請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26549完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳羿貞(Yi-Jane Chen),鄭景暉(Jiiang-Huei Jeng) | |
| dc.contributor.author | Yea-Ru Wen | en |
| dc.contributor.author | 溫雅茹 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:14:46Z | - |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | 參考文獻
1.Acharya,M.R., Sparreboom,A., Venitz,J., and Figg,W.D. (2005). Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol. Pharmacol. 68, 917-932. 2.Boskey, A.L. (1999). Mineralization, Structure, and Function of Bone. In Dynamics of Bone and Cartilage Metabolism, Academic Press), pp. 153-164. 3.Blanchard,F. and Chipoy,C. (2005). Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov. Today 10, 197-204. 4.Bouvier,M., Joffre,A., and Magloire,H. (1990). In vitro mineralization of a three-dimensional collagen matrix by human dental pulp cells in the presence of chondroitin sulphate. Arch. Oral Biol. 35, 301-309. 5.Bronckers,A.L., Lyaruu,D.M., and Woltgens,J.H. (1989). Immunohistochemistry of extracellular matrix proteins during various stages of dentinogenesis. Connect. Tissue Res. 22, 65-70. 6.Chinnaiyan,P., Vallabhaneni,G., Armstrong,E., Huang,S.M., and Harari,P.M. (2005). Modulation of radiation response by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys. 62, 223-229. 7.Cho,H.H., Park,H.T., Kim,Y.J., Bae,Y.C., Suh,K.T., and Jung,J.S. (2005). Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J. Cell Biochem. 96, 533-542. 8.Das,P.M. and Singal,R. (2004). DNA methylation and cancer. J. Clin. Oncol. 22, 4632-4642. 9.de Bernard,B. (1982). Glycoproteins in the local mechanism of calcification. Clin. Orthop. Relat Res. 233-244. 10.de Boer,J., Licht,R., Bongers,M., van der Klundert,T., Arends,R., and van Blitterswijk,C. (2006). Inhibition of histone acetylation as a tool in bone tissue engineering. Tissue Eng 12, 2927-2937. 11.de Boer,J., Siddappa,R., Gaspar,C., van Apeldoorn,A., Fodde,R., and van Blitterswijk,C. (2004). Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34, 818-826. 12.Dragoo,J.L., Choi,J.Y., Lieberman,J.R., Huang,J., Zuk,P.A., Zhang,J., Hedrick,M.H., and Benhaim,P. (2003). Bone induction by BMP-2 transduced stem cells derived from human fat. J. Orthop. Res. 21, 622-629. 13.Entin-Meer,M., Rephaeli,A., Yang,X., Nudelman,A., VandenBerg,S.R., and Haas-Kogan,D.A. (2005). Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol. Cancer Ther. 4, 1952-1961. 14.Gage,F.H. (2000). Mammalian neural stem cells. Science 287, 1433-1438. 15.Gray,S.G. and Ekstrom,T.J. (2001). The human histone deacetylase family. Exp. Cell Res. 262, 75-83. 16.Gregoretti,I.V., Lee,Y.M., and Goodson,H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17-31. 17.Griffiths,G.S., Moulson,A.M., Petrie,A., and James,I.T. (1998). Evaluation of osteocalcin and pyridinium crosslinks of bone collagen as markers of bone turnover in gingival crevicular fluid during different stages of orthodontic treatment. J. Clin. Periodontol. 25, 492-498. 18.Gronthos,S., Mankani,M., Brahim,J., Robey,P.G., and Shi,S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A 97, 13625-13630. 19.Grunstein,M. (1997b). Histone acetylation in chromatin structure and transcription. Nature 389, 349-352. 20.Grunstein,M. (1997a). Histone acetylation in chromatin structure and transcription. Nature 389, 349-352. 21.Gurvich,N., Tsygankova,O.M., Meinkoth,J.L., and Klein,P.S. (2004). Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64, 1079-1086. 22.Handa,K., Saito,M., Yamauchi,M., Kiyono,T., Sato,S., Teranaka,T., and Sampath,N.A. (2002). Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31, 606-611. 23.Hao,J., Shi,S., Niu,Z., Xun,Z., Yue,L., and Xiao,M. (1997). Mineralized nodule formation by human dental papilla cells in culture. Eur. J. Oral Sci. 105, 318-324. 24.Ignatius,A., Blessing,H., Liedert,A., Schmidt,C., Neidlinger-Wilke,C., Kaspar,D., Friemert,B., and Claes,L. (2005). Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26, 311-318. 25.Ikeda,E., Hirose,M., Kotobuki,N., Shimaoka,H., Tadokoro,M., Maeda,M., Hayashi,Y., Kirita,T., and Ohgushi,H. (2006). Osteogenic differentiation of human dental papilla mesenchymal cells. Biochem. Biophys. Res. Commun. 342, 1257-1262. 26.Iwami,K. and Moriyama,T. (1993). Effects of short chain fatty acid, sodium butyrate, on osteoblastic cells and osteoclastic cells. Int. J. Biochem. 25, 1631-1635. 27.Jeon,E.J., Lee,K.Y., Choi,N.S., Lee,M.H., Kim,H.N., Jin,Y.H., Ryoo,H.M., Choi,J.Y., Yoshida,M., Nishino,N., Oh,B.C., Lee,K.S., Lee,Y.H., and Bae,S.C. (2006). Bone morphogenetic protein-2 stimulates Runx2 acetylation. J. Biol. Chem. 281, 16502-16511. 28.Johannessen,C.U. (2000). Mechanisms of action of valproate: a commentatory. Neurochem. Int. 37, 103-110. 29.Kamata,N., Fujimoto,R., Tomonari,M., Taki,M., Nagayama,M., and Yasumoto,S. (2004). Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J. Oral Pathol. Med. 33, 417-423. 30.Kang,J.S., Alliston,T., Delston,R., and Derynck,R. (2005). Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J. 24, 2543-2555. 31.Kornberg,R.D. and Lorch,Y. (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294. 32.Krishnan,V., Moore,T.L., Ma,Y.L., Helvering,L.M., Frolik,C.A., Valasek,K.M., Ducy,P., and Geiser,A.G. (2003). Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol. Endocrinol. 17, 423-435. 33.Lallier,T.E., Spencer,A., and Fowler,M.M. (2005). Transcript profiling of periodontal fibroblasts and osteoblasts. J. Periodontol. 76, 1044-1055. 34.Lee,H.W., Suh,J.H., Kim,A.Y., Lee,Y.S., Park,S.Y., and Kim,J.B. (2006). Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol. Endocrinol. 20, 2432-2443. 35.Leskela,H.V., Risteli,J., Niskanen,S., Koivunen,J., Ivaska,K.K., and Lehenkari,P. (2003). Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochem. Biophys. Res. Commun. 311, 1008-1013. 36.Longui,C.A., Santos,M.C., Formiga,C.B., Oliveira,D.V., Rocha,M.N., Faria,C.D., Kochi,C., and Monte,O. (2005). Antiproliferative and apoptotic potencies of glucocorticoids: nonconcordance with their antiinflammatory and immunosuppressive properties. Arq Bras. Endocrinol. Metabol. 49, 378-383. 37.Minucci,S. and Pelicci,P.G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38-51. 38.Miura,M., Gronthos,S., Zhao,M., Lu,B., Fisher,L.W., Robey,P.G., and Shi,S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. U. S. A 100, 5807-5812. 39.Morsczeck,C., Gotz,W., Schierholz,J., Zeilhofer,F., Kuhn,U., Mohl,C., Sippel,C., and Hoffmann,K.H. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 24, 155-165. 40.Nakamura,T., Kukita,T., Shobuike,T., Nagata,K., Wu,Z., Ogawa,K., Hotokebuchi,T., Kohashi,O., and Kukita,A. (2005). Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-beta production. J. Immunol. 175, 5809-5816. 41.Peterson,C.L. and Laniel,M.A. (2004). Histones and histone modifications. Curr. Biol. 14, R546-R551. 42.Pfaffl,M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCT. Nucleic Acids Research 29. 43.Phiel,C.J., Zhang,F., Huang,E.Y., Guenther,M.G., Lazar,M.A., and Klein,P.S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741. 44.Prockop,D.J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74. 45.Rahman,M.M., Kukita,A., Kukita,T., Shobuike,T., Nakamura,T., and Kohashi,O. (2003). Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 101, 3451-3459. 46.Richon,V.M., Sandhoff,T.W., Rifkind,R.A., and Marks,P.A. (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. U. S. A 97, 10014-10019. 47.Richon,V.M., Zhou,X., Secrist,J.P., Cordon-Cardo,C., Kelly,W.K., Drobnjak,M., and Marks,P.A. (2004). Histone deacetylase inhibitors: assays to assess effectiveness in vitro and in vivo. Methods Enzymol. 376, 199-205. 48.Sakata,R., Minami,S., Sowa,Y., Yoshida,M., and Tamaki,T. (2004). Trichostatin A activates the osteopontin gene promoter through AP1 site. Biochem. Biophys. Res. Commun. 315, 959-963. 49.Santini,V., Gozzini,A., and Ferrari,G. (2007). Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr. Drug Metab 8, 383-393. 50.Santini,V., Kantarjian,H.M., and Issa,J.P. (2001). Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med. 134, 573-586. 51.Schroeder,T.M., Kahler,R.A., Li,X., and Westendorf,J.J. (2004). Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J. Biol. Chem. 279, 41998-42007. 52.Schroeder,T.M., Nair,A.K., Staggs,R., Lamblin,A.F., and Westendorf,J.J. (2007). Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors. BMC. Genomics 8, 362. 53.Schroeder,T.M. and Westendorf,J.J. (2005). Histone deacetylase inhibitors promote osteoblast maturation. J. Bone Miner. Res. 20, 2254-2263. 54.Seibel,M.J., Robins,S.P., and Bilezikian,J.P. (1999). Acid and Alkaline phosphatases. In Dynamics of Bone and Cartilage Metabolism, Academic Press), pp. 127-135. 55.Seo,B.M., Miura,M., Gronthos,S., Bartold,P.M., Batouli,S., Brahim,J., Young,M., Robey,P.G., Wang,C.Y., and Shi,S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149-155. 56.Shiga,M., Kapila,Y.L., Zhang,Q., Hayami,T., and Kapila,S. (2003). Ascorbic acid induces collagenase-1 in human periodontal ligament cells but not in MC3T3-E1 osteoblast-like cells: potential association between collagenase expression and changes in alkaline phosphatase phenotype. J. Bone Miner. Res. 18, 67-77. 57.Sonoyama,W., Liu,Y., Yamaza,T., Tuan,R.S., Wang,S., Shi,S., and Huang,G.T. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J. Endod. 34, 166-171. 58.Spradling,A., Drummond-Barbosa,D., and Kai,T. (2001). Stem cells find their niche. Nature 414, 98-104. 59.Taira,M., Nakao,H., Takahashi,J., and Araki,Y. (2003). Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J. Oral Rehabil. 30, 697-701. 60.Ten Cate (1998). Oral Histology: Development, Structure, and Function. Mosby. 61.Thesleff,I. (1986). Dental papilla cells in culture. Comparison of morphology, growth and collagen synthesis with two other dental-related embryonic mesenchymal cell populations. Cell Differ. 18, 189-198. 62.Thesleff,I. and Mikkola,M. (2002). The role of growth factors in tooth development. Int. Rev. Cytol. 217, 93-135. 63.Toma,J.G., Akhavan,M., Fernandes,K.J., Barnabe-Heider,F., Sadikot,A., Kaplan,D.R., and Miller,F.D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778-784. 64.Ueno,A., Kitase,Y., Moriyama,K., and Inoue,H. (2001). MC3T3-E1-conditioned medium-induced mineralization by clonal rat dental pulp cells. Matrix Biol. 20, 347-355. 65.Wilson,K. and Walker,J. (2005). Molecular biology, bioinformatics and basic techniques. In principles and techniques of biochemistry and molecular biology, Acambridge), pp. 213-216. 66.Xie,J.M., Tian,W.D., Chen,X.Z., and Zheng X.H.(2005). Culture and Characteristics of human dental papilla cells in vitro. West China Journal of Stomatology 23(3). 67.Zhao,M., Xiao,G., Berry,J.E., Franceschi,R.T., Reddi,A., and Somerman,M.J. (2002). Bone morphogenetic protein 2 induces dental follicle cells to differentiate toward a cementoblast/osteoblast phenotype. J. Bone Miner. Res. 17, 1441-1451. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26549 | - |
| dc.description.abstract | 細胞核內的DNA與組織蛋白(Histone)結合形成染色質(Chromatin),外基因調控(epigenetic modification)即是指針對染色質而非DNA序列的基因表現調控。組織蛋白為DNA摺疊時所依賴的線軸,組織蛋白乙醯化(Acetylation)是外基因調控過程中的重要步驟,組織蛋白去乙醯化抑制劑(Histone deacetylation inhibitor)具有抑制組織蛋白去乙醯化酵素(Histone deacetylase)的功能,進而影響基因表現及細胞生長分化。近期細胞生物學研究已發現組織蛋白去乙醯化抑制劑可誘導癌細胞凋亡,也可促進正常細胞(肝細胞、骨細胞等)分化,因此在幹細胞誘導及組織工程應用上,組織蛋白去乙醯化抑制劑可能具有值得探討的潛力。牙乳突細胞群在牙齒自然發育過程中扮演重要的角色,可在適當誘導下表現多重分化的潛能,而許多基礎研究也證實培養自根尖牙乳突的前驅性細胞群,具有造骨細胞表型特徵。
本研究的目的在探討一種組織蛋白去乙醯化抑制劑(Valproic Acid, VPA)對於人類初代培養的根尖牙乳突細胞,在正常培養液或促進細胞基質鈣化培養液(含有L-ascorbic acid 2-phosphate (0.05mM)、sodium β-glycerophosphate (10 mM) 、 dexamethasone (10 -7 M)中,經不同的培養時間(12小時至15天),其成骨分化指標基因的表現及細胞外基質礦化的影響。本研究結果發現人類根尖牙乳突細胞的鹼性磷酸酶活性表現隨培養時間漸增長而上升,顯示其具有似成骨細胞分化的基本特性;且在促進基質鈣化培養液中,根尖牙乳突細胞可明顯表現細胞外基質鈣化,並隨著培養時間的增長而增加。而VPA的刺激有早期提升ALP (Alkaline phospatase)、OC (Osteocalcin) 、COL-1 (Collagen type-I)和Cbfa-1 (Core-binding factor-1)基因表現的效應,而此效應於正常培養液和促進基質鈣化培養液中皆然。以即時定量聚合酶連鎖反應(Real-time PCR)發現ALP、OC和Cbfa-1的mRNA表現在VPA刺激一天後即為對照組的2-4倍,比單純誘導組提升10倍。但單純以VPA作誘導只能強化基因表現,並無細胞外基質鈣化。此外,隨著培養時間增加,未給予VPA的組別會漸漸趕上添加VPA組別的基因表現及基質礦化程度。研究結論: VPA可促進人類根尖牙乳突細胞的成骨基因表現、鹼性磷酸脢活性,提早表現細胞外基質礦化;但隨著培養時間增長,細胞外基質礦化的表現量與單純誘導組比較並未顯著升高。 | zh_TW |
| dc.description.abstract | Histones are responsible for the first level of DNA packing in eukaryotic chromatin.The organization of chromatin serves a dual purpose, one function is to pack the DNA into a compact form inside the nucleus of a cell, and the other is regulatory. Epigenetic modifications of chromatin play key roles in chromatin structure and the regulation of gene expression. Histone acetylation and deacetylation play a direct role in the regulation of gene transcription. Recently, histone deacetylase inhibitors (HDI) were shown to inhibit histone deacetylases ( HDACs), thus cause growth arrest and induce differentiation of transformed cells in culture and inhibit tumor growth in vivo. Normal cells also undergo cell cycle arrest and differentiation in the presence of HDI which means HDI had potential for applying on stem cells induction and tissue engineering. The dental papilla contributes to tooth formation and eventually converts to pulp tissue, so it had multipotent progenitor characteristic in different induction environment. There is evidence that the dental papilla cells were as potent in osteo/ dentinogenic differentiation and showed the osteoblastic phenotype.
The purpose of this study was to examine the effect of Valporic acid, an histone deacetylase inhibitor, on the expression of osteogenic differentiation markers in the human dental papilla cells. The cells were cultured in standard medium or induction medium with osteogenic supplements including L-ascorbic acid 2-phosphate (0.05mM), sodium β- glycerophosphate (10 mM) and dexamethasone (10 -7 M). Our results demonstrated the progressive increase of ALP activity and extracellular matix mineralization in human dental papilla cells when cultured in induction medium. Theses results implied the osteoblastic phenotype of human dental papilla cells. The mRNA expression of ALP, OC, Cbfa-1 and COL-I was upregulated by VPA (1mM) in standard medium as well as induction medium, especially in short-term culture. Although the VPA in standard medium could upregulate the expression of osteoblastic marker genes, no significant extracellular matrix mineralization was noted. As to long-term culture, the upregulatory effect of VPA on osteoblastic marker genes progressively diminished in both standard and induction medium. The results of this study suggest that VPA can accelerate osteogenic differentiation of dental papilla cells. The expression of ALP activity and extracellular matrix mineralization in VPA-treated group was noted earlier than those in control group. However, in the long-term culture, the difference in the matrix mineralization did not reach statistically significant level. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:14:46Z (GMT). No. of bitstreams: 1 ntu-97-R94422023-1.pdf: 2253416 bytes, checksum: 74059ac8cb5c4c72fbfb7f68b449b019 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目 錄
頁次 表次目錄………………………………………………………………V 圖次目錄………………………………………………………………VI 中文摘要……………………………………………………………VIII 英文摘要………………………………………………………………X 第一章 引言 一、組織蛋白乙醯化對於細胞分化的影響…………………………1 二、組織蛋白去乙醯化抑制劑的作用………………………………3 三、組織蛋白去乙醯化抑制劑對骨前驅細胞分化的影響…………6 四、牙乳突細胞群的異質性與多潛能性……………………………10 第二章 實驗目的……………………………………………………14 第三章 材料與方法 一、細胞培養…………………………………………………………15 二、實驗設計…………………………………………………………15 三、細胞形態之觀察…………………………………………………16 四、細胞活性測定(MTT assay)……………………………………17 五、膠原蛋白合成之定量(Sircol collagen assay)……………17 六、鹼性磷酸酶(Alkaline phosphatase)染色與觀察…………18 七、鹼性磷酸酶活性測定……………………………………………19 八、細胞基質礦化小體(Mineralizing nodules)的染色與半定量………………………………………………………………………20 九、Total RNA的萃取及定量…………………………………………21 十、半定量-反轉錄-聚合酶連鎖反應(Semi-quantitative RT-PCR)…………………………………………………………………………22 十一、即時定量聚合酶連鎖反應(Real-time PCR)………………24 十二、統計分析………………………………………………………25 第四章 結果 一、牙乳突細胞形態觀察……………………………………………26 二、細胞活性測定……………………………………………………26 三、膠原蛋白合成之定量……………………………………………27 四、鹼性磷酸酶染色的觀察…………………………………………28 五、鹼性磷酸酶活性測定……………………………………………29 六、細胞基質礦化小體的染色與觀察………………………………29 七、礦化程度的半定量分析…………………………………………31 八、即時定量聚合酶連鎖反應結果…………………………………32 九、半定量-反轉錄-聚合酶連鎖反應結果…………………………32 第五章 討論 一、牙乳突細胞形態…………………………………………………36 二、組織蛋白去乙醯化抑制劑( VPA )對牙乳突細胞生長的影響………………………………………………………………………37 三、組織蛋白去乙醯化抑制劑( VPA )對牙乳突細胞成骨分化的影響-早期效應………………………………………………………………38 四、牙乳突細胞基質礦化的產生……………………………………42 五、牙乳突細胞的多潛能性…………………………………………44 六、不同細胞株成骨分化的差異……………………………………45 七、即時定量聚合酶連鎖反應結果與半定量-反轉錄-聚合酶連鎖反應之比較………………………………………………………………47 八、組織蛋白去乙醯化抑制劑( VPA )作用時間長短對成骨作用之差異………………………………………………………………………48 九、組織蛋白去乙醯化抑制劑( VPA )的臨床運用…………………49 第六章 結論……………………………………………………………51 第七章 未來研究方向………………………………………………53 附錄(圖與表)…………………………………………………………54 參考文獻………………………………………………………………86 表次目錄 頁次 表一、本實驗半定量-反轉錄-聚合酶連鎖反應使用之引子序列…54 表二、不同濃度VPA作用下之人類牙乳突細胞生長活性隨時間之變化………………………………………………………………………55 表三、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞培養 的生長活性之影響………………………………………………56 表四、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞生成膠原蛋白的影響…………………………………………………57 表五、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞(A細胞)鹼性磷酸酶活性之影響………………………………………58 表六、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞(B細胞)鹼性磷酸酶活性之影響………………………………………59 表七、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞基質礦化程度的半定量分析…………………………………………60 表八、即時定量聚合酶連鎖反應檢測結果…………………………61 圖次目錄 頁次 圖一、Sircol-collagen assay校正曲線……………………………62 圖二、BCA assay校正曲線……………………………………………62 圖三、ALP assay校正曲線……………………………………………63 圖四、所取用的下顎阻生第三大臼齒根尖牙乳突組織……………64 圖五、人類牙乳突細胞形態…………………………………………65 圖六、以含有不同濃度VPA的正常培養液培養之牙乳突細胞於培養3天後的細胞形態變化…………………………………………………66 圖七、以正常培養液及促進基質鈣化培養液培養之牙乳突細胞隨培養時間不同在細胞形態上的變化……………………………………67 圖八、不同濃度VPA作用下之人類牙乳突細胞生長活性隨時間之變化………………………………………………………………………68 圖九、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞培養生長活性之影響…………………………………………………69 圖十、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞生成膠原蛋白的影響…………………………………………………70 圖十一、人類牙乳突細胞於不同培養液培養下,鹼性磷酸酶的染色觀察……………………………………………………………………71 圖十二、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞(A細胞)鹼性磷酸酶活性之影響……………………………………72 圖十三、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞(B細胞)鹼性磷酸酶活性之影響……………………………………73 圖十四、人類牙乳突細胞(A細胞)於不同培養液培養之ARS染色觀察………………………………………………………………………74 圖十五、人類牙乳突細胞(B細胞)於不同培養液培養之ARS染色觀察………………………………………………………………………75 圖十六、VPA在正常培養液及促進基質鈣化培養液中對人類牙乳突細胞基質礦化程度的半定量分析………………………………………76 圖十七、即時定量聚合酶連鎖反應檢測結果………………………77 圖十八、四種培養液培養之人類牙乳突細胞(A 細胞),於不同培養時間之ALP mRNA變化…………………………………………………78 圖十九、四種培養液培養之人類牙乳突細胞(B 細胞),於不同培養時間之ALP mRNA變化…………………………………………………79 圖二十、四種培養液培養之人類牙乳突細胞(A 細胞),於不同培養時間之COL-I mRNA變化………………………………………………80 圖二十一、四種培養液培養之人類牙乳突細胞(B 細胞),於不同培養時間之COL-I mRNA變化……………………………………………81 圖二十二、四種培養液培養之人類牙乳突細胞(A 細胞),於不同培養時間之Cbfa-1 mRNA變化……………………………………………82 圖二十三、四種培養液培養之人類牙乳突細胞(B 細胞),於不同培養時間之Cbfa-1 mRNA變化……………………………………………83 圖二十四、四種培養液培養之人類牙乳突細胞(A 細胞),於不同培養時間之OC mRNA變化…………………………………………………84 圖二十五、四種培養液培養之人類牙乳突細胞(B 細胞),於不同培養時間之OC mRNA變化…………………………………………………85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 組織蛋白去乙醯化抑制劑 | zh_TW |
| dc.subject | 牙乳突細胞 | zh_TW |
| dc.subject | 骨細胞分化 | zh_TW |
| dc.subject | osteogenic differentiation | en |
| dc.subject | VPA) | en |
| dc.subject | histone deacetylase inhibitor (Valporic Acid | en |
| dc.subject | Dental papilla cells | en |
| dc.title | 組織蛋白去乙醯化抑制劑(Valporic Acid, VPA)對人類牙乳突細胞骨分化及基因表現之影響 | zh_TW |
| dc.title | Effects of Histone Deacetylase Inhibitors (Valporic Acid, VPA) on Osteogenic Differentiation and Gene Expression of Human Dental Papilla Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張宏博 | |
| dc.subject.keyword | 牙乳突細胞,骨細胞分化,組織蛋白去乙醯化抑制劑, | zh_TW |
| dc.subject.keyword | Dental papilla cells,osteogenic differentiation,histone deacetylase inhibitor (Valporic Acid, VPA), | en |
| dc.relation.page | 92 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
