Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴進貴(Jinn-Guey Lay)
dc.contributor.authorShu-Ting Yangen
dc.contributor.author楊書婷zh_TW
dc.date.accessioned2021-06-08T07:18:24Z-
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation參考文獻
中文
丁志堅(1997)運用馬可夫鏈模式度量土地利用變遷之研究,國立台
灣大學地理環境資源學系碩士論文。
丁志堅(2002)屏東平原土地利用變遷分析與模式建立,國立台灣大
學地理環境資源研究所博士論文。
朱健銘(2000)土地利用空間型態之研究,國立台灣大學地理環境資
源學系碩士論文。
周素卿、高傳棋(1998)舊地圖與都市土地利用變遷:以台北加納仔
地區為例,地理學報,20: 75-91。
李明儒(2008)不同空間尺度下網格式土地使用變遷模型之敏感性分
析,國立台灣大學建築與城鄉所碩士論文。
吳宗曄(2004)空間資料探勘與知識產生-以建立崩坍敏感性評估模式
為例,國立台灣大學地理環境資源學系碩士論文。
章英華(1996)台灣都市的內部結構:社會生態的與歷史的探討。台
北:巨流。
榮峻德(2005)普查資料之空間資料探勘研究-以台北市便利商店區位
分析為例,國立台灣大學地理環境資源學系碩士論文。
蔡采秀(1996)從日治到戰後的台北(1895-1985)-一個都市性質轉變
的歷史過程分析,台灣史研究,3(2): 5-50。
賴進貴、葉高華(2005)地圖概括化對環境變遷研究之影響-以台灣地
圖資料為例,地理學報,41:1-23。
鄒克萬、張曜麟(2004)都市土地使用變遷空間動態模型之研究,地
理學報,35: 35-51。
鄒明城、孫志鴻(2004)資料探勘技術於集集大地震引致山崩之研究,
地理學報,36: 117-131.
劉佳玲(2007)新竹地區建地土地利用變遷模式之建立,台灣大學地
理環境資源所碩士論文。
英文
Anselin, L. (1988) Spatial Econometrics: methods and models, Kluwer,
Dordrecht, Netherlands.
Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984) Classification
and Regression Trees, Wadsworth International Group, Belmont, CA.
Briassoulis H. (2000) Analysis of land use change: theoretical and
modeling approaches, In: Loveridge S. (ed.), The Web Book of
Regional Science West Virginia University, Morgantown.
Chambers, J.M. and Hastie, T.J. (1992) Statistical Models in S,
Wadsworth & Brooks/Cole, Pacific Grove, CA.
Cheng, J. and Masser, I. (2003) Urban growth pattern modeling: a case
study of Wuhan city, PR China, Landscape and Urban Planning, 62: 199–217.
Chang, K.T., Chiang, S.H. and Hsu, M.L. (2007) Modeling Typhoon- and
earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology,89:335-347.
Chawla, S., Shekhar, S., Wu, W. and Ozesmi, U. (2000) Modeling spatial
dependencies for mining geospatial data: an introduction. In Harvey
Miller and Jiawei Han, editors, Geographic data mining and Knowledge Discovery(GKD), 1999.
Dai, F.C., Lee, C.F. (2002) Landslide characteristics and slope instability
modeling using GIS, Geomorphology, 42: 213-228.
De'Ath, G. and Fabricius, K.E.(2000) Classification and regression trees:
a powerful yet simple technique for ecological data analysis, Ecology, 81:3178-3192.
Defires, R. S. and Chan, J. C. W. (2000) Multiple criteria for evaluating
machine learning algoritms for land cover classification from satellite data, Remote sensing and Environment, 74: 503-515.
Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996) A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise, In Proc. Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, E. Simoudis, J. Han and U. Fayyad, Eds., AAAI Press.
Ester, M., Frommelt, A., Kriegel, H. P. and Sander, J. (1998) Algorithms
for characterization and trend detection in spatial databases, Proc. 4th Int. Conf. On Knowledge Discovery and Data Mining, New York City, NY, pp44-50.
Fang S., Gertner, G.Z., Sun, Zhanli. and Anderson, A.A. (2005) The
impact of interactions in spatial simulation of the dynamics of urban
sprawl, Landscape and Urban planning, 73: 294-306.
Fletcher, D. and Goss, E. (1993) Forecasting with neural networks-an
application using bankruptcy data, Information & Management, 24: 159-167.
Forman, R. T. T. (1995) Land mosaics- The ecology of landscapes and
region, New York: Cambrige University Press.
Geoghegan, J., Viller, S.C., Klepeis, P., Mendoza, P.M.,
Ogneva-Himmerlberger, Y. and Chowdhury, R.R.(2001) Modeling tropical deforestation in southern Yucatan peninsular region: comparing survey and satellite data, Agriculture, ecosystems & environment, 85: 25-46.
Han, J. and Kamber, M. (2000) Data mining: concept and techniques,
Morgan Kaufmann Pulishers.
Hansen, M., Dubayah, R., and DeFries, R. (1996) Classification trees: an
alternative to traditional land cover classifiers, Intrenational Journal of Remote Sensing, 17(5): 1075–1081.
Hastie, T.,Friedman, J. and Tibshirani, R. (2001) The element of
statistical learning, Springer-Verlag, New York.
Johnson, W.C. (1997) A mathematical model of forest succession and
land use for the North Carolina Piedmont, Bulletin of the Torrey Botanical Club, 104: 334-346.
Lambin, Eric. F., Turner II B. L., Geist H. J., Agbola S. B., Angelsen A.,
Bruce J. W., Coomes O., Dirzo R., Fischer G., Folke C., George P. S., Homewood K., Imbernon J., Leemans R., Li X. B., Moran E. F., Mortimore M., Ramakrishnan P. S., Richards J. F., Skanes H., Stone G. D., Svedin U., Veldkamp A., Vogel C. and Xu J. C., (2001) The causes of land-use and land-cover change: moving beyond the myths, Global Environmental Change, 4: 261-269.
Legendre, P. and Legendre, L. (1998) Numerical Ecology, second ed.
Elsevier Science, Amsterdam.
Li, X. and Yeh, A.G.O (2004) Data mining of cellular automata’s
transition rules, International jounal of geographical information science, 18(8): 723-744.
McDonald, R.I. and Urban, D.L.(2006) Spatially varying rules of
landscape change: lessons from a case study, Landscape and Urban
Planning, 74:7-20.
Mennis, J. and Liu, J. W. (2005) Mining association rules in
spatiotemporal data: an analysis of urban socioeconomic and land cover change, Transaction in GIS, 9(1): 5-17.
Mennis, J. and Peuquet, D. J. (2003) The role of knowledge
representation in geographic knowledge discovery: a case study, Transactions in GIS, 7(3): 371-391.
Miller, D.M., Kaminsky, E.J. and Rana, S. (1995) Neural-network
classification of remote-sensing data, Computers & Geosciences, 21:377-386.
Moran, C. J. and Bui, E. N. (2002) Spatial data mining for enhanced soil
map modelling, International jounal of geographical information science, 16(6): 533-549.
Moore, I.D., Lee, B.G. and Davey, S.M.(1991) A new method for
predicting vegetation distributions using decision tree analysis in a
graphic information system, Environmental Management, 15:59-71.
Murray, A. T. and Shyy, T. K. (2000) Integrating attribute and space
characteristics in chotopleth display and spatial data mining,
International jounal of geographical information science, 14(7): 649-667.
Openshaw (2000) Geographic data mining: key design issues, United
Kingdom: Center for Computational Geographic, School of Geography, University of Leeds.
Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., Deadman,
P. (2003) Multi-agent systems for simulation of land-use and land-cover change: a review, Annals of the Association of American Geographers, 93: 314-337.
Savopol, F. and Armenakis, C. (2002) Merging of heterogeneous data for
emergency mapping: data integration or data fusion?, ISPRS Commission IV Symposium, Ottawa, Canada, July 9-12.
Serneels, S. and Lambin, E.F. (2001) Proximate causes of land use change
in Narok district Kenya: a spatial statistical model. Agriculture, ecosystems & environment, 85(1): 65-81.
Shekhar, S. and Chawla, S. (2003) Spatial Databases: A tour, Prentice
hall.Stow, D. A. and Chen, D. W. (2002) Sensitivity of multitemporal NOAA AVHRR data of an urbanizing region to land-use/land-cover changes and misregistration, Remote Sensing of Environment, 80: 297-307.
Stow, D.A., Chen, D., (2002) Sensitivity of multitemporal
NOAA-AVHRR data for detecting land cover changes, Remote Sensing of Environment, 80: 297–307.
Tsai, Bor-Wen, (1999) Land Use / Cover Change and digital Data Base in
Taiwan, 1999. NIES Workshop on Information Bases and Modeling for Land Use and Cover change (LUCC)
Tsumoto, S. (2002) Medicine, Handbook of data mining and knowledge
discovery, ed. Willi klosgen and Jan M. Zytkow, pp.798-807, New York: Oxford university.
Urban, D.L., Goslee, S.C., Pierce, K.B. and Lookingbill, T.R. (2002)
Extending community ecology to landscapes, Ecoscience, 9: 200-212.
von Neumann, J. (1996) Theory of self-Reproducing Automata. University
of Illinois Press.
Vayssieres, M.P., Plant, R.E. and Allen-Diaz, B.H. (2000) Classification
trees: an alternative non-parametric approach for predicting species distributions, Journal of Vegetation Science, 11(5): 679-694.
Veldkamp, A., ambin, E. F.(2001) Predicting land-use change,
Agriculture, ecosystems & environment, 85(1): 1-6.
Veldkamp, A., Verbug, P.H., Kok, K., de Koning, G.H.J., Priess, J. and
Bergema, A.R. (2001) The need for scale sensitive approaches in spatially explicit land use change modeling, Environmental Modeling and Assessment, 6(2): 111-121.
Verburg, P.H., Veldkamp, A. and Fresco, L.O. (1999) Simulation of
change in the spatial pattern of land use in china, Applied Geography, 19: 211-233.
Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V.
and Mastura, S.S.A. (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model, Environmental Management,30(3): 391-405.
Verburg, P.H., Schot, P.P., Dijst, M.J. and Veldkamp, A. (2004) Land use
change modeling: current practice and research priorities, GeoJournal, 61:309-324.
Quinlan, J.R. (1986) Induction of Decision Trees, Machine Learning,
1:81-106.
Quinlan, R. J. (1993) C4.5: Programs for Machine Learning, Morgan
Kaufmann, San Mateo, CA.
Wu, F.(2000) Modeling intrametropolitan location of foreign investment
firms in a chinese city, Urban Studies,37(13): 1441-2464.
Wu, F. and Yeh, A.G.-O. (1997) Changing spatial distribution and
determinants of land development in chinese cities in the transition from a centrally planned economy to a socialist market economy: a casy study of Guandzhou, Urban Studies, 34(11):1851-1879.
Wu, F.(2002)Calibration of stochastic cellular automata: the application
to rural-urban land conversions, International jounal of geographical information science, 16(8):791-818.
Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C. Liang, Y. and Huang, Z.
(2006) Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing, Landscape and Urban Planning, 75:69-80.
Yesilnacar, E. and Topal, T. (2005) Landslide susceptibility mapping: a
comparison of logistic regression and neural networks methods in a medium scale study, Engineering Geology, 79 : 251–266.
Yin, Z. Y., Walcott, S., Kaplan, B., Cao, J,, Lin, Weiqing., Chen, M., Liu,
D. and Ning, Y. (2005) An analysis of the relationship between spatial patterns of water quality and urban development in Shanghai, China, Computers, Environment and Urban Systems, 29: 197-221.
Zhang, B., Hsu, M. and Dayal, U. (2000). K-Harmonic Means: A Spatial
Clustering Algorithm with Boosting. In Proc. International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining, TSDM2000, Lyon, France, J. F. Roddick and K. Hornsby, Eds., Springer. Lecture Notes in Artificial Intelligence. 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26633-
dc.description.abstract土地利用變遷機制與發展預測模式,是近幾年來土地利用變遷研究的主要方向之一。傳統以統計模式所建構之土地利用變遷模式,往往基於線性的假設進行分析,然而由於土地利用變遷作用力在空間上的呈現,存在著空間異質性 ( spatial heterogeneity )的問題,因而必然是非線性且不均質的,這使得基於線性假設所建立的變遷模式可能與真實情況不符。因此,本研究透過檢視空間異質性問題來說明非線性模式在土地利用變遷研究上的應用性。本研究選擇一線性模式( 邏輯迴歸模式 ),以及一非線性模式( 決策樹模式, C5.0 )。藉由此兩種方法,分別針對新竹市1982-1988 年以及1988-1994 年兩時期之都市建地發展建立估測模式。本研究主要關注兩類與空間異質性有關的現象,分別為平均化效應,以及模式估計殘差的空間聚集現象。而透過比較此二模式之預測正確性與殘差的空間分佈情形,可具體檢視空間異質性問題對此兩類模式所造成的影響。研究結果顯示,無論在模擬兩個時期新增建地之模式估計成效,或預測新建地發生的熱點位置上,決策樹的表現都較邏輯迴歸更符合真實情況。結果也顯示,對於線性模式而言,空間異質性的確明顯地影響了模式的估測效益,也說明在空間異質性的影響下,非線性模式在土地利用研究上具有相當的應用價值。zh_TW
dc.description.abstractThe processes and driving forces of landscape evolution are the main research interests of land-use and land-cover change. The linear regression model has been widely used in previous researches. However, land-use change is occasionally non-linear and heterogeneous in time and space. The linear model is supposed to estimate overall conditions without considering the uniqueness/outlier in a concerned area. This study focuses on the effects of spatial heterogeneous on the land-use change modeling. Two major effects, averaging effects and spatial autocorrelation of the residuals are explored from modeling results which correlates to spatial heterogeneity. Specifically, we used a linear model ( logistic regression model ) and a non-linear model ( decision tree model, C5.0 ) to simulate the expansion of building areas ( 1982-1994 ) in Hsin-Chu City, Taiwan. As shown in the result, the decision model performs better than the logit model. Because of the averaging effect and spatial autocorrelation of the residuals, the logit model has higher uncertainties and lower predictabilities within the discrete built hotspots. In summary, this research suggests the spatial heterogeneous effects can be effectively embedded in the non-linear models ( e.g. the decision tree model ) that lead better potential and applicability for the land-use change modeling.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:18:24Z (GMT). No. of bitstreams: 1
ntu-97-R94228014-1.pdf: 4273217 bytes, checksum: 09540fc26c10844c1558fea03eefe7b2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第二章 文獻回顧 4
第一節 土地利用與地面覆蓋變遷研究 4
第二節 土地利用變遷驅動力因子 7
第三節 土地利用變遷模式 12
第四節 空間異質性問題 15
第三章 研究方法 17
第一節 研究架構與流程 17
一、 研究架構 17
二、 研究流程 17
第二節 研究區概述 21
第三節 模式理論 22
一、邏輯迴歸模式 22
二、決策樹模式 23
第四節 模式解釋變量 25
第五節 資料蒐集與處理 29
一、資料蒐集 29
二、土地利用空間資料庫建置 33
三、資料篩選 34
四、空間隨機抽樣 34
第六節 模式訓練與驗證 35
第四章 研究結果與討論 37
第一節 新竹市建地擴張變遷模式 37
一、 邏輯迴歸模式 37
二、 決策樹模式C5.0 41
三、 模式表現差異 46
第二節 空間異質性問題 50
一、 平均化效應 50
第五章 結論與建議 56
參考文獻 57
附錄 64
dc.language.isozh-TW
dc.subject決策樹C5.0zh_TW
dc.subject空間異質性zh_TW
dc.subject土地利用變遷zh_TW
dc.subject邏輯式迴歸分析zh_TW
dc.subjectland-use changeen
dc.subjectDecision tree C5.0en
dc.subjectlogistic regressionen
dc.subjectspatial heterogeneityen
dc.title空間異質性對土地利用變遷模式的影響:新竹市個案研究zh_TW
dc.titleThe Effects of Spatial Heterogeneity on Land-Use Change Model: A Case Study in Hsin-Chu Cityen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱子豪(Tzu-How Chu),何猷賓(Yo-Bin Ho)
dc.subject.keyword土地利用變遷,空間異質性,決策樹C5.0,邏輯式迴歸分析,zh_TW
dc.subject.keywordland-use change,spatial heterogeneity,Decision tree C5.0,logistic regression,en
dc.relation.page62
dc.rights.note未授權
dc.date.accepted2008-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved