Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26660
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超
dc.contributor.authorDong-Yuan Chenen
dc.contributor.author陳敦元zh_TW
dc.date.accessioned2021-06-08T07:19:38Z-
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation1. Allard, J. D., Chang, H. C., Herbst, R., McNeill, H., and Simon, M. A. (1996). The SH2-containing tyrosine phosphatase corkscrew is required during signaling by sevenless, Ras1 and Raf. Development 122, 1137-1146.
2. Andersen, J. N., Del Vecchio, R. L., Kannan, N., Gergel, J., Neuwald, A. F., and Tonks, N. K. (2005). Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources. Methods 35, 90-114.
3. Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen, O. H., Jansen, P. G., Andersen, H. S., Tonks, N. K., and Moller, N. P. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21, 7117-7136.
4. Arregui, C. O., Balsamo, J., and Lilien, J. (1998). Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. J Cell Biol 143, 861-873.
5. Baker, S. E., Lorenzen, J. A., Miller, S. W., Bunch, T. A., Jannuzi, A. L., Ginsberg, M. H., Perkins, L. A., and Brower, D. L. (2002). Genetic interaction between integrins and moleskin, a gene encoding a Drosophila homolog of importin-7. Genetics 162, 285-296.
6. Balavenkatraman, K. K., Jandt, E., Friedrich, K., Kautenburger, T., Pool-Zobel, B. L., Ostman, A., and Bohmer, F. D. (2006). DEP-1 protein tyrosine phosphatase inhibits proliferation and migration of colon carcinoma cells and is upregulated by protective nutrients. Oncogene 25, 6319-6324.
7. Bennett, A. M., Tang, T. L., Sugimoto, S., Walsh, C. T., and Neel, B. G. (1994). Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A 91, 7335-7339.
8. Bilwes, A. M., den Hertog, J., Hunter, T., and Noel, J. P. (1996). Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature 382, 555-559.
9. Bokel, C., and Brown, N. H. (2002). Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3, 311-321.
10. Bompard, G., Martin, M., Roy, C., Vignon, F., and Freiss, G. (2003). Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. J Cell Sci 116, 2519-2530.
11. Boutros, M., and Ahringer, J. (2008). The art and design of genetic screens: RNA interference. Nat Rev Genet 9, 554-566.
12. Brabant, M. C., Fristrom, D., Bunch, T. A., and Brower, D. L. (1996). Distinct spatial and temporal functions for PS integrins during Drosophila wing morphogenesis. Development 122, 3307-3317.
13. Brakebusch, C., Grose, R., Quondamatteo, F., Ramirez, A., Jorcano, J. L., Pirro, A., Svensson, M., Herken, R., Sasaki, T., Timpl, R., Werner, S., and Fassler, R. (2000). Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J 19, 3990-4003.
14. Brower, D. L. (2003). Platelets with wings: the maturation of Drosophila integrin biology. Curr Opin Cell Biol 15, 607-613.
15. Brower, D. L., Bunch, T. A., Mukai, L., Adamson, T. E., Wehrli, M., Lam, S., Friedlander, E., Roote, C. E., and Zusman, S. (1995). Nonequivalent requirements for PS1 and PS2 integrin at cell attachments in Drosophila: genetic analysis of the alpha PS1 integrin subunit. Development 121, 1311-1320.
16. Burridge, K., and Nelson, A. (1995). An in-gel assay for protein tyrosine phosphatase activity: detection of widespread distribution in cells and tissues. Anal Biochem 232, 56-64.
17. Burridge, K., Sastry, S. K., and Sallee, J. L. (2006). Regulation of cell adhesion by protein-tyrosine phosphatases. I. Cell-matrix adhesion. J Biol Chem 281, 15593-15596.
18. Cao, L., Zhang, L., Ruiz-Lozano, P., Yang, Q., Chien, K. R., Graham, R. M., and Zhou, M. (1998). A novel putative protein-tyrosine phosphatase contains a BRO1-like domain and suppresses Ha-ras-mediated transformation. J Biol Chem 273, 21077-21083.
19. Castiglioni, S., Maier, J. A., and Mariotti, M. (2007). The tyrosine phosphatase HD-PTP: A novel player in endothelial migration. Biochem Biophys Res Commun
20. Chan, R. J., Leedy, M. B., Munugalavadla, V., Voorhorst, C. S., Li, Y., Yu, M., and Kapur, R. (2005). Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood 105, 3737-3742.
21. Chang, Y. C., Lin, S. Y., Liang, S. Y., Pan, K. T., Chou, C. C., Chen, C. H., Liao, C. L., Khoo, K. H., and Meng, T. C. (2008). Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. J Proteome Res 7, 1055-1066.
22. Chen, F., Archambault, V., Kar, A., Lio', P., D'Avino, P. P., Sinka, R., Lilley, K., Laue, E. D., Deak, P., Capalbo, L., and Glover, D. M. (2007). Multiple protein phosphatases are required for mitosis in Drosophila. Curr Biol 17, 293-303.
23. Chen, G. C., Turano, B., Ruest, P. J., Hagel, M., Settleman, J., and Thomas, S. M. (2005). Regulation of Rho and Rac signaling to the actin cytoskeleton by paxillin during Drosophila development. Mol Cell Biol 25, 979-987.
24. Clamp, M., Cuff, J., Searle, S. M., and Barton, G. J. (2004). The Jalview Java alignment editor. Bioinformatics 20, 426-427.
25. Clandinin, T. R., Lee, C. H., Herman, T., Lee, R. C., Yang, A. Y., Ovasapyan, S., and Zipursky, S. L. (2001). Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system. Neuron 32, 237-248.
26. Clemens, J. C., Ursuliak, Z., Clemens, K. K., Price, J. V., and Dixon, J. E. (1996). A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance. J Biol Chem 271, 17002-17005.
27. Cuppen, E., Wijers, M., Schepens, J., Fransen, J., Wieringa, B., and Hendriks, W. (1999). A FERM domain governs apical confinement of PTP-BL in epithelial cells. J Cell Sci 112, 3299-3308.
28. Dadke, S., Cotteret, S., Yip, S. C., Jaffer, Z. M., Haj, F., Ivanov, A., Rauscher, F. r., Shuai, K., Ng, T., Neel, B. G., and Chernoff, J. (2007). Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol 9, 80-85.
29. Davis, R. L. (2005). Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28, 275-302.
30. Desai, C. J., Gindhart, J. G. J., Goldstein, L. S., and Zinn, K. (1996). Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Cell 84, 599-609.
31. Desai, C. J., Krueger, N. X., Saito, H., and Zinn, K. (1997). Competition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila. Development 124, 1941-1952.
32. DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A., and Hynes, R. O. (1997). alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137, 729-742.
33. Doyotte, A., Mironov, A., McKenzie, E., and Woodman, P. (2008). The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc Natl Acad Sci U S A
34. Du, W., Vidal, M., Xie, J. E., and Dyson, N. (1996). RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev 10, 1206-1218.
35. Duchek, P., Somogyi, K., Jekely, G., Beccari, S., and Rorth, P. (2001). Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17-26.
36. Dunah, A. W., Hueske, E., Wyszynski, M., Hoogenraad, C. C., Jaworski, J., Pak, D. T., Simonetta, A., Liu, G., and Sheng, M. (2005). LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci 8, 458-467.
37. Duronio, R. J., Brook, A., Dyson, N., and O'Farrell, P. H. (1996). E2F-induced S phase requires cyclin E. Genes Dev 10, 2505-2513.
38. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C. C., Ramachandran, C., Gresser, M. J., Tremblay, M. L., and Kennedy, B. P. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544-1548.
39. Ensslen-Craig, S. E., and Brady-Kalnay, S. M. (2004). Receptor protein tyrosine phosphatases regulate neural development and axon guidance. Dev Biol 275, 12-22.
40. Feng, G. S. (1999). Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res 253, 47-54.
41. Flint, A. J., Tiganis, T., Barford, D., and Tonks, N. K. (1997). Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 94, 1680-1685.
42. Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A., and Neel, B. G. (1992). The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68, 545-560.
43. Fristrom, D., Gotwals, P., Eaton, S., Kornberg, T. B., Sturtevant, M., Bier, E., and Fristrom, J. W. (1994). Blistered: a gene required for vein/intervein formation in wings of Drosophila. Development 120, 2661-2671.
44. Fukada, M., Kawachi, H., Fujikawa, A., and Noda, M. (2005). Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases: Isolation of substrates for protein tyrosine phosphatase receptor type z. Methods 35, 54-63.
45. Garton, A. J., Burnham, M. R., Bouton, A. H., and Tonks, N. K. (1997). Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene 15, 877-885.
46. Grabbe, C., Zervas, C. G., Hunter, T., Brown, N. H., and Palmer, R. H. (2004). Focal adhesion kinase is not required for integrin function or viability in Drosophila. Development 131, 5795-5805.
47. Groen, A., Lemeer, S., van der Wijk, T., Overvoorde, J., Heck, A. J., Ostman, A., Barford, D., Slijper, M., and den Hertog, J. (2005). Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280, 10298-10304.
48. Harder, K. W., Moller, N. P., Peacock, J. W., and Jirik, F. R. (1998). Protein-tyrosine phosphatase alpha regulates Src family kinases and alters cell-substratum adhesion. J Biol Chem 273, 31890-31900.
49. Hayakawa, A., and Kitamura, N. (2000). Early endosomal localization of hrs requires a sequence within the proline- and glutamine-rich region but not the FYVE finger. J Biol Chem 275, 29636-29642.
50. Hendriks, W. J., Elson, A., Harroch, S., and Stoker, A. W. (2008). Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 275, 816-830.
51. Herbst, R., Carroll, P. M., Allard, J. D., Schilling, J., Raabe, T., and Simon, M. A. (1996). Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during sevenless signaling. Cell 85, 899-909.
52. Herbst, R., Zhang, X., Qin, J., and Simon, M. A. (1999). Recruitment of the protein tyrosine phosphatase CSW by DOS is an essential step during signaling by the sevenless receptor tyrosine kinase. EMBO J 18, 6950-6961.
53. Huang, C., Rajfur, Z., Borchers, C., Schaller, M. D., and Jacobson, K. (2003). JNK phosphorylates paxillin and regulates cell migration. Nature 424, 219-223.
54. Huang, C. H., Lin, T. Y., Pan, R. L., and Juang, J. L. (2007). The involvement of Abl and PTP61F in the regulation of Abi protein localization and stability and lamella formation in Drosophila S2 cells. J Biol Chem 282, 32442-32452.
55. Hurley, J. H. (2008). ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20, 4-11.
56. Huynh, H., Bottini, N., Williams, S., Cherepanov, V., Musumeci, L., Saito, K., Bruckner, S., Vachon, E., Wang, X., Kruger, J., Chow, C. W., Pellecchia, M., Monosov, E., Greer, P. A., Trimble, W., Downey, G. P., and Mustelin, T. (2004). Control of vesicle fusion by a tyrosine phosphatase. Nat Cell Biol 6, 831-839.
57. Ichioka, F., Takaya, E., Suzuki, H., Kajigaya, S., Buchman, V. L., Shibata, H., and Maki, M. (2007). HD-PTP and Alix share some membrane-traffic related proteins that interact with their Bro1 domains or proline-rich regions. Arch Biochem Biophys 457, 142-149.
58. Jarvis, L. A., Toering, S. J., Simon, M. A., Krasnow, M. A., and Smith-Bolton, R. K. (2006). Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 133, 1133-1142.
59. Jekely, G., Sung, H. H., Luque, C. M., and Rorth, P. (2005). Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell 9, 197-207.
60. Jeon, M., Nguyen, H., Bahri, S., and Zinn, K. (2008). Redundancy and compensation in axon guidance: genetic analysis of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily. Neural Develop 3, 3.
61. Jiang, G., den Hertog, J., Su, J., Noel, J., Sap, J., and Hunter, T. (1999). Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha. Nature 401, 606-610.
62. Johnson, K. G., and Van Vactor, D. (2003). Receptor protein tyrosine phosphatases in nervous system development. Physiol Rev 83, 1-24.
63. Jones, M. C., Caswell, P. T., and Norman, J. C. (2006). Endocytic recycling pathways: emerging regulators of cell migration. Curr Opin Cell Biol 18, 549-557.
64. Karim, F. D., and Rubin, G. M. (1999). PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol Cell 3, 741-750.
65. Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33, 511-518.
66. Kaufmann, N., DeProto, J., Ranjan, R., Wan, H., and Van Vactor, D. (2002). Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34, 27-38.
67. Kennerdell, J. R., and Carthew, R. W. (2000). Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18, 896-898.
68. Kim, J., Sitaraman, S., Hierro, A., Beach, B. M., Odorizzi, G., and Hurley, J. H. (2005). Structural basis for endosomal targeting by the Bro1 domain. Dev Cell 8, 937-947.
69. Kondo, T., Inagaki, S., Yasuda, K., and Kageyama, Y. (2006). Rapid construction of Drosophila RNAi transgenes using pRISE, a P-element-mediated transformation vector exploiting an in vitro recombination system. Genes Genet Syst 81, 129-134.
70. Krueger, N. X., Van Vactor, D., Wan, H. I., Gelbart, W. M., Goodman, C. S., and Saito, H. (1996). The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell 84, 611-622.
71. Larsen, M., Tremblay, M. L., and Yamada, K. M. (2003). Phosphatases in cell-matrix adhesion and migration. Nat Rev Mol Cell Biol 4, 700-711.
72. Lee, S. B., Cho, K. S., Kim, E., and Chung, J. (2003). blistery encodes Drosophila tensin protein and interacts with integrin and the JNK signaling pathway during wing development. Development 130, 4001-4010.
73. Lee, Y. S., and Carthew, R. W. (2003). Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30, 322-329.
74. Lilly, M. A., and Spradling, A. C. (1996). The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev 10, 2514-2526.
75. Liu, F., Hill, D. E., and Chernoff, J. (1996). Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). J Biol Chem 271, 31290-31295.
76. Llense, F., and Martin-Blanco, E. (2008). JNK Signaling Controls Border Cell Cluster Integrity and Collective Cell Migration. Curr Biol 18, 538-544.
77. Lou, Y. W., Chen, Y. Y., Hsu, S. F., Chen, R. K., Lee, C. L., Khoo, K. H., Tonks, N. K., and Meng, T. C. (2008). Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J 275, 69-88.
78. Lu, W., Gong, D., Bar-Sagi, D., and Cole, P. A. (2001). Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol Cell 8, 759-769.
79. Majeti, R., Bilwes, A. M., Noel, J. P., Hunter, T., and Weiss, A. (1998). Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279, 88-91.
80. Majeti, R., Xu, Z., Parslow, T. G., Olson, J. L., Daikh, D. I., Killeen, N., and Weiss, A. (2000). An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059-1070.
81. Maurel-Zaffran, C., Suzuki, T., Gahmon, G., Treisman, J. E., and Dickson, B. J. (2001). Cell-autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron 32, 225-235.
82. McCullough, J., Fisher, R. D., Whitby, F. G., Sundquist, W. I., and Hill, C. P. (2008). ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci U S A 105, 7687-7691.
83. Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68.
84. Miura, G. I., Roignant, J. Y., Wassef, M., and Treisman, J. E. (2008). Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development
85. Mohi, M. G., Williams, I. R., Dearolf, C. R., Chan, G., Kutok, J. L., Cohen, S., Morgan, K., Boulton, C., Shigematsu, H., Keilhack, H., Akashi, K., Gilliland, D. G., and Neel, B. G. (2005). Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7, 179-191.
86. Montalibet, J., Skorey, K. I., and Kennedy, B. P. (2005). Protein tyrosine phosphatase: enzymatic assays. Methods 35, 2-8.
87. Montell, D. J., Rorth, P., and Spradling, A. C. (1992). slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51-62.
88. Morrison, D. K., Murakami, M. S., and Cleghon, V. (2000). Protein kinases and phosphatases in the Drosophila genome. J Cell Biol 150, F57-62.
89. Mustelin, T., Tautz, L., and Page, R. (2005). Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site. J Mol Biol 354, 150-163.
90. Niewiadomska, P., Godt, D., and Tepass, U. (1999). DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144, 533-547.
91. Odorizzi, G., Katzmann, D. J., Babst, M., Audhya, A., and Emr, S. D. (2003). Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci 116, 1893-1903.
92. Palmer, A., Zimmer, M., Erdmann, K. S., Eulenburg, V., Porthin, A., Heumann, R., Deutsch, U., and Klein, R. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell 9, 725-737.
93. Palmer, R. H., Fessler, L. I., Edeen, P. T., Madigan, S. J., McKeown, M., and Hunter, T. (1999). DFak56 is a novel Drosophila melanogaster focal adhesion kinase. J Biol Chem 274, 35621-35629.
94. Pellinen, T., and Ivaska, J. (2006). Integrin traffic. J Cell Sci 119, 3723-3731.
95. Perkins, L. A., Johnson, M. R., Melnick, M. B., and Perrimon, N. (1996). The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev Biol 180, 63-81.
96. Perkins, L. A., Larsen, I., and Perrimon, N. (1992). corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70, 225-236.
97. Persson, C., Sjoblom, T., Groen, A., Kappert, K., Engstrom, U., Hellman, U., Heldin, C. H., den Hertog, J., and Ostman, A. (2004). Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci U S A 101, 1886-1891.
98. Pinheiro, E. M., and Montell, D. J. (2004). Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243-5251.
99. Reich, A., Sapir, A., and Shilo, B. (1999). Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126, 4139-4147.
100. Rhee, S. G. (2006). Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882-1883.
101. Ridley, A. J., and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389-399.
102. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-1709.
103. Roberts, M., Barry, S., Woods, A., van der Sluijs, P., and Norman, J. (2001). PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr Biol 11, 1392-1402.
104. Roof, R. W., Dukes, B. D., Chang, J. H., and Parsons, S. J. (2000). Phosphorylation of the p190 RhoGAP N-terminal domain by c-Src results in a loss of GTP binding activity. FEBS Lett 472, 117-121.
105. Roof, R. W., Haskell, M. D., Dukes, B. D., Sherman, N., Kinter, M., and Parsons, S. J. (1998). Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP-p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation. Mol Cell Biol 18, 7052-7063.
106. Rorth, P. (2007). Collective guidance of collective cell migration. Trends Cell Biol 17, 575-579.
107. Ross, S. H., Lindsay, Y., Safrany, S. T., Lorenzo, O., Villa, F., Toth, R., Clague, M. J., Downes, C. P., and Leslie, N. R. (2007). Differential redox regulation within the PTP superfamily. Cell Signal 19, 1521-1530.
108. Roxrud, I., Raiborg, C., Pedersen, N. M., Stang, E., and Stenmark, H. (2008). An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor. J Cell Biol 180, 1205-1218.
109. Ruivenkamp, C. A., van Wezel, T., Zanon, C., Stassen, A. P., Vlcek, C., Csikos, T., Klous, A. M., Tripodis, N., Perrakis, A., Boerrigter, L., Groot, P. C., Lindeman, J., Mooi, W. J., Meijjer, G. A., Scholten, G., Dauwerse, H., Paces, V., van Zandwijk, N., van Ommen, G. J., and Demant, P. (2002). Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 31, 295-300.
110. Saito, K., Williams, S., Bulankina, A., Honing, S., and Mustelin, T. (2007). Association of protein-tyrosine phosphatase MEG2 via its Sec14p homology domain with vesicle-trafficking proteins. J Biol Chem 282, 15170-15178.
111. Sastry, S. K., Lyons, P. D., Schaller, M. D., and Burridge, K. (2002). PTP-PEST controls motility through regulation of Rac1. J Cell Sci 115, 4305-4316.
112. Sastry, S. K., Rajfur, Z., Liu, B. P., Cote, J. F., Tremblay, M. L., and Burridge, K. (2006). PTP-PEST couples membrane protrusion and tail retraction via VAV2 and p190RhoGAP. J Biol Chem 281, 11627-11636.
113. Schaller, M. D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-6472.
114. Schindelholz, B., Knirr, M., Warrior, R., and Zinn, K. (2001). Regulation of CNS and motor axon guidance in Drosophila by the receptor tyrosine phosphatase DPTP52F. Development 128, 4371-4382.
115. Schmidt-Arras, D. E., Bohmer, A., Markova, B., Choudhary, C., Serve, H., and Bohmer, F. D. (2005). Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol Cell Biol 25, 3690-3703.
116. Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27, 353-365.
117. Silver, D. L., Geisbrecht, E. R., and Montell, D. J. (2005). Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 132, 3483-3492.
118. Silver, D. L., and Montell, D. J. (2001). Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831-841.
119. Strack, B., Calistri, A., Craig, S., Popova, E., and Gottlinger, H. G. (2003). AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689-699.
120. Sun, Q., Bahri, S., Schmid, A., Chia, W., and Zinn, K. (2000). Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo. Development 127, 801-812.
121. Sun, Q., Schindelholz, B., Knirr, M., Schmid, A., and Zinn, K. (2001). Complex genetic interactions among four receptor tyrosine phosphatases regulate axon guidance in Drosophila. Mol Cell Neurosci 17, 274-291.
122. Tartaglia, M., and Gelb, B. D. (2005). Germ-line and somatic PTPN11 mutations in human disease. Eur J Med Genet 48, 81-96.
123. Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., Hahlen, K., Hasle, H., Licht, J. D., and Gelb, B. D. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34, 148-150.
124. Tatusova, T. A., and Madden, T. L. (1999). BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247-250.
125. Tautz, D., and Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81-85.
126. Tian, S. S., Tsoulfas, P., and Zinn, K. (1991). Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell 67, 675-685.
127. Tiganis, T., and Bennett, A. M. (2007). Protein tyrosine phosphatase function: the substrate perspective. Biochem J 402, 1-15.
128. Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7, 833-846.
129. Toyooka, S., Ouchida, M., Jitsumori, Y., Tsukuda, K., Sakai, A., Nakamura, A., Shimizu, N., and Shimizu, K. (2000). HD-PTP: A novel protein tyrosine phosphatase gene on human chromosome 3p21.3. Biochem Biophys Res Commun 278, 671-678.
130. Uchida, Y., Ogata, M., Mori, Y., Oh-hora, M., Hatano, N., and Hamaoka, T. (2002). Localization of PTP-FERM in nerve processes through its FERM domain. Biochem Biophys Res Commun 292, 13-19.
131. Ursuliak, Z., Clemens, J. C., Dixon, J. E., and Price, J. V. (1997). Differential accumulation of DPTP61F alternative transcripts: regulation of a protein tyrosine phosphatase by segmentation genes. Mech Dev 65, 19-30.
132. Van Vactor, D., O'Reilly, A. M., and Neel, B. G. (1998). Genetic analysis of protein tyrosine phosphatases. Curr Opin Genet Dev 8, 112-126.
133. Walsh, E. P., and Brown, N. H. (1998). A screen to identify Drosophila genes required for integrin-mediated adhesion. Genetics 150, 791-805.
134. Wang, X., Huynh, H., Gjorloff-Wingren, A., Monosov, E., Stridsberg, M., Fukuda, M., and Mustelin, T. (2002). Enlargement of secretory vesicles by protein tyrosine phosphatase PTP-MEG2 in rat basophilic leukemia mast cells and Jurkat T cells. J Immunol 168, 4612-4619.
135. Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., Ptak, J., Silliman, N., Peters, B. A., van der Heijden, M. S., Parmigiani, G., Yan, H., Wang, T. L., Riggins, G., Powell, S. M., Willson, J. K., Markowitz, S., Kinzler, K. W., Vogelstein, B., and Velculescu, V. E. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164-1166.
136. Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., and Horwitz, A. F. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6, 154-161.
137. Whited, J. L., Robichaux, M. B., Yang, J. C., and Garrity, P. A. (2007). Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development 134, 43-53.
138. Williams, R. L., and Urbe, S. (2007). The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8, 355-368.
139. Worby, C. A., and Dixon, J. E. (2004). RNA interference in cultured Drosophila cells. Curr Protoc Mol Biol Chapter 26, Unit 26.5.
140. Yanagawa, S., Lee, J. S., and Ishimoto, A. (1998). Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J Biol Chem 273, 32353-32359.
141. Yang, W., Klaman, L. D., Chen, B., Araki, T., Harada, H., Thomas, S. M., George, E. L., and Neel, B. G. (2006). An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell 10, 317-327.
142. Yang, X. H., Seow, K. T., Bahri, S. M., Oon, S. H., and Chia, W. (1991). Two Drosophila receptor-like tyrosine phosphatase genes are expressed in a subset of developing axons and pioneer neurons in the embryonic CNS. Cell 67, 661-673.
143. Yu, D. H., Qu, C. K., Henegariu, O., Lu, X., and Feng, G. S. (1998). Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem 273, 21125-21131.
144. Zamir, E., and Geiger, B. (2001). Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114, 3583-3590.
145. Zhang, S. Q., Yang, W., Kontaridis, M. I., Bivona, T. G., Wen, G., Araki, T., Luo, J., Thompson, J. A., Schraven, B. L., Philips, M. R., and Neel, B. G. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13, 341-355.
146. Zheng, X. M., Wang, Y., and Pallen, C. J. (1992). Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359, 336-339.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26660-
dc.description.abstract蛋白質酪氨酸去磷酸酶(PTP)是一群受到嚴密調控的酵素, 並且在各種不同的過程中與蛋白質酪氨酸磷酸酶協同控制蛋白質的磷酸化。目前許多的證據指出,在發育過程當中,蛋白質磷酸化的調控扮演重要的角色。為了了解PTP在發育過程中的功能,我們使用果蠅的PTPome 作為研究PTP發育功能的一個模式。之前的研究根據蛋白質序列相似度分析發現果蠅基因體中存在有十五個可能的PTP。其中,七個是類似受體型的PTP,而八個則是非受體型的PTP。近年的研究都針對類似受體型PTP在神經發育過程中所扮演的角色來進行分析,但是非受體型PTP的功能仍然有待理解。
為了要了解發育過程中這些非受體型PTP的生物功能,我有系統的分析了這些PTP 基因的表現式樣以及他們的去磷酸生化活性。我也同時建立了可以表現這些PTP全長cDNA以及雙股RNA以利用RNAi的方式降解內生性PTP的基因轉植果蠅。
利用原位雜交的方式,我發現許多的非受體型PTP都高度的表現在胚胎時期的中樞神經系統,而相較之下在三齡幼蟲時期的imaginal disc中只有低度且廣泛的表現。另外,利用gain-of-function 和 loss-of-function 的分析,我發現其中一個含有 BRO1 domain 的PTP,dHD-PTP,在翅膀表皮細胞形態發育中是一個不可或缺的蛋白質。
為了進一步研究dHD-PTP的功能,利用免疫螢光染色,我發現dHD-PTP蛋白質位於早期和晚期的endosomes。 令人驚訝的,不論是過度表現或是降解dHD-PTP的表現量都會影響到endosomes的外觀形態,這個結果意味dHD-PTP可能在endoomes 結構的生成過程中扮演調控的角色。
另外,過度表現 cyclineE,一個調控細胞週期進行的基因,可以部份的拯救因為dHD-PTP loss-of-function所產生的翅膀缺陷。而在抑制dHD-PTP表現量的mosaic clones中會有過度不正常的細胞死亡現象,表示dHD-PTP有可能參與在細胞生長以及細胞生存的的調節之中。
藉由遺傳分析,我發現dPax, 一個focal adhesion adaptor 蛋白質,在翅膀表皮細胞的發育過程當中與dHD-PTP有遺傳上的交互作用 。
總而言之,我證明dHD-PTP在發育過程中對於胞吞作用以及細胞黏著的調控是一個重要的蛋白質。dHD-PTP可能是藉由其在胞吞作用所扮演的功能來調節與細胞黏著相關的蛋白質的交通。結合一開始針對果蠅非受體型PTP基本的分析,我的研究應該對於這些PTP在發育過程中的功能有其啟發性的貢獻。
zh_TW
dc.description.abstractProtein tyrosine phosphatases (PTPs) are a group of tightly regulated enzymes in coordination with protein tyrosine kinases to control protein phosphorylation during various cellular processes. Accumulating evidence has indicated that regulation of tyrosine phosphorylation plays a crucial role during development. Drosophila PTPome is chosen as a model to define the developmental function of PTPs. Based on sequence similarity, fifteen putative PTPs in Drosophila genome are identified. Among them, seven of them are receptor like PTPs, and eight are predicted to be non-transmembrane PTPs. While much research has been devoted to the role of receptor-like tyrosine phosphatases in neural development, the function of non-transmembrane PTPs remains to be elucidated.
To investigate the biological function of these non-transmembrane PTPs during development, I have systematically analyzed the gene expression pattern and phosphatase activity of these PTPs. Moreover, transgenic flies carrying wild type cDNA or double-stranded RNA of each non-transmembrane PTP were generated. in situ hybridization revealed that many of these PTPs are highly expressed in embryonic CNS and exhibited relatively low and ubiquitous expression in third instar larval imaginal discs. In addition, loss-of-function and gain-of function analysis revealed that dHD-PTP, a BRO1 domain containing protein tyrosine phosphatase, is required for wing morphogenesis. Immunofluorescence showed that dHD-PTP is localized at both early and late endosomes. Strikingly, both downregulation and overexpression of dHD-PTP affected the size of endosomes, suggesting a regulatory role of dHD-PTP in the biogenesis of endosomal structures.
In addition, I found that overexpression of cyclinE, a gene known for it role in cell cycle progression, could partially rescue dHD-PTP loss-of-function defects in developing wing. This, along with the observation of ectopic cell death in dHD-PTP loss-of-function mosaic clones suggests possible involvements of dHD-PTP in cell proliferation and cell survival. Genetic analysis also found that dPax, a focal adhesion adaptor protein, genetically interacts with dHD-PTP during wing epithelia development.
In summary, I demonstrate that dHD-PTP could function as an essential protein in regulation of endocytosis and cell adhesion during development. dHD-PTP might be involved in the control of cell adhesion by its ability to regulate the trafficking of adhesion-related molecules. Combined with characterization of other non-transmembrane PTPs, my studies should shed lights on the role of these non-transmembrane PTPs in development.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:19:38Z (GMT). No. of bitstreams: 1
ntu-97-R95b46001-1.pdf: 9887061 bytes, checksum: d13a88a504b4d816900f118ab3398b40 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of Contents i
Index of Figures and Tables iv
Abstract in Chinese vi
Abstract vii
Chapter One: Introduction 1
I. Protein tyrosine phosphatases 1
II. Regulation of protein tyrosine phosphatases 4
III. Biological functions of protein tyrosine phosphatases 5
IV. Strategies in studying the biological functions of protein tyrosine phosphatases 8
V. Protein tyrosine phosphatases in Drosophila Genome 9
VI. Functions of receptor-like protein tyrosine phosphatases in Drosophila Development 10
VII. Functions of non-transmembrane protein tyrosine phosphatases during Drosophila Development 13
VIII. Genomic approach in studying biological function of non-transmembrane PTPs in Drosophila Genome 15
Chapter Two: Materials and Methods 17
I. Bioinformatics 17
II. Fly Strains and Genetics 17
III. DNA manipulation and Molecular cloning 17
IV. Generation of Transgenic Fly 18
V. dsRNA Generation 18
VI. Cell culture, Transfection and RNAi 19
VII. Preparation of Cultured Cell Lysates and Fly Lysates 20
VIII. Estimation of Protein Concentration 20
IX. Immunohistochemistry and Immunofluorescence of Cultured Cells 20
X. Western Blotting 21
XI. Immunoprecipitation 22
XII. Whole mount in situ Hybridization 22
XIII. In Gel Phosphatase Activity Assay 24
XIV. pNPP Phosphatase Assay 25
XV. BrdU Incorporation Assay 26
XVI. Endocytic Uptake Assay 26
XVII. Quantification of Dissociation and Migration Defects of Border Cells 27
XVIII. Antibody Generation 27
Chapter Three: Results 28
I. Characterization of protein tyrosine phosphatases in Drosophila genome 28
II. Phosphatase catalytic inferences from multiple sequence alignment of Drosophila PTP genes 28
III. Expression profiles of catalytic active tyrosine phosphatases revealed by in gel phosphatase assay 29
IV. in vitro Phosphatase assays showed possible catalytically inactive PTPs 29
V. Expression patterns of Drosophila PTP genes during embryogenesis and in third instar larval imaginal discs 30
VI. Functional inference from transgenic flies of non-transmembrane PTPs 32
VII. dHD-PTP is required for wing morphogenesis during development 33
VIII. Characterization of conserved domain structure of dHD-PTP 34
IX. Generation of dHD-PTP antibody and validation of dHD-PTP transgenic lines 36
X. dHD-PTP is an essential protein required for normal development 36
XI. dHD-PTP expression profile during development 37
XII. Endogenous dHD-PTP is localized in endosomal vesicles 38
XIII. dHD-PTP overexpression causes enlarged endosomes 38
XIV. Central Proline Rich Region (PRR) of dHD-PTP is required and sufficient for vesicle targeting 39
XV. Down regulation of dHD-PTP causes multiple enlarged endosomes 39
XVI. dHD-PTP loss-of -function defects may be partly caused by defective cell proliferation 40
XVII. Integrin loss-of-function related phenotype in ectopic expression of dHD-PTP in posterior wing 41
XVIII. Genetic interaction of dHD-PTP with dPax 42
XIX. Collective cell migration defects in dHD-PTP loss-of-function and gain-of-function lines 43
Chapter Four: Discussion 47
I. Function of catalytic inactive non-transmembrane PTPs 47
II. Functional studies of HD-PTP 47
III. Endocytic function of dHD-PTP 49
IV. Cell proliferation function of dHD-PTP has not been clearly understood 50
V. dHD-PTP in regulation of cell adhesion 51
VI. A role for dHD-PTP in collective cell migration 52
Chapter Five: References 100
dc.language.isoen
dc.subject果蠅發育zh_TW
dc.subjectdHD-PTPzh_TW
dc.subject蛋白酪氨酸去磷酸&#37238zh_TW
dc.subject基因體分析zh_TW
dc.subject翅膀形態發育zh_TW
dc.subjectPTP-ome wide analysisen
dc.subjectDrosophila developmenten
dc.subjectdHD-PTPen
dc.subjectPTPen
dc.subjectwing morphogenesisen
dc.title基因體分析果蠅非受體型蛋白酪氨酸去磷酸酶發現dHD-PTP在果蠅發育中扮演重要的角色zh_TW
dc.titleA PTPome-wide Analysis of Drosophila Non-transmembrane Protein Tyrosine Phosphatases Unveils the Requirement of dHD-PTP in Developmenten
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor孟子青
dc.contributor.oralexamcommittee白麗美,皮海薇
dc.subject.keyword果蠅發育,蛋白酪氨酸去磷酸&#37238,基因體分析,翅膀形態發育,dHD-PTP,zh_TW
dc.subject.keyworddHD-PTP,Drosophila development,PTP,PTP-ome wide analysis,wing morphogenesis,en
dc.relation.page117
dc.rights.note未授權
dc.date.accepted2008-07-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
9.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved