Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26669
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇永成
dc.contributor.authorShih-Ting Chouen
dc.contributor.author周詩婷zh_TW
dc.date.accessioned2021-06-08T07:20:03Z-
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citation1. Andersen Torben G, Bollerslev, Tim, Christoffersen, Peter F, and Francis X, January 2005, “Practical Volatility and Correlation Modeling for Financial Market Risk Management”, NBER Working Paper Series, 11069.
2. Bams Dennis, 2001, “An Evaluation Framework for Alternative VaR Models”.
3. Barone-Adesi Giovanni, Giannoppulos Kostas, and Les Vosper, 1999, “VaR without Correlations for Portfolios of Derivative Securities”, The Journal of Futures Markets, Vol. 19, No. 5, P583-602.
4. Basak Suleyman and Alexander Sharpiro, 2001, “Value -at- Risk-based Risk Management: Optimal Policies and Asset Prices”, The Review of Financial Studies Summer 2001, Vol. 14.
5. Bank for International Settlement, January 1996, “Overview of the Amendment to the Capital Accord to incorporate market risks”.
6. Bank for International Settlement, January 1996, “Supervisory Framework for the Use of Backtestingin Conjunction with the Internal Models Approach to Market Risk Capital Requirements”.
7. Bank for International Settlement, July 1988, “Basel I International Convergence of Capital Measurement and Capital Standards”.
8. Bank for International Settlement, June 2004, “Basel II International Convergence of Capital Measurement and Capital Standards a Revised Framework”.
9. Bank for International Settlements, Basle Committee on Banking Supervision, 1996, “Supervisory Framework for the Use of Back-testing in Conjunction with Internal Models Approach to Market Risk Capital Requirements”.
10. Bank for International Settlements, Basle Committee on Banking Supervision, 1996 updated to 1998, “Amendment to the Capital Accord to Incorporate Market Risks”.
11. Bank for International Settlements, Basel Committee on Banking Supervision, 2003, “Overview of the New Basle Capital Accord”, Consultative Document.
12. Berkowitz Jeremy, 2001, “Testing density forecasts with applications to risk management”, Journal of Business and Economic Statistics 19, P465-474.
13. Berkowitz Jeremy and Tames O’ Brien, 2002, “How Accurate Are Value-at-Risk Models at Commercial Banks?”, Journal of Finance, 57, 1093-1112.
14. Bollerslev, Tim, 1986, “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31, 307–327
15. Bollerslev, Tim, 1987, “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return”, The Review of Economics and Statistics, Vol. 69, No. 3, 542-547.
16. Bollerslev, Tim and E. Ghysels, 1996, “Periodic Autoregressive Conditional Heteroskedasticity”, Journal of Business and Economic Statistics, 14, p139-157.
17. Bollerslev, Tim, Engle, R.F. and J. M. Wooldridge, 1988, “A Capital Asset Pricing Model with Time-varying Covariance”, Journal of Political Economy, 96, 116-131.
18. Burns Patrick, October 2002, “The Quality of Value at Risk via Univariate GARCH”, Burns Statistic Working Paper
19. Chiang, 2004, “Modeling Value-at-Risk of Financial Companies - A Comparison of Symmetric and Asymmetric Models”, Master Thesis of Graduate Institute of Business Administration in National Taiwan
University.
20. Christoffersen Peter, Hahn Jinyong, and Atsushi Inoue, October 1999, “Testing, Comparing, and Combining Value-at-Risk Measures”.
21. Christoffersen Peter F. and Diebold Francis X, July 1999, “How Relevant Is Volatility Forecasting for Financial Risk Management”.
22. Daniel B.Nelson, 1991, “Conditional Heteroskedasticity in Asset Returns: A New Approach”, Journal of Econometrics.
23. Degiannakis Stavros, Xekalaki Evdokia, “Autoregressive Conditional Heteroscedasticity (ARCH) Models: A Review”,
http://www.gloriamundi.org
24. Engle, R.F., 1982, “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation”, Econometrical, 50, 987–1008.
25. Engle, R.F. and V.K. Ng, 1993, “Measuring and Testing the Impact of News on Volatility”, Journal of Finance, 48, 1749-1778.
26. Engle, R.F and Manganelli Simone, August 2001, “Value at Risk Models in Finance”, European Central Bank Working Paper Series, NO 75.
27. Engel, Robert F., Lilien, David M., and Robins, Russell P., 1987, “Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model,” Econometrical, 55, 391-407.
28. Glosten, Lawrence R., Jagannathan, Ravi, and Runkle, David E., 1993, “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance, 48, 1179-1801.
29. Gupta, Anurag, and Liang, Bing, 2005, “Do Hedge Funds Have Enough Capital ? A Value-at-Risk Approach”, Journal of Financial Economics, 77, 219-253.
30. Hendricks, Darryl, 1996, “Evaluation of Value-at-Risk Models Using Historical Data,” Economic Policy Review, April, 36-69.
31. Hentschel, Ludger, 1995, “All in the Family Nesting Symmetric and Asymmetric GARCH Models”, Journal of Financial Economics, 39, 71-104.
32. Jorion, Philippe, 2001,”Value-at-Risk: The New Benchmark for Controlling Market Risk”, Second Edition.
33. Kao, Ling-Chin, 2005, “NA-GARCH Model in Value -at-Risk of Financial Holdings”, Master Thesis Graduate Institute of Business Administration in National Taiwan University.
34. Kupiec, Paul, 1995, “Techniques for Verifying the Accuracy of Risk Measurement Models,” Journal of Derivatives, 3, 73-84.
35. Lin, Yun-Ju, 2005, “GJR-GARCH Model in Value -at-Risk of Financial Holdings”, Master Thesis Graduate Institute of Business Administration in National Taiwan University.
36. Marshall, Chris, and Siegal, Michael, 1997, “Value-at-Risk: Implementing a Risk Measurement Standard,” Journal of Derivatives, 4, 91-111.
37. Nelson, D., 1991, “Conditional Heteroskedasticity in Asset Returns: A New Approach”, Econometrical, 59, 347-370
38. Pritsker, Matthew, 1997, “Evaluating Value-at-Risk Methodologies: Accuracy versus Computational Time,” Journal of Financial Services Research, 12, 201-242.
39. Saunders, Anthony, 2000, “Financial Institutions Management: A Modern Perspective,” Third Edition, 180-201.
40. Schwert, G. William, December 1999, “Why Does Stock Market Volatility Change Over Time”, Journal of Finance, 44, 1115-1153
41. Taylor, Stephen, 1985, “Modeling Financial Time Series”, 62-115.
42. Wang, 2003, “Market Risk VaR Models for Financial Holding Company,” Master Thesis Graduate Institute of Business Administration in National Taiwan University.
43. Wikipedia, Basel Accord, http://en.wikipedia.org/wiki/Basel_accord
44. Wikipedia, Dow Jones Industrial Average,
http://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average
45. Zakoian, J.M., Rabemananjara, R., 1993, “Threshold Arch Models and Asymmetries in Volatility”, Journal of Applied Econometrics, 8, 31-49.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26669-
dc.description.abstract本研究採用兩種不對稱 GARCH 模型 -分別為代表旋轉效果的
GJR-GARCH 模型以及代表平移效果的 NA-GARCH 模型- 以之與對稱的GARCH 模型相比較,以期探討何種 GARCH 模型對於 VaR 的預測有較佳的表現。
另外為探討不同報酬結構對於 VaR 的預測是否會產生影響,本研究將四種報酬結構導入前述三種 GARCH 模型,分別為 ARMA(1,1),AR(1),MA(1)與「in-mean」。
本研究所採用的測試樣本為自西元 2000 年 12 月 31 日起至 2006年 12 月 29 號止之每日報酬為樣本點,再取其中的 860 個樣本點以估計參數,餘下之 400 的樣本點則用以在 99%與 95%的信賴水準下比較各 GARCH 模型所估計出的市場風險值,並比較其預測能力。
本研究的主要發現如下:
1. 本研究發現當應用於 DIA 時,代表不對稱 GARCH 模型的 GJR-GARCH與 NA-GARCH 在衡量市場風險時均有優異表現,而對稱的 GARCH 模型表現則較不佳。在 99%信賴水準下,MA(1)-GARCHM(1,1)的違反個數為 14 個,是唯一超出 Basel Non-Rejection Range 的模型。
此外,兩種不對稱模型中以代表旋轉效果的GJR-GARCH表現最好。
2. 本研究所採用的四種報酬結構當應用於代表旋轉效果的
GJR-GARCH 和平移效果的 NA-GARCH 不對稱模型時,所產生的違反個數所差無幾,可知不同的報酬結構對預測 VaR 的正確性並未產生重大影響,而含有更多參數的模型對 VaR 預測的能力也並未有明顯的優勢。同時在 ARMA(1,1)下的違反個數並沒有明顯比其他報酬結構多出許多,故看不出有明顯的過度配置現象。
zh_TW
dc.description.abstractIn this study we adopt two asymmetric GARCH models, with GJR-GARCH represent the rotation asymmetric effect; and NA-GARCH for the shift asymmetric effect, to compare their performance on VaR forecasting to the symmetric GARCH model. With variance of their mean equations which are ARMA(1,1), AR(1), MA(1), and “in-mean”.
We introduce the close price of DIA and use its daily return as sample, stretching from Dec. 31, 2000 to Dec. 29, 2006. We use 860 observations for parameters estimates; the rest 400 will be used by different models to forecast VaR in 99% and 95% confidence level then been evaluated.
The major findings in this study are:
1. The asymmetric GJR-GARCH and NA-GARCH models have fairly well performance on VaR forecasting, while symmetric GARCH model has the poorest performance. In 99% confidence level, MA(1)-GARCHM(1,1) generate fourteen violations and is the one model to exceed Basel Non-Rejection Range. This thesis conclude that
in forecasting VaR of DIA, asymmetric GARCH models have superior performance than that of the symmetric one, and the GJR-GARCH with rotation effect has the most outstanding outcome.
2. In asymmetric GARCH models, GJR families that represent rotation asymmetric and NA families that represent shift, we can’t find solid proof of whether introducing new information would always improve
the forecast accuracy of a model, for the four mean equations generate almost identical violation rate under the same asymmetric GARCH model. In the mean time, we can’t find significant improvement of VaR
forecasting ability of the model with more parameters. Also the ARMA(1,1) mean equation doesn’t generate obvious more violations than other models do, so we can’t determine any clearly over-fitting situation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:20:03Z (GMT). No. of bitstreams: 1
ntu-97-R95723008-1.pdf: 1017604 bytes, checksum: 11eecb6eba540ca76fc8b6b061f33cfd (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter I INTRODUCTIONS …… 1
I.1 Motivation and Purposes…… 1
I.2 Framework …… 5
Chapter II BASEL ACCORD …… 7
II.1 The Basel Committee …… 7
II.2 Basel Accord I …… 7
II.3 Basel Amendment …… 8
II.4 Basel Accord II …… 9
Chapter III LITERATURE REVIEW …… 11
III.1 Value at Risk …… 11
III.2 GARCH Model …… 12
III.3 Related Literature …… 14
Chapter IV DATA …… 22
IV.1 A Brief Introduction to DIA …… 22
IV.2 Holding Period and Daily P&L …… 23
Chapter V METHODOLOGY …… 25
V.1 VaR Models …… 25
V.2 Innovation - Rotated Asymmetric GJR-GARCHM
Model …… 26
V.3 Innovation - Shifted Asymmetric NA-GARCH
Model …… 28
V.4 Symmetric GARCHM Model …… 30
V.5 Creation of VaR models …… 32
V.6 Testing Model performance …… 33
Chapter VI EMPIRICAL RESULTS …… 35
VI.1 Testing Results of VaR Models …… 35
VI.2 Value-at-Risk under all GARCH Models …… 38
VI.3 Correlation coefficient analysis …… 41
Chapter VII CONCLUSIONS …… 43
REFERENCES …… 46
dc.language.isoen
dc.subject風險值zh_TW
dc.subjectDIAzh_TW
dc.subject市場風險zh_TW
dc.subjectNA GARCHen
dc.subjectGARCHen
dc.subjectGJR GARCHen
dc.titleDIA之不對稱GARCH市場風險值之研究zh_TW
dc.titleAsymmetric GARCH Value at Risk of DIAen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝,黃漢青
dc.subject.keyword市場風險,DIA,風險值,zh_TW
dc.subject.keywordGARCH,GJR GARCH,NA GARCH,en
dc.relation.page94
dc.rights.note未授權
dc.date.accepted2008-07-25
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
993.75 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved