請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26616
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 翁昭旼(Jau-Min Wong) | |
dc.contributor.author | Chin-Min Chang | en |
dc.contributor.author | 張經旼 | zh_TW |
dc.date.accessioned | 2021-06-08T07:17:39Z | - |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-25 | |
dc.identifier.citation | [1] S. Ogawa, T.M. Lee, A.S. Nayak, P.Glynn, 'Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields', Magn. Reson. Med., vol. 14, pp. 68-78, 1990
[2] S. Ogawa, D.W. Tank, R. Menon, J.M. Ellermann, S. Kim, H. Merkle, K. Ugurbil, “Intrinsic Signal Changes Accompanying Sensory Stimulation: Functional Brain Mapping with Magnetic Resonance Imaging”, Proc. Nat. Academy of Sciences, vol. 89, pp. 51-52, 1992 [3] K.J. Worsley, K.J. Friston, 'Analysis of fMRI Time-Series Revisited-Again', Neuroimage, vol. 2, pp. 45-53, 1995 [4] D.A. Hall, D.J. Barrett, M.A. Akeroyd, A.Q.Summerfield, 'Cortical representations of temporal structure in sound', Journal of Neurophysiol, vol. 94, pp. 3181-91, 2005 [5] M. Dale, K. Liu, B.R. Fischl, R.L. Buckner, J.W. Belliveau, J.D. Lewine, E. Halgren, 'Dynamic Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity', Neuron, vol. 26, pp. 55-67, 2000 [6] C. Büchel, K.J. Friston, 'Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI', Cereb Cortex, vol 7, pp.768-78, 1997 [7] L.K. Hansen, 'Multivariate strategies in functional magnetic resonance imaging', Brain Lang., vol. 102, pp. 186-91, 2007 [8] H.Y. Kim, Z.H. Cho, 'Robust anisotropic diffusion to produce clear statistical parametric map from noisy fMRI', IEEE, Computer Graphics and Image Processing, pp.11-17, 2002 [9] D. Yao, H. Chen, S. Becker, T. Ahou, Y. Zhuo, L. Chen, ' A fMRI data analysis method using a fast infomax-based ICA algorithm', IEEE, vol. 2, pp. 1105-1110, 2001 [10] J. Ylipaavainiemi, R. Vigario, 'Analysis of auditory fMRI recordings via ICA: a study on consistency', IEEE, vol. 1, pp. 254, 2004 [11] H. Chen, D, Yao, Y. Zhuo, L. Chen, 'Analysis of fMRI Data by Blind Separation of Data in a Tiny Spatial Domain into Independent Temporal Component', Brain Topography, vol. 15, pp. 223-232, 2003 [12] S. Rachakonda, E. Egolf, V. Calhoun, 'Group ICA of fMRI Toolbox (GIFT) Walk Through', 2007 [13] V.D. Calhoun, T. Adali, L.K. Hansen, J. Larsen, J.J. Pekar, 'ICA of Functional MRI Data: An Overview', 4th International Symposium on Independent Component Analysis and Blind Separation, Nara, Japan, 2003 [14] V. Calhoun, G. Pearlson, 'Independent Component Analysis Applied to fMRI Data: A Generative Model for Validating Results', Journal of VLSI Signal Processing, vol. 37, pp. 281-291, 2004 [15] V.D. Calhoun, T. Adalt, G.D. Pearlson, 'Independent Component Analysis Applied to fMRI Data: A Natural Model and Order Selection', Proc. NSOP, Baltimore, 2001 [16] M.J. McKeown, T.J. Sejnowski, 'V.D. Calhoun, T. Adalt, G.D. Pearlson, 'Independent Component Analysis of fMRI Data: Examining the Assumptions', Human Brain Mapping, vol. 6, pp. 368-372, 1998 [17] A. Hyva‥rinen, E. Oja, 'Independent Component Analysis: Algorithms and Applications', Neural Networks, vol. 13, pp. 411-430, 2000 [18] J.V. Stone, J. Porrill, N.R. Porter, N.M. Hunkin, 'Spatiaotemporal ICA of fMRI Data', Computational Neuroscience Report 202, 2000 [19] H. Chen, H. Yuan, D. Yao, W. Chen, 'An Integrated Neighborhood Correlation and Hierarchical Clustering Approach of Functional MRI', IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 53, pp. 452-458, 2006 [20] M. Voultsidou, S. Dodel, J.M. Herrmann, 'Analysis of correlated activity in fMRI data by artificial neural networks', IEEE, vol. 4, 2004 [21] F.G. Meyer, J. Chinrungrueng, 'Analysis of Event-Related fMRI Data Using Best Clustering Bases', IEEE TRANSATIONS ON MEDICAL IMAGING, vol. 22, pp. 933-939, 2003 [22] S. Chen, C.A. Bouman, M.J. Lowe, 'Clustered Components Analysis for Functional MRI', IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 23, pp. 85-98, 2004 [23] H. Ichihashi, K. Honda, S. Araki, 'Fuzzy Canonical Correlation and Cluster Analysis for Brain Mapping on Long Term Memory Consolidated by Mnemonics', IEEE, vol. 1, pp. 155-160, 2004 [24] H. Ichihashi, K. Honda, Y. Takai, S. Araki, 'Fuzzy Cluster Analysis of fMRI Data on Memory Consolidated through Elaborative Rehearsal by the Method of Loci', IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, pp. 132-133, 2003 [25] G. Duqas-Phocion, M.A. Gonalez, C. Lebrun, S. Chanalet, C. Bensa, G. Malandain, N. Ayache, ' Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI', IEEE International Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 157-160, 2004 [26] M. Voultsidou, S. Dodel, J.M. Herrmann, 'Neural Networks Approach to Clustering of Activity in fMRI Data', IEEE TRANSACTION ON MEDICAL IMAGING, vol. 24, pp. 987-996, 2005 [27] D. Van De Ville, T. Blu, M. Unser, 'Integrated wavelet processing and spatial statistical testing of fMRI data', NeuroImage, vol. 23, pp. 1472-1485, 2004 [28] D. Van De Ville, T. Blu, M. Unser, ' Wavelet-based fMRI statistical analysis and spatial interpretation: a unifying approach', IEEE International symposium on Biomedical Imaging: Nano to Macro, vol. 2, pp. 1167-1170, 2004 [29] D. Van De Ville, T. Blu, M. Unser, 'Wavelets versus resels in the context of fMRI: establishing the link with SPM', SPIE's Symposium on Optical Science and Technology: Wavelets X, vol. 5207, pp. 417-425, 2003 [30] M.J. Fadili, E.T. Bullmore, 'Wavelet-Generalized Least Squares: A New BLU Estimator of Linear Regression Models with 1/f Errors', NeuroImage, vol. 15, pp. 217-232, 2002 [31] Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/, Wellcome Department of Imaging NeuroSience [32] K.J. Friston, “Introduction: Experimental design and Statistical Parametric Mapping”, Human Brain Function 2nd edition, 2003 [33] K.J. Friston, J. Ashburner, C.D. Friyh, J.B. Poline, J.D. Heather, R.S.J. Frackowiak, 'Spatial Registration and Normalization of Images', Human Brain Mapping, vol. 2, pp. 165-189, 1995 [34] J.Ashburner, K.J. Friston, 'Nonlinear Spatial Normalization Using Basis Function', Human Brain Mapping, vol. 7, pp. 254-266, 1999 [35] S. Kiebel, A. Holmes, 'The General Linear Model', Human Brain function 2nd edition, 2003 [36] E. Seifritz, F. Esposito, F. Hennel, H. Mustovic, J.G. Neuhoff, D. Bilecen, G. Tedeschi, K. Scheffler, F. Di Salle, 'Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex', Science, vol. 297 , pp. 1706-1708, 2002 [37] V.D. Calhoun, T. Adali, G.D. Pearlson, J.J. Pekar, 'A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis', Human Brain Mapping, vol. 14, pp. 140-151, 2001 [38] L. Molgedey, H. Schuster, 'Separation of a Mixture of Independent Signals Using Time-Delayed Correlations', Physical Review Letters, vol. 72, no. 23, pp. 3634-3637, 1994 [39] H.C. Kraemer, 'Robudtness of the Distribution Theory of the Product Moment Correlation Coefficient', Journal of Educational Statistics, vol. 5, pp. 115-128, 1980 [40] G.U.Yule, 'On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers', Philosophical Transactions of the Royal Society of London, vol. 226, pp. 267-298, 1927 [41] H. Chen, M. Zeng, D.Yao, 'Independent component analysis in extracting characteristic signals in EEG', IEEE-APBME, pp. 189-190, 2000 [42] FIL methods group, ftp://ftp.fil.ion.ucl.ac.uk/spm/data/MoAEpilot/README.txt, Wellcome Department of Imaging NeuroSience [43] SOURCEFORGE.NET, http://xmedcon.sourceforge.net/Main/HomePage, Alchmey Mathworks, Inc | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26616 | - |
dc.description.abstract | 近年來功能性核磁共振影像被當作研究腦功能的重要工具。SPM提供了一個模型導向的分析方式,利用檢定的方式去分析功能性核磁共振影像。ICA提供了另一種資料導向的分析方式。我們將試著用資料導向的方式進行分析,並且解決ICA跟分群方法中高時間複雜度的問題。相關係數在許多功能性核磁共振影像分析中被使用,並且證明是有效的。自我迴歸分析也被應用於多種的時間序列分析上。我們將利用相關係數以及自我迴歸分析進行濾波,將大量被視為雜訊的資料點移除。經過資料的刪減,我們可以進行階層式分群,並且引入相關性演算法。在SPM的資料庫中取得一組聽覺實驗的資料,將我們的分析方法代入此組資料,我們可以正確的擷取到大腦中的聽覺區。 | zh_TW |
dc.description.abstract | Functional magnetic resonance imaging (fMRI) has become an important tool for brain function studies. Statistical Parametric Mapping (SPM) provided a model-driven method for fMRI studies. Different from SPM, Independent Component Analysis (ICA) provided a data-driven method. Here we are trying to give a data-driven method and solve the high-complexity problem in clustering method and ICA. Correlation coefficient had been used in many ways for fMRI analysis recently and proved efficient. Autoregression analysis is utilized in different time series analysis. Here, we are going to take correlation coefficient and autoregression analysis as two filters, to remove most of the voxels which are considered to be noise. After data reduction, we provide Hierarchical cluster and correlation algorithm to those remaining voxels. Providing the method to the fMRI data from SPM’s auditory experiment, we can correctly get the auditory cortical. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:17:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2008 | en |
dc.description.tableofcontents | Contents
口試委員審定書 1 Acknowledgement 2 Abstract 3 Abstract (in Chinese) 4 Contents 5 List of Figures 7 Chapter1 Introduction 1.1 Motivation 9 1.2 Purpose 9 1.3 Our Approach 10 1.4 Outline 10 Chapter2 Related Work 2.0 What is fMRI? 11 2.1 SPM 11 2.2 ICA 15 2.3 Wavelet Approaches 19 2.4 Clustering Approaches 19 Chapter3 Methods & Material 3.0 Introduction 23 3.1 Correlation Coefficient 23 3.2 Neighborhood Correlation 25 3.3 Autoregression Analysis 26 3.4 Hierarchical Clustering 28 3.5 Correlation Algorithm 30 3.6 Material 31 Chapter4 Experiment and Results 4.0 Introduction 32 4.1 Neighborhood Correlation 33 4.2 Autoregression Analysis 33 4.3 Hierarchical Clustering and Correlation Algorithm 37 Chapter5 Discussion and Conclusion 5.1 Compared with SPM 39 5.2 ICA Analysis 43 5.3 Advantage 44 5.4 Limitation 45 5.5 Conclusion 47 Reference 48 | |
dc.language.iso | zh-TW | |
dc.title | 使用鄰位相關效應及自我迴歸分析進行功能性核磁共振影像分析 | zh_TW |
dc.title | fMRI Analysis Using Neighborhood Correlation and Autoregression Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔣以仁(I-Jen Chiang),陳中明(Chung-Ming Chen) | |
dc.subject.keyword | 功能性核磁共振影像,相關係數,自我迴歸分析, | zh_TW |
dc.subject.keyword | fMRI,correlation,autoregression, | en |
dc.relation.page | 51 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。