請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26596
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏家鈺(Jia-Yush Yen) | |
dc.contributor.author | Jhong- Yuan Liou | en |
dc.contributor.author | 柳中原 | zh_TW |
dc.date.accessioned | 2021-06-08T07:16:48Z | - |
dc.date.copyright | 2011-08-12 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-11 | |
dc.identifier.citation | [1] Steven B. Skaar , “Anthony N. Michel, Richard K. Miller, Stability of Viscoelastic Control Systems”, IEEE Transactions on Automatic Control, Vol. 33, No.4:348-357,1988.
[2] Chen Yang-Quan, Kevin L. Moore, “Analytical stability bound for a class of delayed fractional-order dynamic systems”, Proc. of the 40th IEEE Conference, Decision and Control’01, Vol2:1421-1426, 2001. [3] M. Nakagava and K. Sorimachi, “Basic Characteristics of a fractance device”, IEICE Trans., Fund. , vol. E75-A, No. 12: 1814-1818,1992. [4] Tseng Chien-Cheng, “Design of Fractional Order Digital FIR Differentiators”, IEEE Signal Processing Letters, Vol. 8, No.3:77-79, 2001. [5] Saed Samadi, M. Omair Ahmad, M. N. S. Swamy, “Exact Fractional Order Differentiators for Polynomial Signals”, Vol. 11, No.6:529-532, 2004. [6] Yuan Xiao, Wei Yong-Hao, Yu Jue-Bang, “Sinc function and generalized digital fractional differentiators”, Communications, Circuit and Systems, ICCCAS2004, 2004. [7] 趙元英,袁曉. “常用周期信號的分數階微分運算”.四川大學學報,Vol.36, No.2:94-97, 2004. [8] A. Oustaloup, Fractional order sinusoidal oscillators: Optimization and their use in highly linear FM modulation [J], IEEE Transactions on Circuits and Systems, Vol. cas-28, No. 10:1007-1009, 1981. [9] W. Ahmad, R. EI-khazali, A. S. Elwakil, “Fractional-order Wien-bridge oscillators”, Electronic Letters, Vol. 37, No.18:1110-1112, 2001. [10] Ivo Petras, “The fractional-order controllers: Methods for their synthesis and application”, Journal of Electrical Engineering, 50(9-10):284-288, 1999. [11] I. Podlubny, “Fractional-order systems and controllers”. IEEE Transactions on Automatic Control, Vol.44:208-214, 1999. [12] Zeng Qing-Shan, Cao Guang-Yi, Zhu Xin-Jian, “The effect of the fractional-order controller’s orders variation on the fractional-order control systems”, Proc. 2002 International Conference, Machine Learning and Cybernetic’02. Vol.1:367-372, 2002. [13] Chen Yang-Quan, Kevin L. Moore, “Discretization schemes for fractional-order differentiators and integrators”, IEEE Transactions on Circuit and Systems, Vol.49, No.3:363-367, 2002. [14] Ivo Petras, Lubomir Dorcak, Imrich Kostial, “The Modeling and Analysis of Fractional Order Control Systems in Discrete Domain”, arxiv: math.OC/0006190 v1, 2000. [15] D. Matignon, B. d’Andrea-Novel, “Observer-based controllers for fractional differential systems”, Proc. of the 36th IEEE Conference, Decision and Control’97, Vol.5:4967-4972, 1997. [16] Lubomir Dorcak, Ivo Petras, Imrich Kostial, “Modeling and Analysis for Fractional Order Control Systems in State Space”, arxiv: math.OC/0007155 v1, 2000. [17] C. N. Nett, C. A. Jacobson, M. J. Balas, “A Connection between State-Space and Doubly Coprime Fractional Representations”, IEEE Transactions on Automatic Control, Vol.AC-29, No.9, 1984. [18] S. Abbisso, R. Caponetto, O. Diamante, et al. “Non Integer Order Integration by using Neural Networks”, IEEE International Conference on Circuits and Systems, ISCAS, 2001. [19] Xue Dingyu, Chen YangQuan, “A comparative introduction of four fractional order controllers”, Proceedings of the 4th World Congress, Intelligent Control and Automation’02, Vol.4:3228-3235, 2002. [20] B. M. Vinagre, I. Podlubny, A. Hernandez, et al. “Some Approximations of Fractional Order Operators Used in Control Theory and Applications”, Fractional Calculus and Applied Analysis, Vol.3:231-248, 2000. [21] 汪紀鋒,李元凱. “分數階P(ID) 控制器和超前滯後校正器的設計”.電路與系統學報, Vol.11, No5:21-25, 2006. [22] Chen Yang-Quan, B. M. Vinagre, I. Podlubny, “On Fractional Order Disturbance Observer”, Proceedings of Design Engineering Technical Conference, 2003. [23] Jia-Yush Yen, Hui-Man Chang, “Performance robustness and stiffness analysis on a machine tool servo design”, International Journal of Machine Tools & Manufacture , Vol.44 :523–531, 2004 [24] R. S. Barbosa, J. A. Tenreiro Machado, “Describing Function Analysis of Systems with Impacts and Backlash”, Nonlinear Dynamics, Vol.29:235-250, 2002. [25] B.J. Tordoff, D.W. Murray, “A method of reactive zoom control from uncertainty in tracking”, Computer Vision and Image Understanding, Vol.105:131-144, 2007. [26] Jozef Voros, “Modeling and Parameter Identification of Systems With Multisegment Piecewise-Linear Characteristics”, IEEE Transactions on Automatic Control, Vol.47, No.1, 2002. [27] R.Merzouki, J.A.Davila, L. Fridman, J.C. Cadiou, “Backlash phenomenon observation and identification in electromechanical system”, Control Engineering Practice, Vol15:447-457, 2007. [28] Jozef Voros, “Modeling and identification of systems with backlash”, Automatica, Vol46:369-374, 2010. [29] Ramiro S. Barbosa, J.A. Tenreiro Machado and Alexandra M. Galhano, “Performance of Fractional PID Ccontrolling Nonlinear Systems with Saturation and Backlash”, Journal of Vibration and Control, Vol13(9-10): 1407-1418, 2007. [30] Xi Zhang, “Maxflat Fractional Delay IIR Filter Design”, IEEE Transactions on signal processing, Vol.60, No.3, 117-128, 2009. [31] Necati ozdemir, Beyza Billur Iskender, “fractional order control of fractional diffusion systems subject to input hysteresis”, ASME Transactions on computational and nonlinear dynamics, Vol. 5, No.021002-1, 2010. [32] Shantanu Das, “Functional Fractional Calculus for System Identification and Controls”, ISBN 978-3-540-72702-6 Springer Berlin Heidelberg New York. [33] Jean-Jacques E, Slotine Weiping Li, “Applied Nonlinear Control”, ISBN 0-13-040890-5 Prentice Hall. [34] 光機電系統整合概論,國家實驗研究院儀器科技研究中心,2005。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26596 | - |
dc.description.abstract | 變焦鏡組被廣泛的應用於軍事上,像是在偵查、警戒、低空觀測等方面,為了獲得高品質的影像和不同的視野,變焦的過程一定要有高速高精度的定位能力。常見的變焦機構分為凸輪機構與直接驅動的導螺桿機構,不論哪一種機構均需要馬達來驅動變焦鏡組作變焦定位,故本研究將關注於變焦系統的伺服定位控制。
由於變焦機構的驅動是由馬達齒輪組所構成,故進行定位控制時將面臨來自於齒輪組與馬達慣性的齒隙(backlash)及死區(dead zone)效應。此兩種非線性效應一直以來是控制工程的一大問題,為了解決此項問題,本研究先將探討分數階微積分的定義,再依此定義將FOPID(fractional order proportion integral derivative)控制器實現在具有非線性效應的變焦機台上。 本研究實驗分成三大部分,第一個部分是針對分數階PI控制器三個控制參數對開迴路系統的影響。第二個部分是比較三種結構上相似的控制器-PID、PDF (pseudo derivative feedback)及FOPID控制,並且從時域與頻域的方面下探討。最後一個部分是針對基於齒隙效應前與基於齒隙效應後的回授訊號控制效能之比較,分析並討論FOPID面對這些非線性效應下所呈現出的系統響應。 | zh_TW |
dc.description.abstract | The zoom lens is applied popularly in the military, such as detection, low-altitude observation and exploring. In order to get high-performance image and different view, the procedure of zooming must have high speed and precision of position. There are two types of zoom lens mechanisms. One is cam mechanism, another is direct drive mechanism. They are all drived by motor, so the goal of the research is focus on the position control of zoom lens system.
The zoom lens system is composed by motor transmission group, which inherent backlash and dead zone effects. The two nonlinear effects are big issues in control engineering.In order to solve backlash and dead zone effects, we use the definition of fractional calculus and apply FOPID (fractional order proportion integral derivative) control into the zoom lens system. There are three parts of the experiments. The first one is analysis the parameter of FOPI control. The second one is comparing the performance of PID, PDF (pseudo derivative feedback) and FOPID control which affect in time domain and frequency domain. In the last experiment, using two different output signals which are inherent and not inherent backlash effect to do the feedback control and discuss the setting time and position error. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:16:48Z (GMT). No. of bitstreams: 1 ntu-100-R98522807-1.pdf: 5602985 bytes, checksum: e6ab33ffeb665567820d4e594c23b275 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XIII 第1章 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 變焦鏡組運動軌跡與機構專利 2 1.2.2 分數階微積分在控制工程上之應用 9 1.3 研究流程與論文貢獻 12 第2章 系統架構 15 2.1 變焦鏡组之機構 15 2.2 硬體設備 18 2.2.1 DC馬達及減速齒輪箱 18 2.2.2 位置感測器 19 2.2.3 驅動器及嵌入式即時控制器 22 2.2.4 整體系統的控制迴路 24 第3章 系統識別 27 3.1 系統識別流程 28 3.2 系統建模 29 3.2.1 直流馬達的數學模型 29 3.2.2 ARMAX模型 31 3.2.3 齒隙、死區及飽和非線性效應的數學模型 34 3.3 系統識別實驗結果 37 3.3.1 線性系統識別過程 38 3.3.2 非線性效應識別過程 42 3.3.3 識別模型可靠度分析 45 3.4 多非線性元件之穩定性分析 49 第4章 控制器設計 53 4.1 PID控制理論 53 4.2 PDF控制理論 54 4.3 FOPID控制理論 55 4.3.1 分數階微積分的定義 56 4.3.2 分數階微積分的拉式轉換 58 4.3.3 分數階微分與積分的頻率響應 60 4.3.4 分數階PID控制對開迴路系統的分析 62 第5章 實驗結果與討論 71 5.1 分數階PI控制參數對系統響應的影響 71 5.1.1 控制參數Kp的影響 73 5.1.2 控制參數Ki的影響 77 5.1.3 控制參數Vi的影響 81 5.2 PID、PDF及分數階PID寬窄切換定位性能比較 86 5.2.1 控制性能模擬結果 86 5.2.2 控制性能實驗結果 90 5.2.3 開迴路的分析與極限圓的預測 92 5.3 基於齒隙前的量測訊號回授之控制效能 95 5.3.1 編碼器與電位計之間的量測信號關係識別實驗 95 5.3.2 編碼器訊號回授之控制效能 97 第6章 未來發展 101 6.1 結果與討論 101 6.2 未來發展 103 參考文獻 104 附錄A 非線性元件的描述函數推導 109 附錄B 寬窄切換視軸偏離度 113 附錄C 變焦鏡周邊零件圖與相關的規格表 117 | |
dc.language.iso | zh-TW | |
dc.title | 針對變焦鏡組非線性特性之運動控制設計 | zh_TW |
dc.title | Motion Control Design of a Zoom Lens System
with Inherent Nonlinear Characteristic | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李志法,許博淵 | |
dc.subject.keyword | 變焦鏡組,精密伺服,分數階PID控制,齒隙,死區, | zh_TW |
dc.subject.keyword | zoom lens,precision servo,fractional PID control,backlash,dead zone, | en |
dc.relation.page | 119 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。