請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26538完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳漢忠 | |
| dc.contributor.author | Hui-Yu Chen | en |
| dc.contributor.author | 陳慧宇 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:14:16Z | - |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | Adams, G.P., and Weiner, L.M. (2005). Monoclonal antibody therapy of cancer. Nat Biotechnol 23, 1147-1157.
Alberg, A.J., Brock, M.V., and Samet, J.M. (2005). Epidemiology of lung cancer: looking to the future. J Clin Oncol 23, 3175-3185. Bailey-Wilson, J.E., Amos, C.I., Pinney, S.M., Petersen, G.M., de Andrade, M., Wiest, J.S., Fain, P., Schwartz, A.G., You, M., Franklin, W., et al. (2004). A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 75, 460-474. Belinsky, S.A., Liechty, K.C., Gentry, F.D., Wolf, H.J., Rogers, J., Vu, K., Haney, J., Kennedy, T.C., Hirsch, F.R., Miller, Y., et al. (2006). Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 66, 3338-3344. Blackhall, F., Ranson, M., and Thatcher, N. (2006). Where next for gefitinib in patients with lung cancer? Lancet Oncol 7, 499-507. Blackhall, F.H., Shepherd, F.A., and Albain, K.S. (2005). Improving survival and reducing toxicity with chemotherapy in advanced non-small cell lung cancer : a realistic goal? Treat Respir Med 4, 71-84. Boffetta, P. (2006). Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res 608, 157-162. Brambilla, E., Travis, W.D., Colby, T.V., Corrin, B., and Shimosato, Y. (2001). The new World Health Organization classification of lung tumours. Eur Respir J 18, 1059-1068. Breathnach, O.S., Freidlin, B., Conley, B., Green, M.R., Johnson, D.H., Gandara, D.R., O'Connell, M., Shepherd, F.A., and Johnson, B.E. (2001). Twenty-two years of phase III trials for patients with advanced non-small-cell lung cancer: sobering results. J Clin Oncol 19, 1734-1742. Brognard, J., Clark, A.S., Ni, Y., and Dennis, P.A. (2001). Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61, 3986-3997. Brownson, R.C., Alavanja, M.C., Caporaso, N., Simoes, E.J., and Chang, J.C. (1998). Epidemiology and prevention of lung cancer in nonsmokers. Epidemiol Rev 20, 218-236. Carter, P., Presta, L., Gorman, C.M., Ridgway, J.B., Henner, D., Wong, W.L., Rowland, A.M., Kotts, C., Carver, M.E., and Shepard, H.M. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89, 4285-4289. Chapman, K., Pullen, N., Graham, M., and Ragan, I. (2007). Preclinical safety testing of monoclonal antibodies: the significance of species relevance. Nat Rev Drug Discov 6, 120-126. Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3, 11-22. Ferrara, N. (1999). Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77, 527-543. Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82, 4-6. Fontanini, G., Boldrini, L., Chine, S., Pisaturo, F., Basolo, F., Calcinai, A., Lucchi, M., Mussi, A., Angeletti, C.A., and Bevilacqua, G. (1999). Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas. Br J Cancer 79, 363-369. Fontanini, G., Faviana, P., Lucchi, M., Boldrini, L., Mussi, A., Camacci, T., Mariani, M.A., Angeletti, C.A., Basolo, F., and Pingitore, R. (2002). A high vascular count and overexpression of vascular endothelial growth factor are associated with unfavourable prognosis in operated small cell lung carcinoma. Br J Cancer 86, 558-563. Grillo-Lopez, A.J., Hedrick, E., Rashford, M., and Benyunes, M. (2002). Rituximab: ongoing and future clinical development. Semin Oncol 29, 105-112. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. Harris, M. (2004). Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 5, 292-302. Hecht, S.S. (2003). Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3, 733-744. Henschke, C.I., Yankelevitz, D.F., Libby, D.M., Pasmantier, M.W., Smith, J.P., and Miettinen, O.S. (2006). Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med 355, 1763-1771. Hirsch, F.R., Varella-Garcia, M., Bunn, P.A., Jr., Di Maria, M.V., Veve, R., Bremmes, R.M., Baron, A.E., Zeng, C., and Franklin, W.A. (2003). Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21, 3798-3807. Isobe, T., Herbst, R.S., and Onn, A. (2005). Current management of advanced non-small cell lung cancer: targeted therapy. Semin Oncol 32, 315-328. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., and Thun, M.J. (2006). Cancer statistics, 2006. CA Cancer J Clin 56, 106-130. Jemal, A., Thomas, A., Murray, T., and Thun, M. (2002). Cancer statistics, 2002. CA Cancer J Clin 52, 23-47. Johnson, D.H., Fehrenbacher, L., Novotny, W.F., Herbst, R.S., Nemunaitis, J.J., Jablons, D.M., Langer, C.J., DeVore, R.F., 3rd, Gaudreault, J., Damico, L.A., et al. (2004). Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22, 2184-2191. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522-525. Kipps, T.J., Parham, P., Punt, J., and Herzenberg, L.A. (1985). Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J Exp Med 161, 1-17. Kohler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-497. Li, R., Todd, N.W., Qiu, Q., Fan, T., Zhao, R.Y., Rodgers, W.H., Fang, H.B., Katz, R.L., Stass, S.A., and Jiang, F. (2007). Genetic deletions in sputum as diagnostic markers for early detection of stage I non-small cell lung cancer. Clin Cancer Res 13, 482-487. Liu, A.Y., Robinson, R.R., Hellstrom, K.E., Murray, E.D., Jr., Chang, C.P., and Hellstrom, I. (1987). Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci U S A 84, 3439-3443. Lonberg, N. (2005). Human antibodies from transgenic animals. Nat Biotechnol 23, 1117-1125. Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 2129-2139. Mascaux, C., Iannino, N., Martin, B., Paesmans, M., Berghmans, T., Dusart, M., Haller, A., Lothaire, P., Meert, A.P., Noel, S., et al. (2005). The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 92, 131-139. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552-554. Mendelsohn, J. (1992). Epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. J Natl Cancer Inst Monogr, 125-131. Morrison, S.L., Johnson, M.J., Herzenberg, L.A., and Oi, V.T. (1984). Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81, 6851-6855. Nicholson, R.I., Gee, J.M., and Harper, M.E. (2001). EGFR and cancer prognosis. Eur J Cancer 37 Suppl 4, S9-15. Nordquist, L.T., Simon, G.R., Cantor, A., Alberts, W.M., and Bepler, G. (2004). Improved survival in never-smokers vs current smokers with primary adenocarcinoma of the lung. Chest 126, 347-351. Ohsaki, Y., Tanno, S., Fujita, Y., Toyoshima, E., Fujiuchi, S., Nishigaki, Y., Ishida, S., Nagase, A., Miyokawa, N., Hirata, S., et al. (2000). Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep 7, 603-607. Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Deckwerth, T.L., Dinges, J., Hajduk, P.J., et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677-681. Paez, J.G., Janne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F.J., Lindeman, N., Boggon, T.J., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497-1500. Palmisano, W.A., Divine, K.K., Saccomanno, G., Gilliland, F.D., Baylin, S.B., Herman, J.G., and Belinsky, S.A. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60, 5954-5958. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al. (2004). EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101, 13306-13311. Presta, L.G. (2006). Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 58, 640-656. Putnam, E.A., Yen, N., Gallick, G.E., Steck, P.A., Fang, K., Akpakip, B., Gazdar, A.F., and Roth, J.A. (1992). Autocrine growth stimulation by transforming growth factor-alpha in human non-small cell lung cancer. Surg Oncol 1, 49-60. Rapp, E., Pater, J.L., Willan, A., Cormier, Y., Murray, N., Evans, W.K., Hodson, D.I., Clark, D.A., Feld, R., Arnold, A.M., et al. (1988). Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer--report of a Canadian multicenter randomized trial. J Clin Oncol 6, 633-641. Reichert, J.M., and Valge-Archer, V.E. (2007). Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6, 349-356. Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988). Reshaping human antibodies for therapy. Nature 332, 323-327. Rusch, V., Baselga, J., Cordon-Cardo, C., Orazem, J., Zaman, M., Hoda, S., McIntosh, J., Kurie, J., and Dmitrovsky, E. (1993). Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 53, 2379-2385. Sandler, A., Gray, R., Perry, M.C., Brahmer, J., Schiller, J.H., Dowlati, A., Lilenbaum, R., and Johnson, D.H. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355, 2542-2550. Sato, M., Shames, D.S., Gazdar, A.F., and Minna, J.D. (2007). A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2, 327-343. Sekido, Y., Fong, K.M., and Minna, J.D. (2003). Molecular genetics of lung cancer. Annu Rev Med 54, 73-87. Sequist, L.V., Joshi, V.A., Janne, P.A., Bell, D.W., Fidias, P., Lindeman, N.I., Louis, D.N., Lee, J.C., Mark, E.J., Longtine, J., et al. (2006). Epidermal growth factor receptor mutation testing in the care of lung cancer patients. Clin Cancer Res 12, 4403s-4408s. Sharma, S.V., Bell, D.W., Settleman, J., and Haber, D.A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7, 169-181. Sozzi, G., Musso, K., Ratcliffe, C., Goldstraw, P., Pierotti, M.A., and Pastorino, U. (1999). Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients: a prospect for early diagnosis. Clin Cancer Res 5, 2689-2692. Subramanian, J., and Govindan, R. (2007). Lung cancer in never smokers: a review. J Clin Oncol 25, 561-570. Sun, S., Schiller, J.H., and Gazdar, A.F. (2007a). Lung cancer in never smokers--a different disease. Nat Rev Cancer 7, 778-790. Sun, S., Schiller, J.H., Spinola, M., and Minna, J.D. (2007b). New molecularly targeted therapies for lung cancer. J Clin Invest 117, 2740-2750. Tammemagi, C.M., Neslund-Dudas, C., Simoff, M., and Kvale, P. (2004). Smoking and lung cancer survival: the role of comorbidity and treatment. Chest 125, 27-37. Tang, X., Shigematsu, H., Bekele, B.N., Roth, J.A., Minna, J.D., Hong, W.K., Gazdar, A.F., and Wistuba, II (2005). EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 65, 7568-7572. Tsou, J.A., Hagen, J.A., Carpenter, C.L., and Laird-Offringa, I.A. (2002). DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 21, 5450-5461. Vivanco, I., and Sawyers, C.L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2, 489-501. Weinstein, I.B., and Joe, A.K. (2006). Mechanisms of disease: Oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3, 448-457. Wilhelm, S.M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X., Vincent, P., McHugh, M., et al. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64, 7099-7109. Wistuba, II, Behrens, C., Virmani, A.K., Mele, G., Milchgrub, S., Girard, L., Fondon, J.W., 3rd, Garner, H.R., McKay, B., Latif, F., et al. (2000). High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 60, 1949-1960. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26538 | - |
| dc.description.abstract | 根據世界衛生組織的統計,最近二十年來全世界的癌症死亡率正快速上升,其中肺癌目前是全世界癌症死因的第一名。肺癌的細胞種類通常分成兩大類型:小細胞肺癌(約佔肺癌發生率的15~20%)與非小細胞肺癌(約佔肺癌發生率的80~85%)。其中非小細胞肺癌又細分為三小項: 肺腺癌(Lung adenocarcinoma)、鱗狀細胞癌 (Squamous cell carcinoma)及大細胞肺癌 (Large cell carcinoma)。以往肺癌的治療方式有手術切除、放射線治療及化學治療,而標的治療始於二十世紀末,用於治療末期肺癌。通常大部分病人治療後的五年存活率都小於15%。由於一般療法常會帶給病人極大的副作用,再加上近年來治療性抗體與生物技術的進步,因而使得抗體在臨床癌症治療上越趨重要。在本篇研究中,我們以一株人類高度轉移肺腺癌CL1-5細胞株免疫BALB/cJ老鼠後,進行融合瘤技術,生產十二株專一性對抗肺癌的單株抗體。接著進行酵素免疫連結吸附反應,流式細胞分析,西方墨點法及免疫組織染色等研究。結果發現其中有四株單株抗體皆能專一性的辨認到肺癌細胞,而和正常上皮細胞、周邊血球細胞及人類正常組織都沒有反應,而且這四株單株抗體對於肺癌的細胞膜蛋白都有很好的結合能力。除此之外,這些單株抗體也可辨認到其他癌細胞的蛋白質,例如:口腔癌及乳癌。另外在細胞凋亡實驗中,也可觀察到LC-Ab 2-37、LC-Ab 8-5、LC-Ab 9-5可以造成肺癌細胞有細胞凋亡的現象產生。另外,我們也使用這些抗體去對肺癌病人組織切片做免疫染色,結果發現這四株單株抗體皆有反應產生。經過以上結果顯示,我們所製備對抗肺癌之單株抗體,的確能夠專一性對抗到癌細胞,因而未來可以運用於腫瘤抗原之基礎研究;也可運用於臨床上,來偵測肺癌抗原的表現及有效的發展肺癌的治療。 | zh_TW |
| dc.description.abstract | Lung cancer is the leading cause of cancer deaths, accounting for one third of all deaths from cancer worldwide. In the United States, accounting for about 29% of all cancer deaths, are expected to happen in 2008. In Taiwan, lung cancer is the first most common cancer and the death rate is the highest among all cancers, accounting for approximately 19.7% of all cancer deaths in 2006. Lung cancer is classified clinically as small (SCLC) (15-20%) or non-small cell lung cancer (NSCLC) (80-85%) for the purposes of treatment. Current treatment options include surgical resection, platinum-based doublet chemotherapy, and radiation therapy alone or in combination. However, there are many side effects and drug resistance of these treatments. Despite these therapies, the disease is rarely curable and the prognosis is poor, with an overall 5-year survival rate of only 15%. Because monoclonal antibodies (mAbs) have the ability to target tumours, and hence enables them to improve the selectivity of other types of anticancer agent. Therapeutic antibodies have established themselves as one of the most important and fastest growing classes of drugs for cancer. In this study, we have generated 12 mAbs which were specifically against CL1-5 and did not cross-react to normal cells including NNM cells, HUVEC, PBMC and normal human tissues. Four mAbs LC-Ab 1-7, LC-Ab 2-37, LC-Ab 8-5 and LC-Ab 9-5 exhibited high specificities against CL1-5. Therefore, we focused on these 4 mAbs to further characterize their biological properties. In Western blot analysis, LC-Ab 1-7, LC-Ab 2-37 and LC-Ab 4-12 recognize a protein with M.W. 60 kDa, 120 kDa and 58 kDa, respectively. These target proteins were also identified in other cancer cell line, including SAS and MDA-MB 231 by flow cytometric analysis. Furthermore, LC-Ab 2-37, LC-Ab 8-5 and LC-Ab 9-5 can induce apoptosis of cancer cells using flow cytometric analysis. Results from immunohistochemical staining of human surgical specimen sections by LC-Ab 1-7, LC-Ab 2-37, LC-Ab 8-5 and LC-Ab 9-5 indicated that these mAbs might be promising to be applied in the diagnosis and treatment for NSCLC. According to these data, the target proteins of these mAbs and their possible usage as tumor markers and development of Ab-targeted chemotherapy is warranted. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:14:16Z (GMT). No. of bitstreams: 1 ntu-97-R95450012-1.pdf: 3944408 bytes, checksum: 6f4c01c2518e283161f221bcfd9959f9 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………………………… 3
ABSTRACT………………………………………………………………………... 4 ABBREVIATION…………………………………………………………………. 6 INTRODUCTION………………………………………………………………… 8 MATERIALS & METHODS……………………………………………….…...... 22 RESULTS………………………………………………………………………..… 33 DISCUSSION…………………………………………………………………….. 39 FIGURES.................................................................................................................. 46 REFERENCES……………………………………………………………………. 70 | |
| dc.language.iso | en | |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 融合瘤 | zh_TW |
| dc.subject | 治療性抗體 | zh_TW |
| dc.subject | therapeutic antibody | en |
| dc.subject | lung cancer | en |
| dc.subject | apoptosis | en |
| dc.subject | hybridoma | en |
| dc.title | 肺癌專一性單株抗體的製備與功能之探討 | zh_TW |
| dc.title | Generation and Characterization of Monoclonal Antibodies Against Lung cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭彥彬,周涵怡 | |
| dc.subject.keyword | 肺癌,融合瘤,治療性抗體,細胞凋亡, | zh_TW |
| dc.subject.keyword | lung cancer,hybridoma,therapeutic antibody,apoptosis, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
