Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26645Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 薛文証 | |
| dc.contributor.author | Chun-Ting Chen | en |
| dc.contributor.author | 陳俊廷 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:18:58Z | - |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | [1] J. W. S. Rayleigh, 'On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes.' Phil. Mag. 26, 256-265 (1888).
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987). [3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987). [4] E. Yablonovitch and T. J. Gmitter, “Photonic Band Structure: The Face-Centered-Cubic Case”, Phys. Rev. Lett. 63, 1950-1953 (1989). [5] E. Yablonovitch, T. J. Gmitter and K. M. Leung, “The face-centered-cubic case employing nonspherical atoms”, Phys Rev Lett. 67 , 2295-2298 (1991). [6] T. F. Krauss, R. M. Rue and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature. 383, 699–702 (1996). [7] L. M. Li, “Two-dimensional photonic crystals: Candidate for wave plates,”Appl. Phys. Lett. 78, 3400 (2001). [8] Y. Ohtera, T. Sato, T. Kawashima and T. Tamamura, “Photonic Crystal Polarization Splitters,” Electron. Lett. 35, 1271 (1999). [9] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987). [10] J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell, “Photonic band gap-guidance in optical fibers,” Sicience, 282, 1476 (1998). [11] A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787 (1996). [12] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of and ,” Sov. Phys. Usp. 10, 509-514 (1968). [13] J. B. Pendry, A. J. Holden, W. J. Swewart and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996). [14] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Swewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [15] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85,3966-3969 (2000). [16] N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens” Appl.Phys. Lett. 82, 161 (2003). [17] S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith and S. Schultz, “The asymmetric lossy near perfect. lens,” J. Mod. Opt. 49, 1747 (2002). [18] R. A. Shelby, D. R. Smith and S. Schultz,”Experimental Verification of a Negative Index of Refraction, “Science. 292, 77-79 (2001). [19] L. V. Panina, A. N. Grigorenko and D. P. Makhnovskiy,”Optomagnetic Composite Medium with Conducting Nanoelements, “Phys. Rev. B. 66, 155411 (2002). [20] L. Liu ,C. Caloz, C. C. Chang and T. Itoh,“Forward coupling phenomena between artificial left-handed. transmission lines”, J. Appl. Phys. 92, 15560 (2002). [21] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature. 423, 604 (2003). [22] J. Chilwell and I. Hodgkinson, “ Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguide,” J. Opt. Soc. Am. A 1, 742-753 (1984). [23] J. N. Winn, Y. Fink, S. Fan and J. D. Joannopoulos, 'Omnidirectional reflection from a one-dimensional photonic crystal,' Opt. Lett. 23, 1573-1575 (1998). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26645 | - |
| dc.description.abstract | 本文主要討論含超穎材料平板波導結構與週期性結構的特性及現象。首先於平板波導結構方面,我們探討光散射與色散關係,並利用穿透係數以及色散方程式分析含超穎材料平板波導結構的特性。結果顯示含超穎材料平板波導結構在同一折射率之下會有多種的穿透頻譜,其色散曲線會有表面模態的存在,這些現象都是傳統平板波導結構所不會發生的。此外於週期性結構的部份,我們利用帶隙邊緣方程式,分別對於不同結構參數的週期性結構之特性進行分析,最後針對帶隙結構的變化和超穎材料特有的性質來討論。由分析結果顯示含超穎材料週期性結構的帶隙結構比傳統週期性結構複雜許多,也可以產生同傳統週期性結構所具有的全反射特性。 | zh_TW |
| dc.description.abstract | In this thesis, properties of planar waveguides and periodic structures containing metamaterials are investigated. Firstly, for planar waveguides, we employ the transmission coefficient and dispersion equation to analyze the characteristics of the scattering and dispersion relation for planar waveguides containing metamaterials. The results show that the transmission spectra of planar waveguides containing metamaterials are various at same refractive index. Moreover, surface modes exist in planar waveguides containing metamaterials which are different in conventional materials. For periodic structures, we employ the band-edge equations and then discuss the characteristics of band structures by changing the parameters of periodic structures. The results show that the band structures containing metamaterials are more complicated than conventional materials and properties of total omnidirectional reflection can also be produced. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:18:58Z (GMT). No. of bitstreams: 1 ntu-97-R95525012-1.pdf: 1998482 bytes, checksum: aa261eb3bab024056949823a965afd71 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………………i
英文摘要……………………………………………………………………………ii 目錄…………………………………………………………………………………iii 表目錄………………………………………………………………………………v 圖目錄………………………………………………………………………………vi 符號表………………………………………………………………………………x 第一章 導論…………………………………………………………………………1 1.1 背景與研究動機…………………………………………………………1 1.2 文獻回顧…………………………………………………………………2 1.3 論文架構…………………………………………………………………4 第二章 超穎材料之基本原理………………………………………………………5 2.1 超穎材料……………………………………………………………………5 2.2 負折射現象…………………………………………………………………7 2.3 電磁理論…………………………………………………………………10 第三章 含超穎材料之色散…………………………………………………19 3.1 光散射……………………………………………………………………19 3.2 色散關係…………………………………………………………………24 3.3 穿透頻譜的特性分析……………………………………………………26 3.4 色散曲線的特性分析……………………………………………………29 第四章 含超穎材料之帶隙結構…………………………………………………62 4.1 布洛赫定理………………………………………………………………62 4.2 帶隙理論…………………………………………………………………64 4.3 雙層週期性結構的特性分析……………………………………………67 4.3.1 負折射參數對帶隙結構的影響………………………………………67 4.3.2 超穎材料層厚度對帶隙結構的影響…………………………………69 4.3.3 全方位能隙……………………………………………………………71 4.4 四層週期性結構的特性分析……………………………………………72 第五章 結論與未來展望…………………………………………………………96 5.1 結論………………………………………………………………………96 5.2 未來展望…………………………………………………………………97 參考文獻……………………………………………………………………………98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超穎材料 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 轉移矩陣法 | zh_TW |
| dc.subject | 色散曲線 | zh_TW |
| dc.subject | 全方位能隙 | zh_TW |
| dc.subject | dispersion curve | en |
| dc.subject | omnidirectional band gap | en |
| dc.subject | metamaterials | en |
| dc.subject | photonic crystals | en |
| dc.subject | transfer matrix method | en |
| dc.title | 含超穎材料光子晶體之散射 | zh_TW |
| dc.title | Scattering of Photonic Crystals Containing Metamaterials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔慶華,吳忠霖,林志昌 | |
| dc.subject.keyword | 超穎材料,光子晶體,轉移矩陣法,色散曲線,全方位能隙, | zh_TW |
| dc.subject.keyword | metamaterials,photonic crystals,transfer matrix method,dispersion curve,omnidirectional band gap, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| Appears in Collections: | 工程科學及海洋工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 1.95 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
