請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26666
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姚宗珍(Chung-Chen Yao) | |
dc.contributor.author | Cheng-Tsung Huang | en |
dc.contributor.author | 黃丞聰 | zh_TW |
dc.date.accessioned | 2021-06-08T07:19:55Z | - |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-25 | |
dc.identifier.citation | 1. Andreasen, J.O. and Hjorting-Hansen, E., 1966. Replantation of teeth. II. Histological study of 22 replanted anterior teeth in humans. Acta Odontol. Scand., 24(3): 287-306.
2. Asscherickx, K., Vannet, B.V., Wehrbein, H., and Sabzevar, M.M., 2005. Root repair after injury from mini-screw. Clin. Oral Implants. Res., 16(5): 575-578. 3. Bae,S.M., Park,H.S., Kyung,H.M., Kwon,O.W., and Sung,J.H., 2002. Clinical application of micro-implant anchorage. J Clin. Orthod, 36(5): 298-302. 4. Barber,A.F. and Sims,M.R., 1981. Rapid maxillary expansion and external root resorption in man: a scanning electron microscope study. Am J Orthod, 79(6): 630-652. 5. Beertsen,W., Piscaer,M., Van Winkelhoff,A.J., and Everts,V., 2001. Generalized cervical root resorption associated with periodontal disease. J Clin. Periodontol., 28(11): 1067-1073. 6. Blyde,D., 1994. 'Remote drug administration systems.'. pp. 241-242. 7. Bosshardt,D.D. and Schroeder,H.E., 1994. How repair cementum becomes attached to the resorbed roots of human permanent teeth. Acta Anat. (Basel), 150(4): 253-266. 8. Branemark,P.I., Adell,R., Breine,U., Hansson,B.O., Lindstrom,J., and Ohlsson,A., 1969. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand. J Plast. Reconstr. Surg., 3(2): 81-100. 9. Brezniak,N. and Wasserstein,A., 1993a. Root resorption after orthodontic treatment: Part 1. Literature review. Am J Orthod Dentofacial Orthop, 103(1): 62-66. 10. Brezniak,N. and Wasserstein,A., 1993b. Root resorption after orthodontic treatment: Part 2. Literature review. Am. J. Orthod. Dentofacial Orthop., 103(2): 138-146. 11. Brezniak,N. and Wasserstein,A., 2002. Orthodontically induced inflammatory root resorption. Part I: The basic science aspects. Angle Orthod., 72(2): 175-179. 12. Brudvik,P. and Rygh,P., 1995. Transition and determinants of orthodontic root resorption-repair sequence. Eur. J. Orthod., 17(3): 177-188. 13. Chen,Y.J., Chen,Y.H., Lin,L.D., and Yao,C.C., 2006. Removal torque of miniscrews used for orthodontic anchorage--a preliminary report. Int. J. Oral Maxillofac. Implants., 21(2): 283-289. 14. Cope JB, 2005a. Introduction to temporary anchorage devices. Seminar Orthod, 11: 1-2. 15. Cope JB, 2005b. Temporary anchorage devices in orthodontics. Semin Orthodo, 11: 3-9. 16. Costa,A., Raffainl,M., and Melsen,B., 1998. Miniscrews as orthodontic anchorage: a preliminary report. Int. J. Adult. Orthodon. Orthognath. Surg., 13(3): 201-209. 17. Engelking,G. and Edwards., 1982. Effects of incisor repositioning on monkey periodontium after expansion through the cortical plate. Am J Orthod, 82(1): 23-32. 18. Fabbroni,G., Aabed,S., Mizen,K., and Starr,D.G., 2004. Transalveolar screws and the incidence of dental damage: a prospective study. Int. J Oral Maxillofac. Surg., 33(5): 442-446. 19. Faltin,R.M., Faltin,K., Sander,F.G., and rana-Chavez,V.E., 2001. Ultrastructure of cementum and periodontal ligament after continuous intrusion in humans: a transmission electron microscopy study. Eur. J Orthod, 23(1): 35-49. 20. Fritz,U., Ehmer,A., and Diedrich,P., 2004. Clinical suitability of titanium microscrews for orthodontic anchorage-preliminary experiences. J. Orofac. Orthop., 65(5): 410-418. 21. Goodacre CJ, Brown DT, and Roberts WE , 1997. Prosthodontic consideration when using implants for orthodontic anchorage. J Prosthet Dent,(77): 162-170. 22. Grzesik,W.J., Kuzentsov,S.A., Uzawa,K., Mankani,M., Robey,P.G., and Yamauchi,M., 1998. Normal human cementum-derived cells: isolation, clonal expansion, and in vitro and in vivo characterization. J Bone Miner. Res., 13(10): 1547-1554. 23. Harry,M.R. and Sims,M.R., 1982. Root resorption in bicuspid intrusion. A scanning electron microscope study. Angle Orthod, 52(3): 235-258. 24. Hasegawa,N., Kawaguchi,H., Ogawa,T., Uchida,T., and Kurihara,H., 2003. Immunohistochemical characteristics of epithelial cell rests of Malassez during cementum repair. J. Periodontal Res., 38(1): 51-56. 25. Hellsing,E. and Hammarstrom,L., 1996. The hyaline zone and associated root surface changes in experimental orthodontics in rats: a light and scanning electron microscope study. Eur. J Orthod, 18(1): 11-18. 26. Henry,J.L. and Weinmann,J.P., 1951. The pattern of resorption and repair of human cementum. J Am Dent. Assoc., 42(3): 270-290. 27. Horiuchi,A., Hotokezaka,H., and Kobayashi,K., 1998. Correlation between cortical plate proximity and apical root resorption. Am J Orthod Dentofacial Orthop, 114(3): 311-318. 28. Jeon,J.M., Yu,H.S., Baik,H.S., and Lee,J.S., 2006. En-masse distalization with miniscrew anchorage in Class II nonextraction treatment. J. Clin. Orthod., 40(8): 472-476. 29. Kanomi,R., 1997. Mini-implant for orthodontic anchorage. J. Clin. Orthod., 31(11): 763-767. 30. Key,S. and Gibbons,A., 2001. Care in the placement of bicortical intermaxillary fixation screws. Br. J Oral Maxillofac. Surg., 39(6): 484. 31. Kyung,S.H., Choi,J.H., and Park,Y.C., 2003. Miniscrew anchorage used to protract lower second molars into first molar extraction sites. J Clin. Orthod, 37(10): 575-579. 32. Langford,S.R. and Sims,M.R., 1982. Root surface resorption, repair, and periodontal attachment following rapid maxillary expansion in man. Am. J. Orthod., 81(2): 108-115. 33. Lee,J.S., Park,H.S., and Kyung,H.M., 2001. Micro-implant anchorage for lingual treatment of a skeletal Class II malocclusion. J Clin. Orthod, 35(10): 643-647. 34. Lilja,E. and Odenrick,L., 1982. Root resorption following slow maxillary expansion. Swed. Dent. J Suppl, 15: 123-129. 35. Liou,E.J., Pai,B.C., and Lin,J.C., 2004. Do miniscrews remain stationary under orthodontic forces? Am. J. Orthod. Dentofacial Orthop., 126(1): 42-47. 36. Mah,J. and Bergstrand,F., 2005. Temporary anchorage devices: a status report. J Clin. Orthod, 39(3): 132-136. 37. Maino,B.G., Weiland,F., Attanasi,A., Zachrisson,B.U., and Buyukyilmaz,T., 2007. Root damage and repair after contact with miniscrews. J. Clin. Orthod., 41(12): 762-766. 38. Miyoshi,K., Igarashi,K., Saeki,S., Shinoda,H., and Mitani,H., 2001. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied. Eur. J Orthod, 23(4): 329-338. 39. Owman-Moll,P. and Kurol,J., 1998. The early reparative process of orthodontically induced root resorption in adolescents--location and type of tissue. Eur. J. Orthod., 20(6): 727-732. 40. Owman-Moll,P., Kurol,J., and Lundgren,D., 1995. Repair of orthodontically induced root resorption in adolescents. Angle Orthod., 65(6): 403-408. 41. Park,H.S., Bae,S.M., Kyung,H.M., and Sung,J.H., 2001. Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin. Orthod, 35(7): 417-422. 42. Poggio,P.M., Incorvati,C., Velo,S., and Carano,A., 2006. 'Safe zones': a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod., 76(2): 191-197. 43. Pohl,Y., Filippi,A., and Kirschner,H., 2003. Extraoral endodontic treatment by retrograde insertion of posts: a long-term study on replanted and transplanted teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 95(3): 355-363. 44. Pongsri, Rygh,P., and Brudvik,P., 1994. Multi-nucleated cells remove the main hyalinized tissue and start resorption of adjacent root surfaces. Eur. J Orthod, 16(4): 265-273. 45. Moyers, R E. 1988. Handbook of orthodontics. Chicago : Year Book Medical Publishers. 46. Roberts WE, 2002. When planning to use an implant for anchorage,how long do you have to wait to apply force after implant placement. Am J Orthod Dentofacial Orthop, 121(1): 14-17. 47. Roberts,W.E., Smith,R.K., Zilberman,Y., Mozsary,P.G., and Smith,R.S., 1984. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod, 86(2): 95-111. 48. Rygh,P., 1977. Orthodontic root resorption studied by electron microscopy. Angle Orthod, 47(1): 1-16. 49. Saygin,N.E., Tokiyasu,Y., Giannobile,W.V., and Somerman,M.J., 2000. Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol., 71(10): 1591-1600. 50. Scarola,V. and Galmozzi,A., 2001. [Biology of root resorption process in deciduous teeth. Review of the literature]. Minerva Stomatol., 50(5): 145-150. 51. Simon,H. and Caputo,A.A., 2002. Removal torque of immediately loaded transitional endosseous implants in human subjects. Int. J Oral Maxillofac. Implants., 17(6): 839-845. 52. Sismanidou,C., Hilliges,M., and Lindskog,S., 1996. Healing of the root surface-associated periodontium: an immunohistochemical study of orthodontic root resorption in man. Eur. J. Orthod., 18(5): 435-444. 53. Sismanidou,C. and Lindskog,S., 1995. Spatial and temporal repair patterns of orthodontically induced surface resorption patches. Eur. J. Oral Sci., 103(5): 292-298. 54. Stenvik,A., Abyholm,F., Haanaes,H.R., and Beyer-Olsen,E.M., 1990. Simulated accidental tooth damage during surgical intervention. Endod. Dent. Traumatol., 6(3): 114-117. 55. Sullivan,D.Y., Sherwood,R.L., Collins,T.A., and Krogh,P.H., 1996. The reverse-torque test: a clinical report. Int. J Oral Maxillofac. Implants., 11(2): 179-185. 56. Talic,N.F., Evans,C.A., Daniel,J.C., and Zaki,A.E., 2003. Proliferation of epithelial rests of Malassez during experimental tooth movement. Am J Orthod Dentofacial Orthop, 123(5): 527-533. 57. Vardimon,A.D., Graber,T.M., and Pitaru,S., 1993. Repair process of external root resorption subsequent to palatal expansion treatment. Am. J. Orthod. Dentofacial Orthop., 103(2): 120-130. 58. Vardimon,A.D., Graber,T.M., Voss,L.R., and Lenke,J., 1991. Determinants controlling iatrogenic external root resorption and repair during and after palatal expansion. Angle Orthod., 61(2): 113-122. 59. Wehrbein,H., Fuhrmann,R.A., and Diedrich,P.R., 1995. Human histologic tissue response after long-term orthodontic tooth movement. Am J Orthod Dentofacial Orthop, 107(4): 360-371. 60. Proffit,W R. 2007. Mechanical principles in orthodontic force control. In: Comtemporary Orthodontics. Mosby. 189-203 61. Wu,Y.M., Richards,D.W., and Rowe,D.J., 1999. Production of matrix-degrading enzymes and inhibition of osteoclast-like cell differentiation by fibroblast-like cells from the periodontal ligament of human primary teeth. J Dent. Res., 78(2): 681-689. 62. 龔昕, 2000. 正畸治療與牙根吸收. 口腔材料器械雜誌, 9: 229-230. 63. 任肖華, 牙周組織再生中牙骨質再生研究進展. 國際醫藥衛生導報 9(2-3), 78-79. 2003. 64. 何正廷, 2006. 牙齒移動的極限. J. Taiwan Assoc. Orthod., 18(3): 39-46. 65. 林政毅,劉人文, 2005. 現今各種臨時矯正骨釘系統其特性之比較與評估. 中華民國齒顎矯正學雜誌, 17(4): 34-41. 66. 段銀鐘, 1997. 用硬組織磨片法觀察正畸骨生成的實驗研究. 實用口腔醫學雜誌, 13(4): 276-277. 67. 傅民魁, 1988. 口腔正畸學. 瀋陽:遼寧科學技術出版社. 68. 陳式萱, 2007. 碩士論文,矯正用迷你骨釘植入後之生物體反應. 台灣大學. 69. 陳源厚, 2005. 碩士論文,憑估矯正治療中運用迷你骨釘穩定性及危險性. 台灣大學. 70. 解志強, 白玉興, 2004. 小型豬正畸牙根吸收實驗動物模型的建立. 北京口腔醫學, 12(1): 22-26. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26666 | - |
dc.description.abstract | 矯正治療中,骨性錨定扮演了重要的角色,迷你骨釘因為其體積小、使用上的多樣性、價格相對低廉、及方便植入及移除,故成為最常使用的工具。然而,迷你骨釘若植於牙根間齒槽骨部位時,在後續的矯正治療中若將牙根移向骨釘,可能會有牙根傷害之風險。本研究即利用動物實驗,探討在微觀下牙根與迷你骨釘碰觸之實際情形,以了解是否對牙根造成傷害及鄰近組織的可能反應。
本實驗以小獵犬兩隻分別在不同時間點做為研究對象,模擬臨床迷你骨釘使用狀況。實驗一先拔除其上下顎第一及第二小臼齒後植入迷你骨釘於犬齒遠心及第三小臼齒近心側(靠近但不可接觸牙根),並於三週後使用鎳鈦彈簧施予犬齒及第三小臼齒150克相互牽引力量,於第15週停止力量並嘗試固定牙根與骨釘之關係。實驗二則是多加了上顎雙側的第三門牙做為實驗對象,並分為左右兩側及設計對照組(單純矯正力量所造成的牙根吸收),施力則是持續至實驗結束。兩組實驗每隔三星期實施骨頭標定,皆於24週後將動物犧牲。接著將骨釘及其臨近的牙根樣本取下,並以樹脂包埋並切片,打薄後以顯微鏡觀察,其微觀下之螢光表現及細胞形態。 實驗結果發現:(1)碰觸處的細胞形態多為纖維母細胞、膠原纖維及微血管羅列,並未看到明顯的炎性細胞、或牙根表面的噬牙骨質細胞;(2)牙根與骨釘碰觸,會造成牙根表面的缺損情形,且呈現的則是長而淺的型態,而矯正引起之吸收則是不規則的吸收形態;(3)牙根與骨釘持續接觸時,表面傷害處尚未有修復的跡象;若是再有位移而使牙根與骨釘分開時,牙根表面會看到修復性的牙骨質生成。 | zh_TW |
dc.description.abstract | Skeletal anchorage plays an important role in contemporary orthodontics. Miniscrew, which is one of the most frequently used temporal anchorage device (TADs), is famous for its small size, versatile usage, low price, and ease of insertion and removal. However, there are risks of root damage if we move a teeth to contact a miniscrew being inserted between two roots. Therefore, we used histological analysis on experimental animals to realize the possible response of root and surrounding tissues during this traumatic incidence.
In dog A , both upper and lower arch first and second premolar were extracted. Miniscrew were placed over distal side of canine and mesial side of third premolar (without contacting miniscrews). Three weeks later, space between canine and third premolar was attempted to close with 150g NiTi coil spring. After fifteen weeks, active force was stopped and fixation was performed to reserve the relation between dental root and miniscrew. In dog B, force application was continued until experiment completed. Newly formed calcifying tissues were labeled with bone markers, and the experimental animals were sacrificed after 24 weeks. In order to observe the bone labeling markers and cell morphology surrounding miniscrews and tissues, samples were embedded with resin and sectioned with microtomes. Experimental findings:(1)There were fibroblasts, collagen fibers and capillaries surrounding the screws and roots. Inflammatory cells and cementoclasts were not found on the damaged root surface.(2) Long and shallow defect areas were seen on root surface if dental root was indeed in contact with the miniscrew. However, irregular resorptive concavity also could be detected as orthodontically induced root resorption.(3)Root repair was not initiated over resorptive area if dental root and miniscrew were still in contact with each other. On the contrary, reparative cementum can be found over resorbed concavity if dental root was displaced away from miniscrew surface. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:19:55Z (GMT). No. of bitstreams: 1 ntu-97-R94422022-1.pdf: 5004652 bytes, checksum: 05206e77645c14dae8306cc3825765a6 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 第一章 文獻回顧 …………………………………………………………………… 1
1. 骨性錨定之迷你骨釘的特點……………………………………………………1 2. 迷你骨釘放置在牙根間齒槽骨及其可能衍生的問題…………………………2 3. 牙根吸收…………………………………………………………………………4 3.1 牙根吸收的類型……………………………………………………………4 3.2 牙根吸收的病理機制與過程………………………………………………5 3.3 牙根對吸收的抵抗力………………………………………………………6 4. 牙根表面修復……………………………………………………………………6 4.1 修復類型及修復結果……..………………………………………………..8 第二章 實驗目的…………………………………………………………………… 10 第三章 實驗材料與方法…………………………………………………………… 11 3.1 狗動物模型Dog A………………... ……………………………………...11 3.1.1 研究材料……………………………………………………………... 11 3.1.2 研究方法……………………………………………………………....11 1. 實驗設計………………………………………………………………… 11 2. 實驗過程………………………………………………………………… 12 (1) 動物麻醉…………………………………………………………… 12 (2) 迷你骨釘植入手術………………………………………………… 12 (3) 迷你骨釘扭力測量………………………………………………… 12 (4) 矯正套件之製作與裝置…………………………………………… 12 (5) 臨床檢查記錄……………………………………………………… 13 (6) 骨頭標定…………………………………………………………… 13 (7) 犧牲過程…………………………………………………………… 14 (8) 放射線影像之拍攝與組織學檢查………………………………… 14 3.2 狗動物模型 Dog B…………………………………………………………15 3.2.1 研究材料……………………………………………………………… 15 3.2.2 研究方法……………………………………………………………… 15 1. 實驗設計…………………………………………………………………15 2. 實驗過程…………………………………………………………………16 (1)動物麻醉………………………………………………………………16 (2)迷你骨釘植入手術……………………………………………………16 (3)迷你骨釘扭力測量……………………………………………………16 (4)矯正套件之製作與裝置………………………………………………16 (5)臨床檢查記錄…………………………………………………………17 (6)骨頭標定………………………………………………………………17 (7)犧牲過程………………………………………………………………17 (8)放射線影像之拍攝與組織學檢查……………………………………17 3.統計學分析………………………………………………………………….17 第四章 實驗結果………………………………………………………………….… 19 4.1 Dog A:迷你骨釘與牙根碰撞情形之組織學觀察……………………….…19 4.1.1 第四象限犬齒遠心處骨釘(Q4-C)………………………………….….…20 4.1.2 第一象限第三小臼齒近心處骨釘(Q1-PM3)………………………….…21 4.1.3 第四象限第三小臼齒近心處骨釘(Q4-PM3)………………………….…22 4.1.4 第一象限犬齒遠心處骨釘(Q1-C)……………………………………..…23 4.1.5 第三象限犬齒遠心處骨釘(Q3-C)……………………………………..…24 4.2 Dog B:牙根撞擊骨釘與牙根生理反應所造成之牙根表面吸收情形 在組織學的觀察比較……………………………………………………… .26 4.2.1 第四象限(實驗組)與第三象限(對照組)第三小臼齒近心處有無骨釘比較……………………………………………………………………………27 (1)第四象限第三小臼齒近心處有骨釘-1(實驗組 Q4PM3-1)……………27 (2)第四象限第三小臼齒近心處有骨釘-2(實驗組 Q4PM3-2)…………....29 (3)第三象限第三小臼齒牙根近心面壓力側(對照組 Q3PM3)…………...31 4.2.2 第二象限(實驗組)與第一象限(對照組)第三小臼齒近心處有無骨釘比較………………………………………………………………………………32 (1)第二象限第三小臼齒近心處有骨釘(實驗組 Q2PM3)………………… 32 (2)第一象限第三小臼齒牙根近心面壓力側(對照組 Q1PM3)…………… 33 4.2.3 第一象限(實驗組)與第二象限(對照組)犬齒遠心處有無骨釘比較……….35 (1)第一象限犬齒遠心處有骨釘(實驗組 Q1C)……………………………. 35 (2)第二象限犬齒牙根遠心面壓力側(對照組 Q2C)………………………. 36 4.2.4 第三象限(實驗組)與第四象限(對照組)犬齒遠心處有無骨釘比較……….37 (1)第三象限犬齒遠心處有骨釘(實驗組 Q3C)……………………………. 37 (2)第四象限犬齒牙根遠心面壓力側(對照組 Q4C)………………………. 38 4.2.5第一象限(實驗組)與第二象限(對照組)第三門齒近心處有無骨釘比較…..39 (1)第一象限第三門齒近心處有骨釘(實驗組 Q1-I3)………………………39 (2)第二象限第三門齒近心面壓力側(對照組 Q2-I3)……………………... 41 4.3 卸除扭力與牙根表面吸收型態……………………………………………..….42 第五章 討論 …………………………………………………………………………43 5.1 骨釘材質的選擇……………………………………………………………….. 43 5.2 骨釘長度與直徑的選擇……………………………………………………….. 44 5.3 骨釘放置位置及其影響…………………………………………………….…..44 5.4 選用狗動物模型實驗之原因……………………………………………….…..45 5.5 實驗方式之檢討與改良………………………………………………………...46 5.5.1 麻醉藥物之使用……………………………………………………………46 5.5.2 實驗套件的設計……………………………………………………………46 5.5.3 迷你骨釘與牙根接觸之判讀………………………………………………47 5.6 鈣化組織標定藥劑…………………………………………………………….47 5.7 未脫鈣硬組織磨片法的特點………………………………………………….48 5.8 組織學上的觀察……………………………………………………………….48 5.8.1 牙根與外物撞擊的反應―牙根吸收………………………………………48 (1)骨釘植入時與牙根撞擊所造成的牙根缺損………………………………49 (2)矯正力量引起的吸收………………………………………………………49 (3)移動牙齒牙根撞擊迷你骨釘所造成的損傷………………………………50 5.8.2 螢光顯微鏡檢………………………………………………………………51 5.8.3 牙根缺損之修復型式………………………………………………………52 5.8.4 動搖度與卸除扭力…………………………………………………………54 第六章 結論 ………………………………………………………………………....55 附 錄 ………………………………………………………………………………56 參考文獻………………………………………………………………………………67 圖目錄 圖3.1 Dog A迷你骨釘植入位置圖 56 圖3.2 Dog B迷你骨釘植入位置圖 57 圖3.3 Dog A迷你骨釘植入與牙齒施力時間表 58 圖3.4 DogB迷你骨釘植入與牙齒施力時間表 59 圖3.5 迷你骨釘與骨釘螺絲起子 60 圖3.6 迷你植體植入手術 60 圖3.7 Dog A臨床施力圖 61 圖3.8 Dog A動物側面X光片 61 圖3.9 Dog B臨床施力圖 62 圖3.10 Dog B動物側面及上顎前牙X光片 62 圖4.1 Dog A 之清楚的五種鈣化組織標定線 19 圖4.2 Dog A第四象限犬齒遠心處骨釘之組織學觀察 20 圖4.3 Dog A第一象限第三小臼齒近心側骨釘之組織學觀察 .21 圖4.4 Dog A第四象限第三小臼齒近心側骨釘之組織學觀察 22 圖4.5 Dog A第一象限犬齒遠心側骨釘之組織學觀察 23 圖4.6 Dog A第三象限犬齒遠心側骨釘之組織學觀察 25 圖4.7 Dog B之三種鈣化組織標定線 26 圖4.8 Dog B 實驗組結果分析 27 圖4.9 Dog B第四象限第三小臼齒近心側骨釘-1之組織學觀察 28 圖4.10 Dog B第四象限第三小臼齒近心側骨釘-2之組織學觀察 30 圖4.11 Dog B第三象限第三小臼齒近心側之組織學觀察 31 圖4.12 Dog B 第二象限第三小臼齒近心側之組織學觀察 32 圖4.13 Dog B 第一象限第三小臼齒近心側之組織學觀察 34 圖4.14 Dog B 第一象限犬齒遠心側之組織學觀察 35 圖4.15 Dog B 第二象限犬齒遠心側之組織學觀察 36 圖4.16 Dog B 第三象限犬齒遠心側之組織學觀察 37 圖4.17 Dog B 第四象限犬齒遠心側之組織學觀察 39 圖4.18 Dog B 第一象限第三門齒近心側之組織學觀察 40 圖4.19 Dog B 第二象限第三門齒近心側之組織學觀察 41 表目錄 表 4.1 Dog A 實驗紀錄表….………………………………………………………..63 表 4.2 Dog B 實驗紀錄表….………………………………………………………..64 表 4.3 Dog A 牙根缺損處之長度與深度(μm)……………………………………..65 表 4.4 Dog A 所有骨釘之卸除扭力(kg・cm)..............................................................65 表 4.5 Dog B 牙根缺損處之長度與深度(μm)及卸除扭力(kg・cm)………………..65 表 4.6 Dog A中骨釘撞擊與否與其卸除扭力之關係………………………………66 表 4.7 Dog B中骨釘撞擊與否與其卸除扭力之關係………………………………66 表 4.8 Dog B中實驗組與對照組牙根表面的缺損之長度比較……………………66 表 4.9 Dog B中實驗組與對照組牙根表面的缺損之寬度比較 …………………..66 | |
dc.language.iso | zh-TW | |
dc.title | 以動物實驗探討矯正治療中牙根與迷你骨釘碰撞之組織反應 | zh_TW |
dc.title | Investigation of the contact between dental root and miniscrew during orthodontic tooth movement
—an animal study | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳羿貞,張宏博 | |
dc.subject.keyword | 骨性錨定,迷你骨釘,動物實驗,修復性的牙骨質, | zh_TW |
dc.subject.keyword | skeletal anchorage,miniscrew,animal study,reparative cementum, | en |
dc.relation.page | 72 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-25 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 4.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。