請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26665完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌 | |
| dc.contributor.author | Ying-Hsuan Chang | en |
| dc.contributor.author | 張穎軒 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:19:52Z | - |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | (1) Poulter C. D. & Rilling, H. C. (1981) Prenyl transferase and isomerase. Biosynthesis of isoprenoid compounds (Spurgeon, SL, R., ed.) 1, 161-224.
(2) Sacchettini, J. C., and Poulter, C. D. (1997) Creating isoprenoid diversity. Science 277, 1788-9. (3) Ogura, K., and Koyama, T. (1998) Enzymatic Aspects of Isoprenoid Chain Elongation. Chem Rev 98, 1263-1276. (4) Liang, P. H., Ko, T. P., and Wang, A. H. (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269, 3339-54. (5) McTaggart, S. J. (2006) Isoprenylated proteins. Cell Mol Life Sci 63, 255-67. (6) Ogura, K., Koyama, T., and Sagami, H. (1997) Polyprenyl diphosphate synthases. Subcell Biochem 28, 57-87. (7) Durbecq, V., Sainz, G., Oudjama, Y., Clantin, B., Bompard-Gilles, C., Tricot, C., Caillet, J., Stalon, V., Droogmans, L., and Villeret, V. (2001) Crystal structure of isopentenyl diphosphate:dimethylallyl diphosphate isomerase. Embo J 20, 1530-7. (8) Kellogg, B. A., and Poulter, C. D. (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1, 570-8. (9) Wang, K., and Ohnuma, S. (1999) Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 24, 445-51. (10) Shimizu, N., Koyama, T., and Ogura, K. (1998) Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase. No sequence similarity between E- and Z-prenyl diphosphate synthases. J Biol Chem 273, 19476-81. (11) Apfel, C. M., Takacs, B., Fountoulakis, M., Stieger, M., and Keck, W. (1999) Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J Bacteriol 181, 483-92. (12) Fujihashi, M., Zhang, Y. W., Higuchi, Y., Li, X. Y., Koyama, T., and Miki, K. (2001) Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc Natl Acad Sci U S A 98, 4337-42. (13) Ko, T. P., Chen, Y. K., Robinson, H., Tsai, P. C., Gao, Y. G., Chen, A. P., Wang, A. H., and Liang, P. H. (2001) Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J Biol Chem 276, 47474-82. (14) Tarshis, L. C., Yan, M., Poulter, C. D., and Sacchettini, J. C. (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry 33, 10871-7. (15) Guo, R. T., Kuo, C. J., Chou, C. C., Ko, T. P., Shr, H. L., Liang, P. H., and Wang, A. H. (2004) Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination. J Biol Chem 279, 4903-12. (16) Hosfield, D. J., Zhang, Y., Dougan, D. R., Broun, A., Tari, L. W., Swanson, R. V., and Finn, J. (2004) Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J Biol Chem 279, 8526-9. (17) Sun, H. Y., Ko, T. P., Kuo, C. J., Guo, R. T., Chou, C. C., Liang, P. H., and Wang, A. H. (2005) Homodimeric hexaprenyl pyrophosphate synthase from the thermoacidophilic crenarchaeon Sulfolobus solfataricus displays asymmetric subunit structures. J Bacteriol 187, 8137-48. (18) Chang, T. H., Guo, R. T., Ko, T. P., Wang, A. H., and Liang, P. H. (2006) Crystal Structure of Type-III Geranylgeranyl Pyrophosphate Synthase from Saccharomyces cerevisiae and the Mechanism of Product Chain Length Determination. J Biol Chem 281, 14991-5000. (19) Chang, S. Y., Ko, T. P., Chen, A. P., Wang, A. H., and Liang, P. H. (2004) Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies. Protein Sci 13, 971-8. (20) Chang, S. Y., Ko, T. P., Liang, P. H., and Wang, A. H. (2003) Catalytic mechanism revealed by the crystal structure of undecaprenyl pyrophosphate synthase in complex with sulfate, magnesium, and Triton. J Bio Chem 278, 29298-29307. (21) Guo, R. T., Ko, T. P., Chen, A. P., Kuo, C. J., Wang, A. H., and Liang, P. H. (2005) Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J Biol Chem 280, 20762-74. (22) Shimizu, N., Koyama, T., and Ogura, K. (1998) Molecular cloning, expression, and characterization of the genes encoding the two essential protein components of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase. J Bacteriol 180, 1578-81. (23) Zhang, Y. W., Koyama, T., and Ogura, K. (1997) Two cistrons of the gerC operon of Bacillus subtilis encode the two subunits of heptaprenyl diphosphate synthase. J Bacteriol 179, 1417-9. (24) Burke, C. C., Wildung, M. R., and Croteau, R. (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci U S A 96, 13062-7. (25) Saiki, R., Nagata, A., Uchida, N., Kainou, T., Matsuda, H., and Kawamukai, M. (2003) Fission yeast decaprenyl diphosphate synthase consists of Dps1 and the newly characterized Dlp1 protein in a novel heterotetrameric structure. Eur J Biochem 270, 4113-21. (26) Saiki, R., Nagata, A., Kainou, T., Matsuda, H., and Kawamukai, M. (2005) Characterization of solanesyl and decaprenyl diphosphate synthases in mice and humans. FEBS J 272, 5606-22. (27) Jiang, Y., Proteau, P., Poulter, D., and Ferro-Novick, S. (1995) BTS1 encodes a geranylgeranyl diphosphate synthase in Saccharomyces cerevisiae. J Biol Chem 270, 21793-9. (28) Kuzuguchi, T., Morita, Y., Sagami, I., Sagami, H., and Ogura, K. (1999) Human geranylgeranyl diphosphate synthase. cDNA cloning and expression. J Biol Chem 274, 5888-94. (29) Rűdiger, W., Benz, J., and Guthoff, C. (1980). Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109, 193-200. (30) Olszewski, N., Sun, T., and Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14, Supplemental Information S61-80. (31) Takayuki Oritani and Hiromasa Kiyota. (2003). Nat. Prod. Rep. 20, 414–425 (32) Dogbo, O., Laferriere, A., D'Harlingue, A., and Camara, B. (1988). Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Pro. Natl Acad Sci U S A 85, 7054-7058. (33) Ryo Fukuyama, Takashi Fujita, Yasutaka Azuma, Akihiko Hirano, Hiromichi Nakamuta, Masao Koida and Toshihisa Komori. (2003). Statins inhibit osteoblast migration by inhibiting Rac-Akt signaling. Biochemical and Biophysical Research Communications 315, 636–642. (34) Katsuhiko Masamura, Koji Oida, Hideo Kanehara, Jinya Suzuki, Shuichi Horie, Hidemi Ishii, and Isamu Miyamori (2003). Pitavastatin-Induced Thrombomodulin Expression by Endothelial Cells Acts Via Inhibition of Small G Proteins of the Rho Family. American Heart Association, Inc. 23, 512-517 (35) Guo, R. T., Cao, R., Liang, P. H., Ko, T. P., Chang, T. H., Hudock, M. P., Jeng, W. Y., Chen, C., Zhang, Y., Song, Y., Kuo, C. J., Yin, F., Oldfield, E., and Wang, A. H. (2007). Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proc Natl Acad Sci U S A 104, 10022-10027. (36) Goffinet, M., Thoulouzan, M., Pradines, A., Lajoie-Mazenc, I., Weinbaum, C., Faye, J C., and Seronie-Vivien, S. (2006). Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells. BMC Cancer 6, 60. (37) Guo, R. T., Kuo, C. J., Chou, C. C., Ko, T. P., Shr, H. L., Liang, P. H., and Wang, A. H. (2004). Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination. J Biol Chem 279, 4903-4912. (38) Hosfield, D. J., Zhang, Y., Dougan, D. R., Broun, A., Tari, L. W., Swanson, R. V., and Finn, J. (2004). Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J Biol Chem 279, 8526-8529. (39) Sun, H. Y., Ko, T. P., Kuo, C. J., Guo, R. T., Chou, C. C., Liang, P. H., and Wang, A. H. (2005). Homodimeric hexaprenyl pyrophosphate synthase from the thermoacidophilic crenarchaeon Sulfolobus solfataricus displays asymmetric subunit structures. J Bacteriol 187, 8137-8148. (40) Gabelli, S. B., McLellan, J. S., Montalvetti, A., Oldfield, E., Docampo, R., and Amzel, L. M. (2006). Structure and mechanism of farnesyl diphosphate synthase from Trypanosoma cruzi: implications for drug design. Proteins 62, 80-88. (41) Chang, T. H., Guo, R. T., Ko, T. P., Wang, A. H. J., and Liang, P. H. (2006). Crystal structure of type-III geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mechanism of product chain length determination. J Biol Chem 281, 14991-15000. (42) Kavanagh, K. L., Dunford, J. E., Bunkoczi, G., Russell, R. G. G., and Oppermann, U. (2006). The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding. J Biol Chem 281, 22004-22012. (43) Kloer, D. P., Welsch, P., Beyer, P., and Schulz, G. E. (2006). Structure and reaction geometry of geranylgeranyl diphosphate synthase from Sinapis alba. Biochemistry 45, 15197-15204. (44) De Clercq, E. (2002). Strategies in the design of antiviral drugs. Nat Rev Drug Discov 1, 13-25. (45) Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J., and Lai, L. (2004). Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 279, 1637-1642. (46) Liang, P. H., Brun, K. A., Feild, J. A., O'Donnell, K., Doyle, M. L., Green, S. M., Baker, A. E., Blackburn, M. N., and Abdel-Meguid, S. S. (1998). Site-directed mutagenesis probing the catalytic role of arginines 165 and 166 of human cytomegalovirus protease. Biochemistry 37, 5923-5929. (47) Cole, J. L. (1996). Characterization of human cytomegalovirus protease dimerization by analytical centrifugation. Biochemistry 35, 15601-15610. (48) Chien, C. H., Huang, L. H., Chou, C. Y., Chen, Y. S., Han, Y. S., Chang, G. G., Liang, P. H., and Chen, X. (2004). One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem, 279, 52338-52345. (49) Kathryn L. Kavanagh, James E. Dunford, Gabor Bunkoczi, R. Graham G. Russell, and Udo Oppermann. (2006). The Crystal Structure of Human Geranylgeranyl Pyrophosphate Synthase Reveals a Novel Hexameric Arrangement and Inhibitory Product Binding. J Biol Chem, 281, 22004–22012 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26665 | - |
| dc.description.abstract | 四異戊二烯焦磷酸合成酶 (geranylgeranyl pyrophosphate synthase) 可催化一個異戊二烯焦磷酸(isopentenyl pyrophosphate)與法呢基焦磷酸 (farnesyl pyrophosphate) 反應產生四異戊二烯焦磷酸 (geranylgeranyl pyrophosphate),此產物是四異戊二烯化 (geranylgeranylated) 蛋白質、胡蘿蔔素 (carotenoid)、細胞膜脂質等-這些在生物體內重要分子的前趨物。不同於其他已知的異戊二烯轉移酶 (trans-prenyltransferase) ,啤酒酵母的四異戊二烯焦磷酸合成酶具有一延伸至另一單元體 (subunit) 的N端胺基酸鍊。在先前的研究中,我們已經了解第八號白胺酸與第九號異白胺酸對於雙元體的形成有不可或缺的貢獻 (羅嘉翔,未發表實驗結果)。第八號白胺酸及第九號異白胺酸突變為甘胺酸的雙定點突變造成啤酒酵母的四異戊二烯焦磷酸合成酶雙元體裂解成單元體,並且使得活性下降約103倍 (羅嘉翔,未發表實驗結果)。為了進一步研究第八號白胺酸及第九號異白胺酸突變為甘胺酸造成啤酒酵母的四異戊二烯焦磷酸合成酶雙元體裂解成單元體的可能機制,我觀察此蛋白質的立體結構,提出了二個可能機制,藉由與第八號白胺酸及第九號異白胺酸形成網絡連結來穩定雙元體的結構 (圖四及圖五)。其中一個機制為:第八號白胺酸及第九號異白胺酸與第一百六十三號白胺酸及第一百六十七號甲硫胺酸間具有凡得瓦爾作用力,藉此固定相鄰第一百六十八號天冬醯胺酸、第一百六十九號離胺酸及第一百七十一號甘胺酸的位置,而這三個胺基酸又與位在雙元體間主要介面的第一百四十一號甘胺酸、第一百三十七號天冬醯胺酸及第一百三十八號白胺酸間有凡得瓦爾作用力,藉此穩固介面的結構 (圖四)。尤其,第一百六十九號離胺酸與第一百四十五號天冬胺酸間有淨電荷作用力,而第一百四十五號天冬胺酸又能與第一百四十一號甘胺酸利用蛋白質骨架形成氫鍵,第一百四十一號甘胺酸又與第一百三十七號天冬醯胺酸形成氫鍵,而這兩者都位在雙元體間主要介面處。此穩定的雙元體界面使得靠近第一百三十八號白胺酸與第一百四十一號甘胺酸的第一百三十九號組胺酸得以與另一單元體中的第一百零一號天冬醯胺酸形成氫鍵 (圖四)。另一個可能的機制為:第八號白胺酸及第九號異白胺酸與第兩百號白胺酸及第兩百零三號異白胺酸間具有凡得瓦爾力,藉此固定第一百九十九號天冬醯胺酸的位置,此胺基酸與第一百七十五號精胺酸間形成氫鍵,而第一百七十五號精胺酸與位在雙元體間主要介面的第一百三十四號麩胺酸間具有淨電吸引力,藉以固定雙元體介面的結構 (圖五)。由於第一百七十五號精胺酸與第一百三十四號麩胺酸都與第一百七十九號精胺酸形成氫鍵,所以更強化了上述的作用力 (圖五)。我以單定點突變法將上述第一個可能機制中的第一百六十三號白胺酸、第一百六十七號甲硫胺酸、第一百零一號天冬醯胺酸轉變為甘胺酸,第一百四十五號天冬胺酸轉變為離胺酸,並不能將雙元體瓦解為單元體。同樣以單定點突變法將第二個可能機制中的第兩百號白胺酸與第兩百零三號異白胺酸轉變為甘胺酸,第一百三十四號麩胺酸與第一百七十五號精胺酸轉變為丙胺酸,也無法將雙元體瓦解為單元體。然而,以雙定點突變法將牽涉到第一個可能機制的第一百六十七號甲硫胺酸轉變為甘胺酸,同時將牽涉到第二個可能機制的第一百九十九號天冬醯胺酸轉變為丙胺酸,所得到的突變蛋白同時含有單元體與雙元體。這顯示上述所提出的二個機制同時調控酒酵母四異戊二烯焦磷酸合成酶由雙元體裂解成單元體。
人類的四異戊二烯焦磷酸合成酶不具有一延伸至另一單元體的N端胺基酸鍊,然而卻能形成穩定的六元體。觀察此蛋白質的立體結構,我們發現N端的第一個 | zh_TW |
| dc.description.abstract | Geranylgeranyl pyrophosphate synthase (GGPPs) catalyzes a condensation reaction of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C20 geranylgeranyl pyrophosphate (GGPP), which is a precursor for carotenoids, chlorophylls, geranylgeranylated proteins, and archaeal ether linked lipids. Distinct from other known structures of trans-prenyltransferases, the N-terminal 17 amino acids (9-amino acid helix A and the following loop) of this GGPPs protrude from the helix core into the other subunit and contribute to the tight dimer formation. In previous study, we have known that L8 and I9 were essential in dimerization (Lo, C. H. et al., unpublished data). The double mutant L8G/I9G can completely disrupt a dimeric S. cerevisiae GGPPs into a monomer with at least 103-fold reduction in activity (Lo, C. H. et al., unpublished data). In order to investigate mechanisms by which L8G/I9G disrupt the dimer, I observed the X-ray crystal structure of the enzyme and proposed that two sets of interactions networking with L8 and I9 may stabilize the dimerization (Figure 4 and Figure 5). One mechanism is that L8 and I9 make vdW contacts with L163 and M167, whose neighboring residues, N168, K169, and G171, are within vdW contact of G141, N137 and L138 located at the main dimer interface (Figure 4). In particular, K169 forms a salt-bridge with D145, which in turn forms a backbone-backbone hydrogen bond with G141, which itself is hydrogen bonded to N137, both of which are at the main dimer interface (Figure 4). H139, close to L138 and G141, forms a hydrogen bond with N101 in the other chain (Figure 4). The other is that L8 and I9 make vdW contacts with L200 and I203 whose neighboring residue, N199, is hydrogen bonded to R175, which in turn forms a salt-bridge with E134 located near the main dimer interface (Figure 5). This interaction is reinforced since R175 and E134 are also both hydrogen bonds to R179 (Figure 5). I then performed site-directed mutagenesis studies and used analytic ultracentrifuge (AUC) to characterize the mutants. Single mutant of L163G, M167G, D145K, or N101G involved in one possible mechanism and L200G, I203G, E134A, or R175A involved in the other did not result in the disruption of dimer to monomer, whereas double mutant of M167G/N199A involved in both possible mechanisms resulted in a mixture of dimer and monomer. This indicated that both possible mechanisms were involved in modulating disruption of S. cerevisiae geranylgeranyl pyrophosphate synthase dimer into monomer.
In human geranylgeranyl pyrophosphate synthase, there is no N-terminal arm protruding into the other subunit, whereas it forms a stable hexamer. The 3-D structure of human GGPPs suggested that the first helix at N-terminus may play an important role in inter-dimer interaction to stabilize the structure of hexamer. To confirm this, the human GGPPS without the first 21 amino acids were characterized using analytic ultracentrifugation (AUC).This resulted in a mixture of monomer and dimer. To identify the critical amino acids in the N-terminal helix for hexamerization, I observed the X-ray crystal structure of the enzyme and assumed E14, Y18, or Q21 may involved in inter-dimer interactions by binding with Y246 and T228 to stabilize the hexamer. To confirm this, I generated E14G/Y18G/Q21G, E14G, Y18G, and Q21G and characterized them respectively using AUC. The triple mutant E14G/Y18G/Q21G became a mixture of monomer and tetramer, whereas the single mutant E14G, Y18G, and Q21G remained as a hexamer. The results suggested that E14, Y18, and Q21 together provided critical roles for the hGGPPs inter-dimer interactions and stabilize the structure of hexamer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:19:52Z (GMT). No. of bitstreams: 1 ntu-97-R95b46015-1.pdf: 9453130 bytes, checksum: 2bf107f99d1186abeb8b4557d9d9f188 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………………1
ABSTRACT…….……………………………………………………………………4 ABBREVIATION…………………………………………………………………….7 INTRODUCTION……………………………………………………………………8 MATERIALS AND METHODS …………………………………………………13 RESULTS……………………………………………………………………………20 DISCUSSION………………………………………………………………………27 REFERENCE………………………………………………………………………30 TABLE……………………………………………………………………………...39 FIGURE…………………………………………………………………………….46 SUPPORTING INFORMATION………………………………………………66 | |
| dc.language.iso | en | |
| dc.subject | 四異戊二烯焦磷酸合成酶 | zh_TW |
| dc.subject | Geranylgeranyl Pyrophosphate Synthase | en |
| dc.title | 調控啤酒酵母四異戊二烯焦磷酸合成酶雙元體裂解成單元體的可能機制以及人類四異戊二烯焦磷酸合成酶形成六元體的研究 | zh_TW |
| dc.title | Possible Mechanisms Modulating Disruption of S. cerevisiae Geranylgeranyl Pyrophosphate Synthase Dimer into Monomer and Hexamerization Study of Human Geranylgeranyl Pyrophosphate Synthase | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張文章,邱式鴻,林小喬 | |
| dc.subject.keyword | 四異戊二烯焦磷酸合成酶, | zh_TW |
| dc.subject.keyword | Geranylgeranyl Pyrophosphate Synthase, | en |
| dc.relation.page | 30 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 9.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
