D2 dopamine receptor stimulation of mitogenesis in transfected Chinese hamster ovary cells: relationship to dopamine stimulation of tyrosine phosphorylations. J Pharmacol Exp Ther, 267(3), 1573-1581.
Lal, M. A., Brismar, H., Eklof, A. C., & Aperia, A. (2002). Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int, 61(6), 2006-2014.
Lewis, E. J., Hunsicker, L. G., Bain, R. P., & Rohde, R. D. (1993). The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med, 329(20), 1456-1462.
Lopez-Ilasaca, M. (1998). Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem Pharmacol, 56(3), 269-277.
Luippold, G., Beilharz, M., & Muhlbauer, B. (2001). Reduction of glomerular hyperfiltration by dopamine D(2)-like receptor blockade in experimental diabetes mellitus. Nephrol Dial Transplant, 16(7), 1350-1356.
Luippold, G., & Muhlbauer, B. (1998). Dopamine D2 receptors mediate glomerular hyperfiltration due to amino acids. J Pharmacol Exp Ther, 286(3), 1248-1252.
Luo, Y., Kokkonen, G. C., Wang, X., Neve, K. A., & Roth, G. S. (1998). D2 dopamine receptors stimulate mitogenesis through pertussis toxin-sensitive G proteins and Ras-involved ERK and SAP/JNK pathways in rat C6-D2L glioma cells. J Neurochem, 71(3), 980-990.
Mauer, S. M., Steffes, M. W., Ellis, E. N., Sutherland, D. E., Brown, D. M., & Goetz, F. C. (1984). Structural-functional relationships in diabetic nephropathy. J Clin Invest, 74(4), 1143-1155.
Mene, P., Simonson, M. S., & Dunn, M. J. (1989). Physiology of the mesangial cell. Physiol Rev, 69(4), 1347-1424.
Mogensen, C. E., & Christensen, C. K. (1984). Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med, 311(2), 89-93.
Muhlbauer, B., Hartenburg, E., & Osswald, H. (1994). Renal response to amino acid infusion in rats: effect of dopamine receptor antagonists and benserazide. Naunyn Schmiedebergs Arch Pharmacol, 349(3), 244-249.
Narkar, V., Hussain, T., & Lokhandwala, M. (2002). Role of tyrosine kinase and p44/42 MAPK in D(2)-like receptor-mediated stimulation of Na(+), K(+)-ATPase in kidney. Am J Physiol Renal Physiol, 282(4), F697-702.
Narkar, V. A., Hussain, T., Pedemonte, C., & Lokhandwala, M. F. (2001). Dopamine D(2) receptor activation causes mitogenesis via p44/42 mitogen-activated protein kinase in opossum kidney cells. J Am Soc Nephrol, 12(9), 1844-1852.
Patel, K. P., Zhang, K., Hein, M., & Mayhan, W. G. (1997). Peripheral noradrenergic turnover in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract, 35(1), 1-9.
Pfeil, K., Staudacher, T., & Luippold, G. (2006). Effect of L-dopa decarboxylase inhibitor benserazide on renal function in streptozotocin-diabetic rats. Kidney Blood Press Res, 29(1), 43-47.
Piga, R., Naito, Y., Kokura, S., Handa, O., & Yoshikawa, T. (2007). Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis, 193(2), 328-334.
Pilon, C., Levesque, D., Dimitriadou, V., Griffon, N., Martres, M. P., Schwartz, J. C., et al. (1994). Functional coupling of the human dopamine D3 receptor in a transfected NG 108-15 neuroblastoma-glioma hybrid cell line. Eur J Pharmacol, 268(2), 129-139.
Radeke, H. H., & Resch, K. (1992). The inflammatory function of renal glomerular mesangial cells and their interaction with the cellular immune system. Clin Investig, 70(9), 825-842.
Ravid, M., Savin, H., Jutrin, I., Bental, T., Katz, B., & Lishner, M. (1993). Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med, 118(8), 577-581.
Remuzzi, A., Fassi, A., Sangalli, F., Malanchini, B., Mohamed, E. I., Bertani, T., et al. (1998). Prevention of renal injury in diabetic MWF rats by angiotensin II antagonism. Exp Nephrol, 6(1), 28-38.
Schlondorff, D. (1987). The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J, 1(4), 272-281.
Sedor, J. R. (1994). Cytokines, kidney disease, and therapy: a molecular characterization provides insights into mechanism. J Lab Clin Med, 124(4), 470-472.
Seikaly, M. G., Arant, B. S., Jr., & Seney, F. D., Jr. (1990). Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest, 86(4), 1352-1357.
Singh, R., Singh, A. K., Alavi, N., & Leehey, D. J. (2003). Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol, 14(4), 873-880.
Tsiani, E., Lekas, P., Fantus, I. G., Dlugosz, J., & Whiteside, C. (2002). High glucose-enhanced activation of mesangial cell p38 MAPK by ET-1, ANG II, and platelet-derived growth factor. Am J Physiol Endocrinol Metab, 282(1), E161-169.
Vidotti, D. B., Casarini, D. E., Cristovam, P. C., Leite, C. A., Schor, N., & Boim, M. A. (2004). High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol, 286(6), F1039-1045.
Welsh, G. I., Hall, D. A., Warnes, A., Strange, P. G., & Proud, C. G. (1998). Activation of microtubule-associated protein kinase (Erk) and p70 S6 kinase by D2 dopamine receptors. J Neurochem, 70(5), 2139-2146.
Wolf, G., Schroeder, R., Zahner, G., Stahl, R. A., & Shankland, S. J. (2001). High glucose-induced hypertrophy of mesangial cells requires p27(Kip1), an inhibitor of cyclin-dependent kinases. Am J Pathol, 158(3), 1091-1100.
Wolf, G., Schroeder, R., Ziyadeh, F. N., Thaiss, F., Zahner, G., & Stahl, R. A. (1997). High glucose stimulates expression of p27Kip1 in cultured mouse mesangial cells: relationship to hypertrophy. Am J Physiol, 273(3 Pt 2), F348-356.
Wolf, G., Sharma, K., Chen, Y., Ericksen, M., & Ziyadeh, F. N. (1992). High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-beta. Kidney Int, 42(3), 647-656.
Wolf, G., & Ziyadeh, F. N. (1999). Molecular mechanisms of diabetic renal hypertrophy. Kidney Int, 56(2), 393-405.
Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., & Greenberg, M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270(5240), 1326-1331.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26670-
dc.description.abstract背景與目的: 糖尿病是導致腎衰竭之主因。糖尿病腎病變在早期階段會有腎絲球擴大,腎絲球過濾率增加,及尿蛋白排出增加。其中腎絲球擴大相信是第二型血管張力素刺激導致。腎絲球間隔細胞的增生及轉型是糖尿病腎病變腎功能惡化的主因。間隔細胞在腎絲球內具有平滑肌細胞、纖維母細胞、及巨噬細胞的三重身份,也是血管活性物質之作用處, 這其中包括了血管收縮劑(如第二型血管張力素)及血管鬆弛劑(如多巴胺)。在過去糖尿病大鼠的動物研究中,發現腎臟內多巴胺的合成會增加,從而活化了腎臟內的多巴胺系統,而成為糖尿病腎絲球過濾率增加的主因。此外藉由過去糖尿病大鼠的研究,也可發現糖尿病腎病變腎功能之惡化和多巴胺受器有很大的關係。多巴胺受器是一種G蛋白耦合性受體,會透過MAPKs的傳遞路徑影響了細胞之複製、分化、及存活。經由以上線索, 是否在高糖或高第二型血管張力素的作用下,大鼠腎臟間隔細胞上多巴胺D2-like 接受器(D2 接受器或D4 接受器) mRNA的表現會有所改變,是值得探討的問題。
方法: 本研究首先嘗試建立穩定的大鼠腎臟間隔細胞初級培養株的培養環境及條件,並經由反轉錄聚合酵素連鎖反應檢驗大鼠腎臟間隔細胞上有多巴胺D2-like接受器(D2接受器及D4接受器) mRNA的存在,並具有MCP-1的表現。接下來分別使用第二型血管張力素或高糖刺激大鼠腎臟間隔細胞,於不同的時間點下,檢驗多巴胺D2接受器、多巴胺D4接受器、及MCP-1 mRNA的表現差異。研究最後階段使用多巴胺D2和D4的促進劑和抑制劑,探討對大鼠腎臟間隔細胞MCP-1 mRNA的表現。
結果: 吾人發現在加入10-6M (或是1 μM)第二型血管張力素後12小時,多巴胺D2受器mRNA及多巴胺D4受器mRNA皆有明顯增加14倍的表現量。10-6M第二型血管張力素刺激後8小時, 也會明顯增加MCP-1 mRNA為2.8倍的表現量。另外雖然高糖(30nM)也會增加大鼠腎臟間隔細胞造成多巴胺D2和D4受器、及MCP-1 mRNA的表現量,但應為高滲透壓所導致之結果。使用多巴胺D2或D4的促進劑或抑制劑對於大鼠腎臟間隔細胞,於各個時間點定量MCP-1 mRNA,並未發現有明顯之變化。
結論: 本研究發現大鼠腎臟間隔細胞表現多巴胺D2及D4受器 mRNA的表現,建立了多巴胺接受器於大鼠腎臟間隔細胞 mRNA表現的細胞研究模式。進一步發現第二型血管張力素會刺激大鼠腎臟間隔細胞多巴胺D2及D4接受器及MCP-1 mRNA的表現。D2或D4受器是否會調控經由其他發炎激素,有待進一步的研究。
zh_TW
dc.description.abstractAim: Diabetes mellitus is the main cause for renal failure. In the early stage of diabetic nephropathy, there are mesangial hypertrophy, glomerular hyperfiltration, and albuminuria. The early changes in mesangial cell are believed to be related to the deterioration of the renal function. Mesangial cell is a kind of smooth muscle cell, a kind of fibroblast, and also a kind of macrophage. There are target sites of vasoactive agents on it, including vasoconstrictors (ex. angiotensin II) and vasodilators (ex. dopamine). By the experimental diabetes rat model, the production of dopamine in the kidney increases, this may activate the dopaminergic system in the kidney, and causes glomerular hyperfiltration. In diabetes rat model it is also said that there is relationship between dopamine D2-like receptors and glomerular function. Dopamine receptor is a kind of G protein-coupled receptors, which may influence the cell proliferation, differentiation, and survival by intra-cellular MAPK pathway. This study was designed to find out: under the high glucose or angiotensin II stimulation as diabetes status, the mesangial cell may change the mRNA expression of dopamine D2-like receptors (either dopamine D2 receptor or dopamine D4 receptor).
Methods: This study set up an adequate culturing environment and condition for the primary culture rat mesangial cell. Furthermore, the existence of dopamine D2 and D4 receptors together with MCP-1 mRNA expression in primary culture rat mesangial cell were proved by RT-PCR. Then, the angiotensin II or high glucose was added in the cell culture environment to see the different mRNA expression of dopamine D2 receptor, dopamine D4 receptor, and MCP-1 in separate time points. Finally, the dopamine D2 or D4 agonist and antagonist were added respectively to the culture environment in order to see the changes of MCP-1 mRNA expression in the primary culture rat mesangial cell.
Results: After the incubation of cells for 12 hours in 10-6M angiotensin II, the dopamine D2 receptor and dopamine D4 receptor mRNA expression increased. Additionally, the mRNA expression of MCP-1 increased apparently after 8 hours of the effect of angiotensin II. 30nM high glucose in the culture environment also increased the mRNA expression of dopamine D2 receptor, dopamine D4 receptor, and MCP-1, but these should be the effect of osmolarity. No apparent changes of mRNA expression in MCP-1 was found under the effect of dopamine D2 or D4 agonist and antagonist.
Conclusions: This study found the mRNA existence of dopamine D2 and D4 receptors in primary culture rat mesangial cell, and this study also established a well-performed cellular phenotype model with adequate culturing environments and conditions. Furthermore, this study demonstrated that angiotensin II increased the mRNA expression of dopamine D2、D4 receptors and MCP-1. Further study is necessary for the underlying mechanism and their relationships to the MAPKs pathway.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:20:06Z (GMT). No. of bitstreams: 1
ntu-97-P93421023-1.pdf: 2146702 bytes, checksum: 8af9554622cc42a50451a570550ae02e (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書……………………………………………………...……………..ii
誌謝…………………………………………………………………...……………….iii
圖目錄………………………………………………………………………….………3
表目錄………………………………………………………………………….………4
中文摘要…………………………………………………………...…………………..5
英文摘要………………………………………………………...……………………..7
第一章 緒論 (Introduction)..………….…………………...………………...…........9
1.1 背景…………………………………………...……………………………9
1.2 研究假說及目的……………….…………………………………………11
第二章 研究方法與材料 (Method and Subjects)…….….…….…………………...13
2.1 實驗材料及廠商名稱…………………………………………………….13
2.2 實驗方法…………………………………………………………..……..15
2.2.1 大鼠腎臟間隔細胞的初級培養取得及培養…………………...….15
2.2.2 初級培養的大鼠腎臟間隔細胞實驗前之處理…………….…...…16
2.2.3 多巴胺D2、D4受器mRNA及MCP-1 mRNA在高糖及AII
刺激下的時間變化……………………………………...............….16
2.2.4 D2或D4 促進劑、或抑制劑對MCP-1 mRNA的影響……..…20
2.3 統計方法……………………………………………………………….…20
第三章 結果 (Results).…………………………………..…………………………21
3.1 大鼠腎臟間隔細胞有 D2受器及 D4受器的表現…………..…...……21
3.2 血管升壓素及高糖於腎臟間隔細胞之D2受器和D4受器mRNA
表現影響的時間效應……………………………………….………...…21
3.3 D2和D4受器之促進劑及抑制劑對腎臟間隔細胞表現MCP-1
mRNA的影響…………………………………………………….….....22
第四章 討論 (Discussion)…………………………………….……………….…….23
第五章 展望 (Perspective)……………….………………………….……….….......29
參考文獻 (References) ……………………….……………………………….….…...30
圖表 (Figures and Tables)………………….……………………………..……….…...39
dc.language.isozh-TW
dc.subject腎臟間隔細胞zh_TW
dc.subject多巴胺接受器zh_TW
dc.subject糖尿病腎病變zh_TW
dc.subject第二型血管張力素zh_TW
dc.subjectMesangial cellen
dc.subjectDopamine receptoren
dc.subjectDiabetic Nephropathyen
dc.subjectAngiotensin IIen
dc.title第二型血管張力素會增加大鼠腎臟間隔細胞上多巴胺D2及D4受器mRNA的表現zh_TW
dc.titleAngiotensin II Increases the mRNA Expression of Dopamine D2 and D4 Receptors in Rat Mesangial Cellen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡敦仁(Tun-Jun Tsai),何奕倫
dc.subject.keyword第二型血管張力素,糖尿病腎病變,多巴胺接受器,腎臟間隔細胞,zh_TW
dc.subject.keywordAngiotensin II,Diabetic Nephropathy,Dopamine receptor,Mesangial cell,en
dc.relation.page49
dc.rights.note未授權
dc.date.accepted2008-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved