請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26514完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張帆人(Fan-Ren Chang) | |
| dc.contributor.author | I-CHENG HUANG | en |
| dc.contributor.author | 黃一誠 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:13:14Z | - |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | [1] D. M. Keirsey, E. Koch, J. McKisson, A. M. Meystel, and J. S. B. itchell, “Algorithm of Navigation for a Mobile Robot”, IEEE International Conf. on Robotics and Automation, vol. 1, pp. 574-583, 1984.
[2] E. Palma-Villalon and P. Dauchez, “World Representation and Path Planning for a Mobile Robot”, Robotica, vol. 6, no. 1, pp. 35-40, 1988. [3] E. Lucas, “Recreations Mathematiques”, 4 tomes, Gauthier Villars,. Paris, 1891, 1896, 1893, 1894. [4] R. C. Prim, “Shortest connection networks and some generalizations”, Bell System Technical Journal. vol. 36, pp. 1389-1401, 1957. [5] R. W. Floyd, “Algorithm 97: Shortest Path”, Communications of Assoc. Comput. Machinery. pp, 345, 1962. [6] D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks”, Journal of the ACM, pp, 1-13, 1977. [7] E. W. Dijkstra, “A note on two problems in connexion with graphs”, Numer. Math. vol. 1, pp. 269-71, 1959. [8] S. S. Ge and Y. J. Cui, “New Potential Functions For Mobile Robot Path Planning”, IEEE Trans. on Robots and Automation, vol. 16, no, 5, pp. 615-620, 2000. [9] G. Paolo and G. Alessandro, “A Technique to Analytically Formulate and to Solve the 2-Dimensional Constrained Trajectory Planning Problem for a Mobile Robot”, Journal of Intelligent and Robotic Systems, vol. 27, pp. 237-262, 2000. [10] C. Froissart and P. Mechler, “On Line Polynomial Path Planning in Cartesian Space for Robot Manipulators”, Robotica, vol. 11, pp. 245-251, 1993. [11] W. Nelson, “Continuous Curvature Paths for Autonomous vehicles”, In IEEE Internation Conference on Robotics and Automation, Scottsdale, AZ, 1989. [12] S. Fleury, P. Soueres, J. P. Laumond, and R. Chatila, “Primitives for Smoothing Mobile Robot Trajectories”, IEEE Trans. on Robots and Automation , vol. 11, pp. 441-448, 1995. [13] K.K. Gifford and R.R. Murphy, “Incorporating Terrain Uncertainties in Autonomous Vehicle Path Planning”, Proc. IROS 96, pp. 1134-1140, 1996. [14] K.S. Kwok and B.J. Driessen, “Path Planning for Complex Terrain Navigation Via Dynamic Programming”, Proc. of American Control Conference, S.D., Cal., pp. 2941-2944, 1999. [15] K.J. Tsao, L.S. Wang, P.T. Kuo, and Chang F.R., “Trajectory Generation for Vehicle Moving with Constraints on a Complex Terrain,” in IEEE ICRA, 2003. [16] 郭柏廷,「低空飛行載具之路徑規劃」,台大應力所碩士論文,民國90年6月。 [17] 曹根瑞,「載具平面運動之路徑規劃與螢幕遙控」,台大應力所碩士論文,民國91年9月。 [18] 李明威,「無人車之B-樣條曲線路徑規劃與控制」,台大應力所碩士論文,民國92年7月。 [19] 施法中,「計算機輔助幾何設計與非均勻有理B樣條」,高等教育出版社,民國90年. [20] C. deBoor, “A practical Guide to Splines”, New York: Springer-Verlag, 1978. [21] W. J. Gordon and R. F. Riesenfeld, “Computer aided geometric design : B-spline Curves and Surfaces”, R. E. Barnhill, and R. E. Riesenfeld (Eds.), academic press, 1974. [22] R. F. Riesenfield, “Applications of B-spline Approximation to Geometric Problems of Computer Aided Design”, Ph. D. thesis, Univ. of Utah, 1973. [23] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems”, IEEE Trans. on Robotics and Automation, vol. 15, no. 5, pp. 805-817, 1999. [24] C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-Spline Membership Function (BMF) and Its Application in Fuzzy-Neural Control”, IEEE Trans. on Systems, Man, and Cybernetics, vol. 25, no. 5, pp. 841-851, 1995. [25] 參考網址:http://www.sciencenet.cn/blog/user_content.aspx?id=15114 [26] K. J.Versprille, “Computer-Aided Design Application of the Rational B-spline Approximation form”, Ph. D. Thesis, Syracuse Univ., 1975. [27] L. Piegl and W. Tiller, “A Menagerie of Rational B-spline Circles”, IEEE Computer Graphics & Application, Vol. 9, 1989. [28] L. Piegl, “On NURBS: A Survey”, IEEE Computer Graphics & Application, Vol. 11, No. 1, pp. 55-71, Jan.1991. [29] C. Blanc and C. Schlick, “Accurate Parameterization of Conics by NURBS”, IEEE Computer Graphics and Applications, pp. 64-71, Nov. 1996. [30] Ke Lü and Ning He, “Offset of NURBS Curves by Genetic Algorithm”, IEEE Intelligent Control and Automation, pp. 564-568, 2000. [31] 葉賜旭,「多軸運動系統之整合式控制器及參數化插值器設計」,國立交大學電機與控制工程學系博士論文,民國89年。 [32] 郭洲成,「CNC伺服控制器之NURBS即時插值器設計與實現」,國立成功大學機械工程學研究所碩士論文,民國89年。 [33] 鄭中緯,「運動控制器之即時NURBS曲及曲面插值器設計與實現」,國立成功大學機械工程學研究所博士論文,民國92年。 [34] J.J. Deng, “An Improved Definition of B-Spline Basis Function”, Journal of the Chinese Institute of Industrial Engineers, Vol.16, No.5, p569-670, 1999. [35] 鄧志堅、黃玟錫,「Cox-DeBoor基本函數對NURBS的影響」,科技學刊第10卷第2期, p.107-117,2001年3月。 [36] M. Gopi and S. Manohar, “A Unified Architecture for the Computation of B-Spline Curves and Surfaces”, IEEE Transactions on Parallel and Distributed Systems, Vol.8, No.12, Dec. 1997. [37] S.C. Ou, L.H. Shiu, S.J. Hsiao and W.T. Sung, “Accelerate the Calculation of NURBS Curves and Surfaces Based on Parallel Architecture”, IEEE Transactions on Parallel and Distributed Systems, p245-250, 2002. [38] 許明景,「新一代運動控制ASIC功能分析」,機械工業雜誌253期, p.156-166,2004年4月。 [39] L. Piegl and W. Tiller, “The NURBS Book”, 2nd Edition, Springer, 1997. [40] 參考網址:www.iaalab.ncku.edu.tw/cac/91年課程資料/0801飛航管理簡介/飛行管制教材.doc [41] 陳永甡,「航空安全品質--飛航管制之探索」,品質管制月刊,民國89年2月。 [42] 傅健康,「淺談飛航管制與飛航安全」,空軍學術月刊,民國93年5月。 [43] 黃國智,「飛航管制的經驗」,飛航管制季刊,民國93年10月。 [44] 黃國智,「飛航管理系統發展的挑戰」,飛航電子,民國93年12月。 [45] 國立成功大學交通管理科學研究所,「終端管制區域模擬模式之建立-以台北終端管制區域為例(期末報告)」研究報告,交通部,第50-52頁,民國88年。 [46] 資訊工業策進會,「航管管制流程分析:以有限狀態機為分析基礎」研究報告,第1-8頁,民國88年。 [47] 劉志賢,「松山機場近場航機迂迴路徑之分析」,國立成功大學航空太空工程學系碩士論文,民國89年。 [48] 張仁達,「台北飛航情報區空域模擬模式之建立」,碩士論文,國立成功大學交通管理科學研究所,台南,第18-21頁,民國90年。 [49] 劉仲祥,「即時飛航流量管理系統之建立與管理策略研擬」,博士論文,國立成功大學交通管理科學研究所,台南,第30-42頁,民國93年。 [50] 董吉利,「台北終端管制區國際線離到場航空器垂直飛航軌跡之探討」,國立交通大學/管理學院碩士在職專班運輸物流組碩士論文,民國93年。 [51] 林庭輝,「應用派屈網路於飛航管制流程之塑模與分析」,國防大學中正理工學院兵器系統工程研究所碩士論文,民國94年。 [52] 參考網址:http://www.aero.tku.edu.tw/high/why.htm [53] 王懷柱,「揭開飛行的奧秘」,全華科技,2000。 [54] J.D Anderson, “Introduction to Flight” , McGraw-Hill International,1989. [55] A.C. Kermode, “Mechanics of Flight”, Addition Wesley Longman Limited,1972. [56] E.L. Houghton and N.B. Carruthers, “Aerodynamics for Engineering Students”, Edward Arnold,1982. [57] 交通部民用航空局,「飛安O七-O二A航空器飛航作業管理規則」,第一章第二條第七十七項,2007。 [58] 交通部民用航空局及國防部空軍總司令部,「飛航管理程序(Air Traffic Management Procedures - ATMP)」,第1.3.4頁,2007。 [59] 交通部民用航空局及國防部空軍總司令部,「飛航管制程序(Air Traffic Control Procedure, ATP)」,第2.2.1頁,2001。 [60] 參考網址:http://www.wendy.com.tw/~ming010/ATC/introATC.htm。 [61] 交通部民用航空局及國防部空軍總司令部,「飛航管理程序(Air Traffic Management Procedures – ATMP)」,第6.7.1及6.7.2頁,2007。 [62] Li-Wei Chou, “Design of B-spline Obstacle Avoidance Trajectory Planning Based on Image Detection”, Master Thesis, China Institute of Technology, Electronic Engineering, 2006. [63] Wei-Cherng Lu and Jiung-Ming Huang, “Modification of a NURBS curve with nose features”, Computer Integrated Manufacturing Systems, Volume 11, Issue 4, October, Pages 253-265, 1998. [64] L Piegl, “Modifying the shape of rational B-splines. Part 1: curves”, Computer Aided Design Vol 21 No 8, pp. 509–518, 1989. [65] B Fowler and R Bartels, “Constraint-based curve manipulation”, IEEE Computer Graphics and Applications Vol 13 No 5, pp. 43–49, 1993. [66] CK Au and MM Yuen, “Unified approach to NURBS curve shape modification”, Computer Aided Design Vol 27 No 2, pp. 85–93, 1995. SummaryPlus [67] J Sanchez-Reyes, “A simple technique for NURBS shape modification”, IEEE Computer Graphics and Applications Vol 17 No 1, pp. 52–59, 1997. [68] DF Rogers and JA Adams. In: (2nd edn. ed.), “Mathematical Elements for Computer Graphics”, McGraw-Hill, New York, USA, 1990. [69] H Prautzsch, “Degree elevation of B-spline curves”, Computer Aided Geometric Design Vol 1, pp. 193–198, 1984. [70] W Boehm, “On the efficiency of knot insertion algorithms”, Computer Aided Geometric Design Vol 2, pp. 141–143, 1985. [71] W Boehm, “Inserting new knots into B-spline curves”, Computer Aided Design Vol 12 No 4, pp. 199–201, 1980. [72]. P. S. Tsai, “Modeling and Control for Wheeled Mobile Robots with Nonholonomic Constraints”, Ph. D. thesis, Univ. of NTU, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26514 | - |
| dc.description.abstract | 本文目的是以飛機作為載具模型,在環境模型的基礎下,建構一條連接起始點(起飛)到終點(降落)的非均勻有理B-spline (NURBS)平滑曲線,除了滿足飛行載具飛行姿態、轉彎時最小曲率半徑等限制,以及其起始點(起飛)到終點(降落)的運動約束之外,並可成功地避開障礙區域(類如禁航區或山丘等)。首先在飛行平面上,因環境而造成的障礙區域的邊界,我們加入一個凸邊形的安全防護網,防止飛行載具與障礙區域發生碰撞。其次,本文提出修正型Dijkstra演算法,以凸邊形障礙區域的頂點為網路節點,最短路徑為代價評估函數,尋找一條連接起始點(起飛)與終點(降落)的最佳避障路徑。我們採用分段NURBS曲線來取代傳統的遞迴表示式,基於B-spline基底函數作為平滑路徑的設計,將曲率限制以及運動約束引入最小路徑的代價函數中,將軌跡規劃的問題轉換成求解約束最佳化的問題。由模擬結果顯示,本文所提出路徑規劃的方法不僅成效良好並且具有可行性。上述作法亦可運用在飛航管制方面,以實現相關規劃與應用。 | zh_TW |
| dc.description.abstract | This paper proposed a solution for the problem of path planning for a flying vehicle (airplane) moving in complex areas. The purpose is to generate a smooth segmental NURBS trajectory connecting the initial point (for taking off) and the final point (for landing) so that no collisions with obstacle areas (such as forbidden regions, or mountain, etc.) under various constraints conditions. The modified Dijkstra’s algorithm will be used to search for the shortest path. Obstacle areas are modeled by polygonal sets with the appropriate safety margins. To find a smooth trajectory which meets the capability of the flying vehicle, the method of segmental NURBS curves is adopted. The curvature restrictions and kinematic constraints are introduced into the constrained optimization problems. The control points are generated to characterize the curve forms. The syntheses of the above concepts lead to successful approaches for path planning, which are demonstrated by simulation results based on a software package using MATLAB GUI toolbox. It’s also good for related flying trajectory planning and application on Air Traffic Control by using the above methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:13:14Z (GMT). No. of bitstreams: 1 ntu-97-P95921001-1.pdf: 1160139 bytes, checksum: eccae6e1e889561af6db465125b024e4 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要.............................................. i
英文摘要.............................................. ii 目錄.................................................. iii 圖目錄................................................ vi 表目錄................................................ viii 第一章 緒論........................................... 1 1.1 研究動機.......................................... 1 1.2 文獻回顧.......................................... 2 1.3 內容概述與論文架構................................ 8 第二章 相關背景資料................................... 10 2.1 問題描述.......................................... 10 2.2 飛行基本原理...................................... 11 2.3 不同條件下的飛機運動狀況.......................... 13 2.3.1 飛機有關定航速、定航向的飛行運動模式............ 13 2.3.2 飛機有關變航向的飛行運動模式.................... 17 2.3.3 飛機最小迴轉半徑................................ 21 2.4 配合飛航管制空中隔離相關技術運用.................. 23 第三章 修正型Dijkstra最短路徑搜尋法....................27 3.1 環境模型資訊................................... 27 3.2 三維虛擬地形的格點化.............................. 29 3.3 障礙區域的分佈模型................................ 30 3.4 禁行路徑的判斷.....................................32 3.5 修正型Dijkstra演算法...............................35 第四章NURBS分段曲線之路徑規劃......................... 39 4.1 NURBS與B-spline曲線............................... 39 4.2 B-spline與NURBS曲線相關特性....................... 45 4.3 NURBS分段曲線..................................... 49 4.4分段B-spline曲線控制點與曲線位置、速度、加速度關係 53 4.5 約束最佳化方法.................................... 56 4.6 權重參數微調的方法.................................59 第五章 模擬結果與討論................................. 61 5.1 NURBS避障軌跡圖形介面..............................61 5.2 修正型Dijkstra最短路徑搜尋法模擬.................. 64 5.3 NURBS分段曲線路徑規劃模擬..........................67 5.4 藉由移動控制點修改NURBS曲線模擬................... 69 5.5飛機繞類似螺旋形飛行模擬............................73 5.6 討論.............................................. 74 第六章 結論與未來研究方向............................. 75 6.1 結論.............................................. 75 6.2未來研究方向........................................76 6.3 結語.............................................. 77 參考文獻..................................... .........78 附錄.................................................. 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 路徑規劃 | zh_TW |
| dc.subject | 修正型Dijkstra演算法 | zh_TW |
| dc.subject | 分段NURBS曲線 | zh_TW |
| dc.subject | 代價函數 | zh_TW |
| dc.subject | 曲率限制 | zh_TW |
| dc.subject | 運動約束 | zh_TW |
| dc.subject | Segmental NURBS Curve | en |
| dc.subject | Modified Dijkstra’s Algorithm | en |
| dc.subject | Cost Function | en |
| dc.subject | Curvature Restrictions | en |
| dc.subject | Kinematic Constraints | en |
| dc.subject | Path planning | en |
| dc.title | 分段式NURBS曲線與修正型Dijkstra演算法實現路徑規劃與應用 | zh_TW |
| dc.title | Combining Segmental NURBS Curve and Modified Dijkstra’s Algorithm for Trajectory Planning and Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡樸生(Pu-Sheng Tsai) | |
| dc.contributor.oralexamcommittee | 王文俊(Wen-June Wang),卓大靖(Dah-jing Jwo),王立昇(Li-sheng Wang) | |
| dc.subject.keyword | 路徑規劃,修正型Dijkstra演算法,分段NURBS曲線,代價函數,曲率限制,運動約束, | zh_TW |
| dc.subject.keyword | Path planning,Modified Dijkstra’s Algorithm,Segmental NURBS Curve,Cost Function,Curvature Restrictions,Kinematic Constraints, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
